Skip to main content
Top
Gepubliceerd in: Psychological Research 2/2013

01-03-2013 | Original Article

Overtraining and the use of feature and geometric cues for reorientation

Auteurs: Bradley R. Sturz, Katherine A. Gaskin, Kent D. Bodily

Gepubliceerd in: Psychological Research | Uitgave 2/2013

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Using a dynamic three-dimensional virtual environment task, we investigated the influence of overtraining of feature and geometric cues on preferential spatial cue use. We trained two groups of human participants to respond to feature and geometric cues in separate enclosures before placing these cues in conflict on a critical test trial. All participants learned to respond to rewarded features located along the principal axis of a rectangular search space and to rewarded geometric cues of a rectangular search space in separate training phases followed by a single test trial. During the test trial, we situated the rewarded features in the unrewarded geometric corners and the unrewarded features in rewarded geometric corners. For one group, participants were overtrained with feature cues compared to geometric cues before experiencing the conflict test; whereas, for another group, participants were overtrained with geometric cues compared to feature cues before experiencing the conflict test. Although both groups learned to respond to both feature and geometric cues at an equivalent rate and to an equivalent level of terminal accuracy, testing results revealed no difference between the groups with respect to their preference for feature or geometric cues. Despite a lack of influence of overtraining on spatial cue preference, participants showed an overall preference for feature cues. We discuss the results with respect to implications for theoretical accounts of spatial learning.
Literatuur
go back to reference Alyan, S., & Jander, R. (1994). Short-range homing in the house mouse, Mus musculus: Stages in the learning of directions. Animal Behaviour, 48, 285–298.CrossRef Alyan, S., & Jander, R. (1994). Short-range homing in the house mouse, Mus musculus: Stages in the learning of directions. Animal Behaviour, 48, 285–298.CrossRef
go back to reference Bodily, K. D., Eastman, C. K., & Sturz, B. R. (2011). Neither by global nor localcues alone: Evidence for a unified orientation process. Animal Cognition, 14, 665–674.PubMedCrossRef Bodily, K. D., Eastman, C. K., & Sturz, B. R. (2011). Neither by global nor localcues alone: Evidence for a unified orientation process. Animal Cognition, 14, 665–674.PubMedCrossRef
go back to reference Chamizo, V. D. (2003). Acquisition of knowledge about spatial location: Assessing the generality of the mechanism of learning. The Quarterly Journal of Experimental Psychology, 56B, 102–113.CrossRef Chamizo, V. D. (2003). Acquisition of knowledge about spatial location: Assessing the generality of the mechanism of learning. The Quarterly Journal of Experimental Psychology, 56B, 102–113.CrossRef
go back to reference Cheng, K. (1986). A purely geometric module in the rat’s spatial representation. Cognition, 23, 149–178.PubMedCrossRef Cheng, K. (1986). A purely geometric module in the rat’s spatial representation. Cognition, 23, 149–178.PubMedCrossRef
go back to reference Cheng, K. (2008). Whither geometry? Troubles of the geometric module. Trends in Cognitive Sciences, 12, 355–361.PubMedCrossRef Cheng, K. (2008). Whither geometry? Troubles of the geometric module. Trends in Cognitive Sciences, 12, 355–361.PubMedCrossRef
go back to reference Cheng, K., & Newcombe, N. S. (2005). Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bulletin & Review, 12, 1–23.CrossRef Cheng, K., & Newcombe, N. S. (2005). Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bulletin & Review, 12, 1–23.CrossRef
go back to reference Cheung, A., Stürzl, W., Zeil, J., & Cheng, K. (2008). The information content of panoramic images II: view-based navigation in nonrectangular experimental arenas. Journal of Experimental Psychology: Animal Behavior Processes, 34, 15–30.PubMedCrossRef Cheung, A., Stürzl, W., Zeil, J., & Cheng, K. (2008). The information content of panoramic images II: view-based navigation in nonrectangular experimental arenas. Journal of Experimental Psychology: Animal Behavior Processes, 34, 15–30.PubMedCrossRef
