Skip to main content
Top
Gepubliceerd in: Psychological Research 1/2018

27-10-2017 | Original Article

“Optimal suppression” as a solution to the paradoxical cost of multitasking: examination of suppression specificity in task switching

Auteurs: Maayan Katzir, Bnaya Ori, Nachshon Meiran

Gepubliceerd in: Psychological Research | Uitgave 1/2018

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Switching between tasks necessitates maintaining tasks in high readiness, yet readiness creates paradoxical interference from these tasks when they are not currently required. “Optimal suppression”, which targets just the interfering information, provides a partial solution to this paradox. By examining the carryover of suppression of a competitor stimulus–response (S–R) set from Trial N − 1 to Trial N, Meiran, Hsieh  and colleagues (Meiran  et al., J Exp Psychol Learn mem cognit 36:992–1002, 2010; Cognit Affect Behav Neurosci 11:292–308, 2011, and Hsieh et al., Acta Psychol 141:316–321, 2012) found that only the competing stimulus–response (S–R) set of rules is suppressed. Specifically, they found that a competitor S–R set in Trial N − 1 incurs cost when it becomes the relevant set in Trial N [competitor becomes relevant (CbR)]. Extending this logic, we predicted performance benefit when the competitor S–R set in Trial N − 1 remains the competitor S–R set in Trial N [competitor remains competitor (CrC)]. Here, we examined the question of whether what is being suppressed when encountering a response conflict is the entire S–R set of rules (e.g., “IF pink PRESS right”, and “IF blue PRESS left”) or an even more specific representation, namely, the currently interfering S–R rule (e.g., just “IF blue PRESS left”). We show that both CbR and CrC interact with Response (i.e., left or right key), suggesting that the system can recognize the exact source of interference (the competing S–R rule), and inhibit only this source.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Voetnoten
1
It is important to note that we chose the term ‘carryover’ to communicate the fact that we do not commit ourselves to a decay position where the passage of time is critical. Alternatively, a task control representation is tagged in an episodic trace as one causing interferences, such that its subsequent retrieval would be impaired. According to this position, time per se is unimportant, and what is critical is the ease in which the tagged episode is retrieved. In fact, a temporal distinctiveness analysis (Horoufchin, Philipp, & Koch, 2011) favored episodic retrieval over decaying inhibition, by showing that the paradoxically maladaptive pervasiveness of suppression was increased with temporal distinctiveness between the previous and the current episode (see Hsieh et al. 2012). For that reason, we also use the term ‘suppression’, rather than ‘inhibition’, to indicate a cognitive control mechanism without committing to an inhibitory account.
 
2
S–R sets and S–R rules form a hierarchical structure, such that S–R sets are an assembly of two S–R rules. Yet, only one S–R rule of each S–R set is present in a given trial. Therefore, if, on a given trial, an S–R rule elicits a response tendency that is incompatible with the relevant response, the S–R rule would be an interfering S–R rule, and, as a result from the hierarchical structure, the S–R set would be a competing S–R set.
 
3
It is important to note that the compatibility of an S–R set is determined by the compatibility of the relevant and irrelevant S–R rules. Specifically, when the irrelevant S–R rule elicits a response that is incompatible with the response that is elicited by the relevant S–R rule, the irrelevant S–R rule is an interfering S–R rule and the S–R set to which the irrelevant S–R rule belongs is a competitor S–R set. However, when the S–R rule is not interfering, this S–R rule and this S–R set are both compatible.
 
4
While Sudevan and Taylor, and many others, used paradigms with only two S–R sets, later works used paradigms with K (K = 3 or 4, usually) S–R sets, as we did here. In this case, the Congruency variable does not have only two levels (congruent, incongruent, with 0 or 1 competitor S–R sets), but, instead, is replaced by a variable representing the number of competitor S–R sets, ranging from zero (congruent) to K – 1. From here on, we use the terms “congruent/incongruent” to identify whether there were no competitor rules on a trial (i.e., a congruent trial), or one or more competitors (i.e., an incongruent trial).
 
