Skip to main content
Top
Gepubliceerd in: Psychological Research 6/2016

21-09-2015 | Original Article

On the three-quarter view advantage of familiar object recognition

Auteurs: Kohei Nonose, Ryosuke Niimi, Kazuhiko Yokosawa

Gepubliceerd in: Psychological Research | Uitgave 6/2016

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

A three-quarter view, i.e., an oblique view, of familiar objects often leads to a higher subjective goodness rating when compared with other orientations. What is the source of the high goodness for oblique views? First, we confirmed that object recognition performance was also best for oblique views around 30° view, even when the foreshortening disadvantage of front- and side-views was minimized (Experiments 1 and 2). In Experiment 3, we measured subjective ratings of view goodness and two possible determinants of view goodness: familiarity of view, and subjective impression of three-dimensionality. Three-dimensionality was measured as the subjective saliency of visual depth information. The oblique views were rated best, most familiar, and as approximating greatest three-dimensionality on average; however, the cluster analyses showed that the “best” orientation systematically varied among objects. We found three clusters of objects: front-preferred objects, oblique-preferred objects, and side-preferred objects. Interestingly, recognition performance and the three-dimensionality rating were higher for oblique views irrespective of the clusters. It appears that recognition efficiency is not the major source of the three-quarter view advantage. There are multiple determinants and variability among objects. This study suggests that the classical idea that a canonical view has a unique advantage in object perception requires further discussion.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Biederman, I. (2000). Recognizing depth-rotated objects: A review of recent research and theory. Spatial Vision, 13(2), 241–253.CrossRefPubMed Biederman, I. (2000). Recognizing depth-rotated objects: A review of recent research and theory. Spatial Vision, 13(2), 241–253.CrossRefPubMed
go back to reference Biederman, I., & Gerhardstein, P. C. (1993). Recognizing depth-rotated objects: Evidence and conditions for three-dimensional viewpoint invariance. Journal of Experimental Psychology: Human Perception and Performance, 19(6), 1162–1182.PubMed Biederman, I., & Gerhardstein, P. C. (1993). Recognizing depth-rotated objects: Evidence and conditions for three-dimensional viewpoint invariance. Journal of Experimental Psychology: Human Perception and Performance, 19(6), 1162–1182.PubMed
go back to reference Blanz, V., Tarr, M. J., & Bülthoff, H. H. (1999). What object attributes determine canonical views? Perception, 28(5), 575–599.CrossRefPubMed Blanz, V., Tarr, M. J., & Bülthoff, H. H. (1999). What object attributes determine canonical views? Perception, 28(5), 575–599.CrossRefPubMed
go back to reference Boutsen, L., Lamberts, K., & Verfaillie, K. (1998). Recognition times of different views of 56 depth-rotated objects: A note concerning Verfaillie and Boutsen (1995). Perception and Psychophysics, 60(5), 900–907.CrossRefPubMed Boutsen, L., Lamberts, K., & Verfaillie, K. (1998). Recognition times of different views of 56 depth-rotated objects: A note concerning Verfaillie and Boutsen (1995). Perception and Psychophysics, 60(5), 900–907.CrossRefPubMed
go back to reference Bramão, I., Ries, A., Petersson, K. M., & Faísca, L. (2011). The role of color information on object recognition: A review and meta-analysis. Acta Psychologica, 138, 244–253.CrossRefPubMed Bramão, I., Ries, A., Petersson, K. M., & Faísca, L. (2011). The role of color information on object recognition: A review and meta-analysis. Acta Psychologica, 138, 244–253.CrossRefPubMed
go back to reference DiCarlo, J. J., & Cox, D. D. (2007). Untangling invariant object recognition. Trends in Cognitive Sciences, 11(8), 333–341.CrossRefPubMed DiCarlo, J. J., & Cox, D. D. (2007). Untangling invariant object recognition. Trends in Cognitive Sciences, 11(8), 333–341.CrossRefPubMed
go back to reference Farah, M. J., Wilson, K. D., Maxwell Drain, H., & Tanaka, J. R. (1995). The inverted face inversion effect in prosopagnosia: Evidence for mandatory, face-specific perceptual mechanisms. Vision Research, 35(14), 2089–2093.CrossRefPubMed Farah, M. J., Wilson, K. D., Maxwell Drain, H., & Tanaka, J. R. (1995). The inverted face inversion effect in prosopagnosia: Evidence for mandatory, face-specific perceptual mechanisms. Vision Research, 35(14), 2089–2093.CrossRefPubMed