go back to reference Collett, T. S., & Zeil, J. (1998). Places and landmarks: an arthropod perspective. In S. Healy (Ed.), Spatial Representation in Animals (pp. 18–53). Oxford: Oxford University Press. Collett, T. S., & Zeil, J. (1998). Places and landmarks: an arthropod perspective. In S. Healy (Ed.), Spatial Representation in Animals (pp. 18–53). Oxford: Oxford University Press.
go back to reference Doeller, C. F., & Burgess, N. (2008). Distinct error-correcting and incidental learning location relative to landmarks and boundaries. Proceedings of the National Academy of Sciences, 105, 5909–5914.CrossRef Doeller, C. F., & Burgess, N. (2008). Distinct error-correcting and incidental learning location relative to landmarks and boundaries. Proceedings of the National Academy of Sciences, 105, 5909–5914.CrossRef
go back to reference Doeller, C. F., King, J. A., & Burgess, N. (2008). Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proceedings of the National Academy of Sciences, 105, 5915–5920.CrossRef Doeller, C. F., King, J. A., & Burgess, N. (2008). Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proceedings of the National Academy of Sciences, 105, 5915–5920.CrossRef
go back to reference Etienne, A. S., Berlie, J., Georgakopoulos, J., & Maurer, R. (1998). Role of dead reckoning in navigation. In S. Healy (Ed.), Spatial representation in animals (pp. 54–68). New York: Oxford. Etienne, A. S., Berlie, J., Georgakopoulos, J., & Maurer, R. (1998). Role of dead reckoning in navigation. In S. Healy (Ed.), Spatial representation in animals (pp. 54–68). New York: Oxford.
go back to reference Gallistel, C. R. (1990). The organization of learning. Cambridge: MIT Press. Gallistel, C. R. (1990). The organization of learning. Cambridge: MIT Press.
go back to reference Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15, 20–25.PubMedCrossRef Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15, 20–25.PubMedCrossRef
go back to reference Graham, M., Good, M., McGregor, A., & Pearce, J. M. (2006). Spatial learning based on the shape of the environment is influenced by properties of the objects forming the shape. Journal of Experimental Psychology: Animal Behavior Processes, 32, 44–59.PubMedCrossRef Graham, M., Good, M., McGregor, A., & Pearce, J. M. (2006). Spatial learning based on the shape of the environment is influenced by properties of the objects forming the shape. Journal of Experimental Psychology: Animal Behavior Processes, 32, 44–59.PubMedCrossRef
go back to reference Lee, S. A., & Spelke, E. S. (2010). Two systems of spatial representation underlying navigation. Experimental Brain Research, 206, 179–188.CrossRef Lee, S. A., & Spelke, E. S. (2010). Two systems of spatial representation underlying navigation. Experimental Brain Research, 206, 179–188.CrossRef
go back to reference Lee, S. A., & Spelke, E. S. (2011). Young children reorient by computing layout geometry, not by matching images of the environment. Psychonomic Bulletin & Review, 18, 192–198.CrossRef Lee, S. A., & Spelke, E. S. (2011). Young children reorient by computing layout geometry, not by matching images of the environment. Psychonomic Bulletin & Review, 18, 192–198.CrossRef
go back to reference Miller, N. Y. (2009). Modeling the effects of enclosure size on geometry learning. Behavioural Processes, 80, 306–313.PubMedCrossRef Miller, N. Y. (2009). Modeling the effects of enclosure size on geometry learning. Behavioural Processes, 80, 306–313.PubMedCrossRef
go back to reference Miller, N. Y., & Shettleworth, S. J. (2007). Learning about environmental geometry: An associative model. Journal of Experimental Psychology: Animal Behavior Processes, 33, 191–212.PubMedCrossRef Miller, N. Y., & Shettleworth, S. J. (2007). Learning about environmental geometry: An associative model. Journal of Experimental Psychology: Animal Behavior Processes, 33, 191–212.PubMedCrossRef
go back to reference Mishkin, M., Underleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: two cortical pathways. Trends in Neurosciences, 6, 414–417.CrossRef Mishkin, M., Underleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: two cortical pathways. Trends in Neurosciences, 6, 414–417.CrossRef
go back to reference Nardini, M., Thomas, R. L., Knowland, V. C. P., Braddick, O., & Atkinson, J. (2009). A viewpoint-independent process for spatial reorientation. Cognition, 112, 241–248.PubMedCrossRef Nardini, M., Thomas, R. L., Knowland, V. C. P., Braddick, O., & Atkinson, J. (2009). A viewpoint-independent process for spatial reorientation. Cognition, 112, 241–248.PubMedCrossRef