5
In the original work, and publication following it, Meiran et al. (2010) termed this effect "competitor rule suppression". To avoid confusion, we mention here that what Meiran et al. described as “competitor rule” is described here, using our terminology, as “competitor S–R set”. Thus, CbR should actually be termed “competitor S–R set suppression”. Moreover, in what comes next, we introduce another effect that results from set suppression. Therefore, we decided from hereon to give this phenomenon a more theoretically neutral term: CbR, which stands for competitor becomes relevant.
 
6
Note that although on a given trial, if an S–R rule is interfering, the S–R set must also be competing. This is due to the fact that the S–R rule is a part of the S–R set, i.e., the hierarchical structure mentioned above. Thus, in two consecutive trials, when the competitor set from Trial N − 1 appears in Trial N (as either a relevant set in CbR or as a competitor in CrC), its competing aspect from Trial N − 1 (i.e., the interfering S–R rule in Trial N − 1) may not appear in Trial N.
 
7
In Katzir, Ori, Eyal, & Meiran (2015), the research question focused on emotion effects, and therefore the exclusion criteria related to whether participants followed instructions in the emotion manipulation. Because the current investigation did not include emotion, we included also participants who were previously excluded. We, therefore, excluded only one participant from Experiment 1, who performed with 49% errors.
 
8
In a model selection process, BF10 is calculated for all possible models composed out of the combinations between main effects and interactions of the independent variables. For example, in a Bayesian ANOVA that includes two independent variables A and B, there are five possible models: three models that include only main effects (1st: Only A; 2nd: Only B; 3rd: A + B), another model that also includes the interaction (4th: A + B + AB), and the null model. The analysis gives a BF10 for each model separately, and then we select the model with the best fit to the data (see Maxwell & Delaney, 2003, for an equivalent treatment of "standard" ANOVA). This selection is based on the QueryBF of the comparison between the models, namely the ratio between the BF10 of the best model and the next best model. Moreover, to establish the existence of a main effect, we use the BF10 of this effect. However, to establish the existence of an interaction, we use the best fitting model that includes the interaction and compare it to the best fitting model that includes all of the effects present in the former model excluding the interaction (Rouder, Morey, Speckman, & Province, 2012). Thus, a BFcomparison > 1 would indicate evidence favoring the interaction.
 
9
The same applies to the CrC analysis, only there the CrC effect is present when comparing Fig. 4b-I to -III (i.e., S–R rule repetition comparison) and not when comparing Fig. 4b-II to b-IV (i.e., S–R rule switch comparison).
 
10
We thank Pierre Jolicoeur for raising this possibility (personal communication, May 2017).
 
11
Note that in their work about goal shielding, S–R set representations are referred to as task sets (TS), whereas S–R rule representations are referred to as S–R mappings (e.g., Dreisbach & Haider, 2009).
 