go back to reference Guilford, J. P. (1956). Fundamental statistics in psychology and education (3rd ed.). New York, NY: McGraw Hill. Guilford, J. P. (1956). Fundamental statistics in psychology and education (3rd ed.). New York, NY: McGraw Hill.
go back to reference Humphrey, G. K., & Jolicoeur, P. (1993). An examination of the effects of axis foreshortening, monocular depth cues, and visual field on object identification. The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 46(1), 137–159.CrossRef Humphrey, G. K., & Jolicoeur, P. (1993). An examination of the effects of axis foreshortening, monocular depth cues, and visual field on object identification. The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 46(1), 137–159.CrossRef
go back to reference Humphreys, G. W., & Riddoch, M. J. (1984). Routes to object constancy: Implications from neurological impairments of object constancy. The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 36(3), 385–415.CrossRef Humphreys, G. W., & Riddoch, M. J. (1984). Routes to object constancy: Implications from neurological impairments of object constancy. The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 36(3), 385–415.CrossRef
go back to reference Lawson, R. (1999). The effects of view in depth on the identification of line drawings and silhouettes of familiar objects: Normality and pathology. Visual Cognition, 6(2), 165–195.CrossRef Lawson, R. (1999). The effects of view in depth on the identification of line drawings and silhouettes of familiar objects: Normality and pathology. Visual Cognition, 6(2), 165–195.CrossRef
go back to reference Lawson, R., & Humphreys, G. W. (1998). View-specific effects of depth rotation and foreshortening on the initial recognition and priming of familiar objects. Perception and Psychophysics, 60(6), 1052–1066.CrossRefPubMed Lawson, R., & Humphreys, G. W. (1998). View-specific effects of depth rotation and foreshortening on the initial recognition and priming of familiar objects. Perception and Psychophysics, 60(6), 1052–1066.CrossRefPubMed
go back to reference Lawson, R., Humphreys, G. W., & Jolicœur, P. (2000). The combined effects of plane disorientation and foreshortening on picture naming: One manipulation or two? Journal of Experimental Psychology: Human Perception and Performance, 26(2), 568–581.PubMed Lawson, R., Humphreys, G. W., & Jolicœur, P. (2000). The combined effects of plane disorientation and foreshortening on picture naming: One manipulation or two? Journal of Experimental Psychology: Human Perception and Performance, 26(2), 568–581.PubMed
go back to reference Marr, D. (1982). Vision. San Francisco, CA: W H Freeman. Marr, D. (1982). Vision. San Francisco, CA: W H Freeman.
go back to reference Mitsumatsu, H., & Yokosawa, K. (2002). How do the internal details of the object contribute to recognition? Perception, 31(11), 1289–1298.CrossRefPubMed Mitsumatsu, H., & Yokosawa, K. (2002). How do the internal details of the object contribute to recognition? Perception, 31(11), 1289–1298.CrossRefPubMed
go back to reference Mojena, R. (1977). Hierarchical grouping methods and stopping rules: an evaluation. The Computer Journal, 20(4), 359–363.CrossRef Mojena, R. (1977). Hierarchical grouping methods and stopping rules: an evaluation. The Computer Journal, 20(4), 359–363.CrossRef
go back to reference Newell, F. N., & Findlay, J. M. (1997). The effect of depth rotation on object identification. Perception, 26(10), 1231–1257.CrossRefPubMed Newell, F. N., & Findlay, J. M. (1997). The effect of depth rotation on object identification. Perception, 26(10), 1231–1257.CrossRefPubMed
go back to reference Niimi, R., & Yokosawa, K. (2009a). Three-quarter views are subjectively good because object orientation is uncertain. Psychonomic Bulletin & Review, 16(2), 289–294.CrossRef Niimi, R., & Yokosawa, K. (2009a). Three-quarter views are subjectively good because object orientation is uncertain. Psychonomic Bulletin & Review, 16(2), 289–294.CrossRef
go back to reference Niimi, R., & Yokosawa, K. (2009b). Viewpoint dependence in the recognition of non-elongated familiar objects: Testing the effects of symmetry, front–back axis, and familiarity. Perception, 38(4), 533–551.CrossRefPubMed Niimi, R., & Yokosawa, K. (2009b). Viewpoint dependence in the recognition of non-elongated familiar objects: Testing the effects of symmetry, front–back axis, and familiarity. Perception, 38(4), 533–551.CrossRefPubMed
