TODO: Skip to main content
Top
Gepubliceerd in:

21-05-2024

Optimization of alert notifications in electronic patient-reported outcome (ePRO) remote symptom monitoring systems (AFT-39)

Auteurs: Gina L. Mazza, Amylou C. Dueck, Brenda Ginos, Jennifer Jansen, Allison M. Deal, Philip Carr, Victoria S. Blinder, Gita Thanarajasingam, Mattias Jonsson, Minji K. Lee, Lauren J. Rogak, Gita N. Mody, Deborah Schrag, Ethan Basch

Gepubliceerd in: Quality of Life Research | Uitgave 7/2024

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Purpose

Clinical benefits result from electronic patient-reported outcome (ePRO) systems that enable remote symptom monitoring. Although clinically useful, real-time alert notifications for severe or worsening symptoms can overburden nurses. Thus, we aimed to algorithmically identify likely non-urgent alerts that could be suppressed.

Methods

We evaluated alerts from the PRO-TECT trial (Alliance AFT-39) in which oncology practices implemented remote symptom monitoring. Patients completed weekly at-home ePRO symptom surveys, and nurses received real-time alert notifications for severe or worsening symptoms. During parts of the trial, patients and nurses each indicated whether alerts were urgent or could wait until the next visit. We developed an algorithm for suppressing alerts based on patient assessment of urgency and model-based predictions of nurse assessment of urgency.

Results

593 patients participated (median age = 64 years, 61% female, 80% white, 10% reported never using computers/tablets/smartphones). Patients completed 91% of expected weekly surveys. 34% of surveys generated an alert, and 59% of alerts prompted immediate nurse actions. Patients considered 10% of alerts urgent. Of the remaining cases, nurses considered alerts urgent more often when patients reported any worsening symptom compared to the prior week (33% of alerts with versus 26% without any worsening symptom, p = 0.009). The algorithm identified 38% of alerts as likely non-urgent that could be suppressed with acceptable discrimination (sensitivity = 80%, 95% CI [76%, 84%]; specificity = 52%, 95% CI [49%, 55%]).

Conclusion

An algorithm can identify remote symptom monitoring alerts likely to be considered non-urgent by nurses, and may assist in fostering nurse acceptance and implementation feasibility of ePRO systems.
Bijlagen
Deze inhoud is alleen zichtbaar als je bent ingelogd en de juiste rechten hebt.
Literatuur
Deze inhoud is alleen zichtbaar als je bent ingelogd en de juiste rechten hebt.
Metagegevens
Titel
Optimization of alert notifications in electronic patient-reported outcome (ePRO) remote symptom monitoring systems (AFT-39)
Auteurs
Gina L. Mazza
Amylou C. Dueck
Brenda Ginos
Jennifer Jansen
Allison M. Deal
Philip Carr
Victoria S. Blinder
Gita Thanarajasingam
Mattias Jonsson
Minji K. Lee
Lauren J. Rogak
Gita N. Mody
Deborah Schrag
Ethan Basch
Publicatiedatum
21-05-2024
Uitgeverij
Springer International Publishing
Gepubliceerd in
Quality of Life Research / Uitgave 7/2024
Print ISSN: 0962-9343
Elektronisch ISSN: 1573-2649
DOI
https://doi.org/10.1007/s11136-024-03675-3