Literatuur
go back to reference Allport, A., Styles, E. A., & Hsieh, S. (1994). Shifting intentional set: Exploring the dynamic control of tasks. In C. Umilta & M. Moscovitch (Eds.), Attention and performance XV: Conscious and nonconscious information processing (pp. 421–452). Cambridge : MIT Press. Allport, A., Styles, E. A., & Hsieh, S. (1994). Shifting intentional set: Exploring the dynamic control of tasks. In C. Umilta & M. Moscovitch (Eds.), Attention and performance XV: Conscious and nonconscious information processing (pp. 421–452). Cambridge : MIT Press.
go back to reference Allport, A., & Wylie, G. (1999). Task switching: Positive and negative priming of task-set. In G. W. Humphreys, J. Duncan, & A. M. Treisman (Eds.), Attention, space and action: Studies in cognitive neuroscience (pp. 273–296). Oxford: Oxford University Press. Allport, A., & Wylie, G. (1999). Task switching: Positive and negative priming of task-set. In G. W. Humphreys, J. Duncan, & A. M. Treisman (Eds.), Attention, space and action: Studies in cognitive neuroscience (pp. 273–296). Oxford: Oxford University Press.
go back to reference Allport, D. A., & Wylie, G. (2000). “Task-switching”, stimulus–response bindings, and negative priming. In S. Monsell & J. S. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 35–70). Cambridge: MIT Press. Allport, D. A., & Wylie, G. (2000). “Task-switching”, stimulus–response bindings, and negative priming. In S. Monsell & J. S. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 35–70). Cambridge: MIT Press.
go back to reference Arbuthnott, K. D. (2008). Asymmetric switch cost and backward inhibition: Carryover activation and inhibition in switching between tasks of unequal difficulty. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 62, 91–100.CrossRefPubMed Arbuthnott, K. D. (2008). Asymmetric switch cost and backward inhibition: Carryover activation and inhibition in switching between tasks of unequal difficulty. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 62, 91–100.CrossRefPubMed
go back to reference Astle, D. E., Jackson, G. M., & Swainson, R. (2012). Two measures of task-specific inhibition. The Quarterly Journal of Experimental Psychology, 6, 233–251.CrossRef Astle, D. E., Jackson, G. M., & Swainson, R. (2012). Two measures of task-specific inhibition. The Quarterly Journal of Experimental Psychology, 6, 233–251.CrossRef
go back to reference Botvinick, M. M., Braver, T., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.CrossRefPubMed Botvinick, M. M., Braver, T., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.CrossRefPubMed
go back to reference Bryck, R. L., & Mayr, U. (2008). Task selection cost asymmetry without task switching. Psychonomic Bulletin & Review, 15, 128–134.CrossRef Bryck, R. L., & Mayr, U. (2008). Task selection cost asymmetry without task switching. Psychonomic Bulletin & Review, 15, 128–134.CrossRef
go back to reference Dreisbach, G., Goschke, T., & Haider, H. (2006). Implicit task sets in task switching? Journal of Experimental Psychology. Learning, Memory, and Cognition, 32, 1221–1233.CrossRefPubMed Dreisbach, G., Goschke, T., & Haider, H. (2006). Implicit task sets in task switching? Journal of Experimental Psychology. Learning, Memory, and Cognition, 32, 1221–1233.CrossRefPubMed
go back to reference Dreisbach, G., Goschke, T., & Haider, H. (2007). The role of task-rules and stimulus–response mappings in the task switching paradigm. Psychological Research, 71, 383–392.CrossRefPubMed Dreisbach, G., Goschke, T., & Haider, H. (2007). The role of task-rules and stimulus–response mappings in the task switching paradigm. Psychological Research, 71, 383–392.CrossRefPubMed
go back to reference Dreisbach, G., & Haider, H. (2008). That’s what task sets are for: Shielding against distraction. Psychological Research, 72, 355–361.CrossRefPubMed Dreisbach, G., & Haider, H. (2008). That’s what task sets are for: Shielding against distraction. Psychological Research, 72, 355–361.CrossRefPubMed