go back to reference Palmer, S., Rosch, E., & Chase, P. (1981). Canonical perspective and the perception of objects. In J. Long & A. Baddeley (Eds.), Attention and performance IX (pp. 135–151). Hillsdale, NJ: Erlbaum. Palmer, S., Rosch, E., & Chase, P. (1981). Canonical perspective and the perception of objects. In J. Long & A. Baddeley (Eds.), Attention and performance IX (pp. 135–151). Hillsdale, NJ: Erlbaum.
go back to reference Peissig, J. J., & Tarr, M. J. (2007). Visual object recognition: do we know more now than we did 20 years ago? Annual Review of Psychology, 58, 75–96.CrossRefPubMed Peissig, J. J., & Tarr, M. J. (2007). Visual object recognition: do we know more now than we did 20 years ago? Annual Review of Psychology, 58, 75–96.CrossRefPubMed
go back to reference Riesenhuber, M., & Poggio, T. (2000). Models of object recognition. Nature Neuroscience, 3(11s), 1199–1204.CrossRefPubMed Riesenhuber, M., & Poggio, T. (2000). Models of object recognition. Nature Neuroscience, 3(11s), 1199–1204.CrossRefPubMed
go back to reference Rolls, E. T. (2012). Invariant visual object and face recognition: Neural and computational bases, and a model. VisNet. Frontiers in Computational Neuroscience, 6(35), 1–70. Rolls, E. T. (2012). Invariant visual object and face recognition: Neural and computational bases, and a model. VisNet. Frontiers in Computational Neuroscience, 6(35), 1–70.
go back to reference Sugio, T., Inui, T., Matuso, K., Matsuzawa, M., Glover, G. H., & Nakai, T. (1999). The role of the posterior parietal cortex in human object recognition: A functional magnetic resonance imaging study. Neuroscience Letters, 276, 45–48.CrossRefPubMed Sugio, T., Inui, T., Matuso, K., Matsuzawa, M., Glover, G. H., & Nakai, T. (1999). The role of the posterior parietal cortex in human object recognition: A functional magnetic resonance imaging study. Neuroscience Letters, 276, 45–48.CrossRefPubMed
go back to reference Tanaka, J. W., & Presnell, L. M. (1999). Color diagnosticity in object recognition. Perception and Psychophysics, 61(6), 1140–1153.CrossRefPubMed Tanaka, J. W., & Presnell, L. M. (1999). Color diagnosticity in object recognition. Perception and Psychophysics, 61(6), 1140–1153.CrossRefPubMed
go back to reference Terhune, K. P., Liu, G. T., Modestino, E. J., Miki, A., Sheth, K. N., Liu, C.-S. J., et al. (2005). Recognition of objects in non-canonical views: A functional MRI study. Journal of Neuro-Ophthalmonogy, 25, 273–279.CrossRef Terhune, K. P., Liu, G. T., Modestino, E. J., Miki, A., Sheth, K. N., Liu, C.-S. J., et al. (2005). Recognition of objects in non-canonical views: A functional MRI study. Journal of Neuro-Ophthalmonogy, 25, 273–279.CrossRef
go back to reference Dalal. N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In Proceedings of the IEEE Conference of Computer Vision and Pattern Recognition (CVPR), 886–893. Dalal. N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In Proceedings of the IEEE Conference of Computer Vision and Pattern Recognition (CVPR), 886–893.
go back to reference Troje, N. F., & Bülthoff, H. H. (1996). Face recognition under varying poses: The role of texture and shape. Vision Research, 36(12), 1761–1771.CrossRefPubMed Troje, N. F., & Bülthoff, H. H. (1996). Face recognition under varying poses: The role of texture and shape. Vision Research, 36(12), 1761–1771.CrossRefPubMed
go back to reference Verfaillie, K., & Boutsen, L. (1995). A corpus of 714 full-color images of depth-rotated objects. Perception and Psychophysics, 57(7), 925–961.CrossRefPubMed Verfaillie, K., & Boutsen, L. (1995). A corpus of 714 full-color images of depth-rotated objects. Perception and Psychophysics, 57(7), 925–961.CrossRefPubMed
go back to reference Ward, J. H, Jr. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244.CrossRef Ward, J. H, Jr. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244.CrossRef
go back to reference Warrington, E. K., & Taylor, A. M. (1973). The contribution of the right parietal lobe to object recognition. Cortex, 9, 152–164.CrossRefPubMed Warrington, E. K., & Taylor, A. M. (1973). The contribution of the right parietal lobe to object recognition. Cortex, 9, 152–164.CrossRefPubMed
Metagegevens
Titel
On the three-quarter view advantage of familiar object recognition
Auteurs
Kohei Nonose
Ryosuke Niimi
Kazuhiko Yokosawa
Publicatiedatum
21-09-2015
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 6/2016
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-015-0702-9

Andere artikelen Uitgave 6/2016

Psychological Research 6/2016 Naar de uitgave