go back to reference Nieuwenhuis, S., Forstmann, B. U., & Wagenmakers, E. J. (2011). Erroneous analyses of interactions in neuroscience: A problem of significance. Nature Neuroscience, 14, 1105–1107.PubMedCrossRef Nieuwenhuis, S., Forstmann, B. U., & Wagenmakers, E. J. (2011). Erroneous analyses of interactions in neuroscience: A problem of significance. Nature Neuroscience, 14, 1105–1107.PubMedCrossRef
go back to reference Pearce, J. M., Graham, M., Good, M. A., Jones, P. M., & McGregor, A. (2006). Potentiation, overshadowing, and blocking of spatial learning based on the shape of the environment. Journal of Experimental Psychology: Animal Behavior Processes, 32, 201–214.PubMedCrossRef Pearce, J. M., Graham, M., Good, M. A., Jones, P. M., & McGregor, A. (2006). Potentiation, overshadowing, and blocking of spatial learning based on the shape of the environment. Journal of Experimental Psychology: Animal Behavior Processes, 32, 201–214.PubMedCrossRef
go back to reference Spelke, E. S., Lee, S. A., & Izard, V. (2010). Beyond core knowledge: Natural geometry. Cognitive Science, 34, 863–884.PubMedCrossRef Spelke, E. S., Lee, S. A., & Izard, V. (2010). Beyond core knowledge: Natural geometry. Cognitive Science, 34, 863–884.PubMedCrossRef
go back to reference Sturz, B. R., & Bodily, K. D. (2011). Is surface-based orientation influenced by a proportional relationship of shape parameters? Psychonomic Bulletin & Review, 18, 848–854.CrossRef Sturz, B. R., & Bodily, K. D. (2011). Is surface-based orientation influenced by a proportional relationship of shape parameters? Psychonomic Bulletin & Review, 18, 848–854.CrossRef
go back to reference Sturz, B. R., & Diemer, S. M. (2010). Reorienting when cues conflict: A role for information content in spatial learning? Behavioural Processes, 83, 90–98.PubMedCrossRef Sturz, B. R., & Diemer, S. M. (2010). Reorienting when cues conflict: A role for information content in spatial learning? Behavioural Processes, 83, 90–98.PubMedCrossRef
go back to reference Sturz, B. R., Gurley, T., & Bodily, K. D. (2011). Orientation in trapezoid-shaped enclosures: Implications for theoretical accounts of geometry learning. Journal of Experimental Psychology: Animal Behavior Processes, 37, 246–253.PubMedCrossRef Sturz, B. R., Gurley, T., & Bodily, K. D. (2011). Orientation in trapezoid-shaped enclosures: Implications for theoretical accounts of geometry learning. Journal of Experimental Psychology: Animal Behavior Processes, 37, 246–253.PubMedCrossRef
go back to reference Stürzl, W., Cheung, A., Cheng, K., & Zeil, J. (2008). The information content of panoramic images I: the rotational errors and the similarity of views in rectangular experimental arenas. Journal of Experimental Psychology: Animal Behavior Processes, 34, 1–14.PubMedCrossRef Stürzl, W., Cheung, A., Cheng, K., & Zeil, J. (2008). The information content of panoramic images I: the rotational errors and the similarity of views in rectangular experimental arenas. Journal of Experimental Psychology: Animal Behavior Processes, 34, 1–14.PubMedCrossRef
go back to reference Teroni, E., Portenier, V., & Etienne, A. S. (1987). Spatial orientation of the golden hamster in condition of conflicting location-based and route-based information. Behavioral Ecology and Sociobiology, 20, 389–397.CrossRef Teroni, E., Portenier, V., & Etienne, A. S. (1987). Spatial orientation of the golden hamster in condition of conflicting location-based and route-based information. Behavioral Ecology and Sociobiology, 20, 389–397.CrossRef
go back to reference Wystrach, A., & Beugnon, G. (2009). Ants learn geometry and features. Current Biology, 19, 61–66.PubMedCrossRef Wystrach, A., & Beugnon, G. (2009). Ants learn geometry and features. Current Biology, 19, 61–66.PubMedCrossRef
go back to reference Wystrach, A., Cheng, K., Sosa, S., & Beugnon, G. (2011). Geometry, features, and panoramic views: Ants in rectangular arenas. Journal of Experimental Psychology: Animal Behavior Processes, 37, 420–435.PubMedCrossRef Wystrach, A., Cheng, K., Sosa, S., & Beugnon, G. (2011). Geometry, features, and panoramic views: Ants in rectangular arenas. Journal of Experimental Psychology: Animal Behavior Processes, 37, 420–435.PubMedCrossRef
Metagegevens
Titel
Overtraining and the use of feature and geometric cues for reorientation
Auteurs
Bradley R. Sturz
Katherine A. Gaskin
Kent D. Bodily
Publicatiedatum
01-03-2013
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 2/2013
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-011-0410-z

Andere artikelen Uitgave 2/2013

Psychological Research 2/2013 Naar de uitgave