go back to reference Dreisbach, G., & Haider, H. (2009). How task representations guide attention: further evidence for the shielding function of task sets. Journal of Experimental Psychology. Learning, Memory, and Cognition, 35, 477–486.CrossRefPubMed Dreisbach, G., & Haider, H. (2009). How task representations guide attention: further evidence for the shielding function of task sets. Journal of Experimental Psychology. Learning, Memory, and Cognition, 35, 477–486.CrossRefPubMed
go back to reference Fagot, C. (1994). Chronometric investigations of task switching. Ph.D. thesis, University of California, San Diego. Fagot, C. (1994). Chronometric investigations of task switching. Ph.D. thesis, University of California, San Diego.
go back to reference Goschke, T. (2000). Intentional reconfiguration and involuntary persistence in task–set switching. In S. Monsell & J. Driver (Eds.), Attention and Performance XVIII: Control of cognitive processes (pp. 331–355). Cambridge: MIT Press. Goschke, T. (2000). Intentional reconfiguration and involuntary persistence in task–set switching. In S. Monsell & J. Driver (Eds.), Attention and Performance XVIII: Control of cognitive processes (pp. 331–355). Cambridge: MIT Press.
go back to reference Gratton, G., Coles, M. G., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121(4), 480.CrossRef Gratton, G., Coles, M. G., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121(4), 480.CrossRef
go back to reference Hommel, B. (1998). Event files: Evidence for automatic integration of stimulus–response episodes. Visual Cognition, 5, 183–216.CrossRef Hommel, B. (1998). Event files: Evidence for automatic integration of stimulus–response episodes. Visual Cognition, 5, 183–216.CrossRef
go back to reference Hommel, B. (2004). Event files: Feature binding in and across perception and action. Trends in cognitive sciences, 8, 494–500.CrossRefPubMed Hommel, B. (2004). Event files: Feature binding in and across perception and action. Trends in cognitive sciences, 8, 494–500.CrossRefPubMed
go back to reference Horoufchin, H., Philipp, A. M., & Koch, I. (2011). Temporal distinctiveness and repetition benefits in task switching: Disentangling stimulus—related and response—related contributions. The Quarterly Journal of Experimental Psychology, 64, 434–446.CrossRefPubMed Horoufchin, H., Philipp, A. M., & Koch, I. (2011). Temporal distinctiveness and repetition benefits in task switching: Disentangling stimulus—related and response—related contributions. The Quarterly Journal of Experimental Psychology, 64, 434–446.CrossRefPubMed
go back to reference Hsieh, S., Chang, C. C., & Meiran, N. (2012). Episodic retrieval and decaying inhibition in the competitor-rule suppression phenomenon. Acta Psychologica, 141, 316–321.CrossRefPubMed Hsieh, S., Chang, C. C., & Meiran, N. (2012). Episodic retrieval and decaying inhibition in the competitor-rule suppression phenomenon. Acta Psychologica, 141, 316–321.CrossRefPubMed
go back to reference JASP Team (2017). JASP (Version 0.7) (computer software) JASP Team (2017). JASP (Version 0.7) (computer software)
go back to reference Jarmasz, J., & Hollands, J. G. (2009). Confidence intervals in repeated-measures designs: The number of observations principle. Canadian Journal of Experimental Psychology, 63, 124–138.CrossRefPubMed Jarmasz, J., & Hollands, J. G. (2009). Confidence intervals in repeated-measures designs: The number of observations principle. Canadian Journal of Experimental Psychology, 63, 124–138.CrossRefPubMed
go back to reference Jeffreys, H. (1961). Theory of probability. Oxford: Oxford University Press. Jeffreys, H. (1961). Theory of probability. Oxford: Oxford University Press.
go back to reference Katzir, M., Ori, B., Eyal, T., & Meiran, N. (2015a). Go with the flow: How the consideration of joy versus pride influences automaticity. Acta Psychologica, 155, 57–66.CrossRefPubMed Katzir, M., Ori, B., Eyal, T., & Meiran, N. (2015a). Go with the flow: How the consideration of joy versus pride influences automaticity. Acta Psychologica, 155, 57–66.CrossRefPubMed
go back to reference Katzir, M., Ori, B., Hsieh, S., & Meiran, N. (2015b). Competitor rule priming: Evidence for priming of task rules in task switching. Psychological Research, 79(3), 446–462.CrossRefPubMed Katzir, M., Ori, B., Hsieh, S., & Meiran, N. (2015b). Competitor rule priming: Evidence for priming of task rules in task switching. Psychological Research, 79(3), 446–462.CrossRefPubMed
go back to reference Katzir, M., Ori, B., & Meiran, N. (2017). Relevant rule activation as a means to resolve conflicts during task switching. (unpublished manuscript). Katzir, M., Ori, B., & Meiran, N. (2017). Relevant rule activation as a means to resolve conflicts during task switching. (unpublished manuscript).
go back to reference Kerns, J. G., Cohen, J. D., MacDonald, A. W., III, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 1023–1026.CrossRefPubMed Kerns, J. G., Cohen, J. D., MacDonald, A. W., III, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 1023–1026.CrossRefPubMed
go back to reference Kiesel, A., Wendt, M., & Peters, A. (2007). Task switching: On the origin of response congruency effects. Psychological Research, 71, 117–125.CrossRefPubMed Kiesel, A., Wendt, M., & Peters, A. (2007). Task switching: On the origin of response congruency effects. Psychological Research, 71, 117–125.CrossRefPubMed
go back to reference Kleiman, T., Hassin, R. R., & Trope, Y. (2014). The control-freak mind: Stereotypical biases are eliminated following conflict-activated cognitive control. Journal of Experimental Psychology: General, 143(2), 498–503.CrossRef Kleiman, T., Hassin, R. R., & Trope, Y. (2014). The control-freak mind: Stereotypical biases are eliminated following conflict-activated cognitive control. Journal of Experimental Psychology: General, 143(2), 498–503.CrossRef
go back to reference Koch, I., Gade, M., Schuch, S., & Philipp, A. M. (2010). The role of inhibition in task switching: A review. Psychonomic Bulletin & Review, 17, 1–14.CrossRef Koch, I., Gade, M., Schuch, S., & Philipp, A. M. (2010). The role of inhibition in task switching: A review. Psychonomic Bulletin & Review, 17, 1–14.CrossRef
go back to reference Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in Cognitive Sciences, 11(6), 229–235.CrossRefPubMed Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in Cognitive Sciences, 11(6), 229–235.CrossRefPubMed
go back to reference Kunde, W., Kiesel, A., & Hoffmann, J. (2003). Conscious control over the content of unconscious cognition. Cognition, 88, 223–242.CrossRefPubMed Kunde, W., Kiesel, A., & Hoffmann, J. (2003). Conscious control over the content of unconscious cognition. Cognition, 88, 223–242.CrossRefPubMed
go back to reference Kunde, W., & Wühr, P. (2006). Sequential modulations of correspondence effects across spatial dimensions and tasks. Memory & Cognition, 34, 356–367.CrossRef Kunde, W., & Wühr, P. (2006). Sequential modulations of correspondence effects across spatial dimensions and tasks. Memory & Cognition, 34, 356–367.CrossRef
go back to reference MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109, 163–203.CrossRefPubMed MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109, 163–203.CrossRefPubMed
go back to reference Masson, M. E. J., Bub, D. N., Woodward, T. S., & Chan, J. C. K. (2003). Modulation of word-reading processes in task switching. Journal of Experimental Psychology: General, 132, 400–418.CrossRef Masson, M. E. J., Bub, D. N., Woodward, T. S., & Chan, J. C. K. (2003). Modulation of word-reading processes in task switching. Journal of Experimental Psychology: General, 132, 400–418.CrossRef
go back to reference Maxwell, S.E., & Delaney, H.D. (2003). Designing experiments and analyzing data: A model comparison perspective (Vol. 1). Psychology Press. Maxwell, S.E., & Delaney, H.D. (2003). Designing experiments and analyzing data: A model comparison perspective (Vol. 1). Psychology Press.
go back to reference Mayr, U. (2001). Age differences in the selection of mental sets: the role of inhibition, stimulus ambiguity, and response-set overlap. Psychology and Aging, 16, 96–109.CrossRefPubMed Mayr, U. (2001). Age differences in the selection of mental sets: the role of inhibition, stimulus ambiguity, and response-set overlap. Psychology and Aging, 16, 96–109.CrossRefPubMed
go back to reference Mayr, U., & Keele, S. W. (2000). Changing internal constraints on action: the role of backward inhibition. Journal of Experimental Psychology: General, 129, 4–26.CrossRef Mayr, U., & Keele, S. W. (2000). Changing internal constraints on action: the role of backward inhibition. Journal of Experimental Psychology: General, 129, 4–26.CrossRef
go back to reference Meiran, N. (2000). Modeling cognitive control in task-switching. Psychological Research, 63, 234–249.CrossRefPubMed Meiran, N. (2000). Modeling cognitive control in task-switching. Psychological Research, 63, 234–249.CrossRefPubMed
go back to reference Meiran, N. (2005). Task rule-congruency and Simon-like effects in switching between spatial tasks. The Quarterly Journal of Experimental Psychology Section A, 58(6), 1023–1041.CrossRef Meiran, N. (2005). Task rule-congruency and Simon-like effects in switching between spatial tasks. The Quarterly Journal of Experimental Psychology Section A, 58(6), 1023–1041.CrossRef
go back to reference Meiran, N. (2010). Task switching: Mechanisms underlying rigid vs. flexible self control. In R. R. Hassin, K. N. Ochsner, & Y. Trope (Eds.), Self control in society, mind, and brain (pp. 202–220). New York: Oxford University Press.CrossRef Meiran, N. (2010). Task switching: Mechanisms underlying rigid vs. flexible self control. In R. R. Hassin, K. N. Ochsner, & Y. Trope (Eds.), Self control in society, mind, and brain (pp. 202–220). New York: Oxford University Press.CrossRef
go back to reference Meiran, N., Hsieh, S., & Chang, C. C. (2011). “Optimal inhibition”: Electrophysiological evidence for the suppression of conflict—generating task rules during task switching. Cognitive, Affective & Behavioral Neuroscience, 11, 292–308.CrossRef Meiran, N., Hsieh, S., & Chang, C. C. (2011). “Optimal inhibition”: Electrophysiological evidence for the suppression of conflict—generating task rules during task switching. Cognitive, Affective & Behavioral Neuroscience, 11, 292–308.CrossRef
go back to reference Meiran, N., Hsieh, S., & Dimov, E. (2010). Resolving task rule incongruence during task switching by competitor rule suppression. Journal of Experimental Psychology. Learning, Memory, and Cognition, 36, 992–1002.CrossRefPubMed Meiran, N., Hsieh, S., & Dimov, E. (2010). Resolving task rule incongruence during task switching by competitor rule suppression. Journal of Experimental Psychology. Learning, Memory, and Cognition, 36, 992–1002.CrossRefPubMed
go back to reference Meiran, N., & Kessler, Y. (2008). The task rule congruency effect in task switching reflects activated long term memory. Journal of Experimental Psychology: Human Perception and Performance, 34, 137–157.PubMed Meiran, N., & Kessler, Y. (2008). The task rule congruency effect in task switching reflects activated long term memory. Journal of Experimental Psychology: Human Perception and Performance, 34, 137–157.PubMed
go back to reference Navon, D. (1984). Resources—A theoretical soup stone? Psychological Review, 91(2), 216–234.CrossRef Navon, D. (1984). Resources—A theoretical soup stone? Psychological Review, 91(2), 216–234.CrossRef
go back to reference Navon, D., & Gopher, D. (1979). On the economy of the human-processing system. Psychological Review, 86(3), 214–255.CrossRef Navon, D., & Gopher, D. (1979). On the economy of the human-processing system. Psychological Review, 86(3), 214–255.CrossRef
go back to reference Navon, D., & Miller, J. (1987). Role of outcome conflict in dual-task interference. Journal of Experimental Psychology: Human Perception and Performance, 13(3), 435–448.PubMed Navon, D., & Miller, J. (1987). Role of outcome conflict in dual-task interference. Journal of Experimental Psychology: Human Perception and Performance, 13(3), 435–448.PubMed
go back to reference Navon, D., & Miller, J. (2002). Queuing or sharing? A critical evaluation of the single-bottleneck notion. Cognitive Psychology, 44(3), 193–251.CrossRefPubMed Navon, D., & Miller, J. (2002). Queuing or sharing? A critical evaluation of the single-bottleneck notion. Cognitive Psychology, 44(3), 193–251.CrossRefPubMed
go back to reference Oberauer, K. (2001). Removing irrelevant information from working memory: a cognitive aging study with the modified Sternberg task. Journal of Experimental Psychology. Learning, Memory, and Cognition, 27(4), 948–957.CrossRefPubMed Oberauer, K. (2001). Removing irrelevant information from working memory: a cognitive aging study with the modified Sternberg task. Journal of Experimental Psychology. Learning, Memory, and Cognition, 27(4), 948–957.CrossRefPubMed
go back to reference Oberauer, K., Souza, A. S., Druey, M. D., & Gade, M. (2013). Analogous mechanisms of selection and updating in declarative and procedural working memory: Experiments and a computational model. Cognitive Psychology, 66(2), 157–211.CrossRefPubMed Oberauer, K., Souza, A. S., Druey, M. D., & Gade, M. (2013). Analogous mechanisms of selection and updating in declarative and procedural working memory: Experiments and a computational model. Cognitive Psychology, 66(2), 157–211.CrossRefPubMed
go back to reference Pashler, H., & Johnston, J. C. (1989). Chronometric evidence for central postponement in temporally overlapping tasks. The Quarterly Journal of Experimental Psychology, 41(1), 19–45.CrossRef Pashler, H., & Johnston, J. C. (1989). Chronometric evidence for central postponement in temporally overlapping tasks. The Quarterly Journal of Experimental Psychology, 41(1), 19–45.CrossRef
go back to reference Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231.CrossRef Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231.CrossRef
go back to reference Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56(5), 356–374.CrossRef Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56(5), 356–374.CrossRef
go back to reference Rubin, O., & Meiran, N. (2005). On the origins of the task mixing cost in the cuing task-switching paradigm. Journal of Experimental Psychology. Learning, Memory, and Cognition, 31(6), 1477–1491.CrossRefPubMed Rubin, O., & Meiran, N. (2005). On the origins of the task mixing cost in the cuing task-switching paradigm. Journal of Experimental Psychology. Learning, Memory, and Cognition, 31(6), 1477–1491.CrossRefPubMed
go back to reference Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime [Computer software]. Pittsburgh: Psychology Software Tools. Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime [Computer software]. Pittsburgh: Psychology Software Tools.
go back to reference Schuch, S., & Koch, I. (2003). The role of response selection for inhibition of task sets in task shifting. Journal of Experimental Psychology: Human Perception and Performance, 29, 92–105.PubMed Schuch, S., & Koch, I. (2003). The role of response selection for inhibition of task sets in task shifting. Journal of Experimental Psychology: Human Perception and Performance, 29, 92–105.PubMed
go back to reference Steinhauser, M., & Hübner, R. (2006). Response-based strengthening in task shifting: evidence from shift effects produced by errors. Journal of Experimental Psychology: Human Perception and Performance, 32, 517–534.PubMed Steinhauser, M., & Hübner, R. (2006). Response-based strengthening in task shifting: evidence from shift effects produced by errors. Journal of Experimental Psychology: Human Perception and Performance, 32, 517–534.PubMed
go back to reference Sudevan, P., & Taylor, D. A. (1987). The cuing and priming of cognitive operations. Journal of Experimental Psychology: Human Perception and Performance, 13, 89–103.PubMed Sudevan, P., & Taylor, D. A. (1987). The cuing and priming of cognitive operations. Journal of Experimental Psychology: Human Perception and Performance, 13, 89–103.PubMed
go back to reference Tipper, S. P. (1985). The negative priming effect: Inhibitory priming by ignored objects. The Quarterly Journal of Experimental Psychology, 37(4), 571–590.CrossRefPubMed Tipper, S. P. (1985). The negative priming effect: Inhibitory priming by ignored objects. The Quarterly Journal of Experimental Psychology, 37(4), 571–590.CrossRefPubMed
go back to reference Tipper, S. P., & Milliken, B. (1996). Distinguishing between inhibition-based and episodic retrieval-based accounts of negative priming. In A. F. Kramer, M. G. H. Coles, & G. D. Logan (Eds.), Converging operations in the study of visual selective attention (pp. 337–363). Washington, DC: American Psychological Association, xxv.CrossRef Tipper, S. P., & Milliken, B. (1996). Distinguishing between inhibition-based and episodic retrieval-based accounts of negative priming. In A. F. Kramer, M. G. H. Coles, & G. D. Logan (Eds.), Converging operations in the study of visual selective attention (pp. 337–363). Washington, DC: American Psychological Association, xxv.CrossRef
go back to reference Tipper, S. P., Weaver, B., & Houghton, G. (1994). Behavioural goals determine inhibitory mechanisms of selective attention. The Quarterly Journal of Experimental Psychology, 47(4), 809–840.CrossRef Tipper, S. P., Weaver, B., & Houghton, G. (1994). Behavioural goals determine inhibitory mechanisms of selective attention. The Quarterly Journal of Experimental Psychology, 47(4), 809–840.CrossRef
go back to reference Tombu, M., & Jolicœur, P. (2003). A central capacity sharing model of dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 29(1), 3–18.PubMed Tombu, M., & Jolicœur, P. (2003). A central capacity sharing model of dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 29(1), 3–18.PubMed
go back to reference van’t Wout, F., Lavric, A., & Monsell, S. (2015). Is it harder to switch among a larger set of tasks? Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(2), 363–376. van’t Wout, F., Lavric, A., & Monsell, S. (2015). Is it harder to switch among a larger set of tasks? Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(2), 363–376.
go back to reference Waszak, F., Hommel, B., & Allport, A. (2003). Task-switching and long-term priming: Role of episodic stimulus-task bindings in task-shift costs. Cognitive Psychology, 4(46), 361–413.CrossRef Waszak, F., Hommel, B., & Allport, A. (2003). Task-switching and long-term priming: Role of episodic stimulus-task bindings in task-shift costs. Cognitive Psychology, 4(46), 361–413.CrossRef
go back to reference Woodward, T. S., Meier, B., Tipper, C., & Graf, P. (2003). Bivalency is costly: Bivalent stimuli elicit cautious responding. Experimental Psychology, 50(4), 233–238.CrossRefPubMed Woodward, T. S., Meier, B., Tipper, C., & Graf, P. (2003). Bivalency is costly: Bivalent stimuli elicit cautious responding. Experimental Psychology, 50(4), 233–238.CrossRefPubMed
go back to reference Yehene, E., & Meiran, N. (2007). Is there a general task switching ability? Acta Psychologica, 126(3), 169–195.CrossRefPubMed Yehene, E., & Meiran, N. (2007). Is there a general task switching ability? Acta Psychologica, 126(3), 169–195.CrossRefPubMed
go back to reference Yehene, E., Meiran, N., & Soroker, N. (2005). Task alternation cost without task alternation: Measuring intentionality. Neuropsychologia, 43(13), 1858–1869.CrossRefPubMed Yehene, E., Meiran, N., & Soroker, N. (2005). Task alternation cost without task alternation: Measuring intentionality. Neuropsychologia, 43(13), 1858–1869.CrossRefPubMed
go back to reference Yeung, N., & Monsell, S. (2003a). Switching between tasks of unequal familiarity: The role of stimulus-attribute and response-set selection. Journal of Experimental Psychology: Human Perception and Performance, 29, 455–469.PubMed Yeung, N., & Monsell, S. (2003a). Switching between tasks of unequal familiarity: The role of stimulus-attribute and response-set selection. Journal of Experimental Psychology: Human Perception and Performance, 29, 455–469.PubMed
go back to reference Yeung, N., & Monsell, S. (2003b). The effects of recent practice on task switching. Journal of Experimental Psychology: Human Perception and Performance, 29, 919–936.PubMed Yeung, N., & Monsell, S. (2003b). The effects of recent practice on task switching. Journal of Experimental Psychology: Human Perception and Performance, 29, 919–936.PubMed
Metagegevens
Titel
“Optimal suppression” as a solution to the paradoxical cost of multitasking: examination of suppression specificity in task switching
Auteurs
Maayan Katzir
Bnaya Ori
Nachshon Meiran
Publicatiedatum
27-10-2017
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 1/2018
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-017-0930-2

Andere artikelen Uitgave 1/2018

Psychological Research 1/2018 Naar de uitgave