Skip to main content
main-content
Top

Tip

Swipe om te navigeren naar een ander artikel

Gepubliceerd in: Psychological Research 1/2019

02-08-2018 | Original Article

On the linear representation of numbers: evidence from a new two-numbers-to-two positions task

Auteurs: Hofit Bar, Martin H. Fischer, Daniel Algom

Gepubliceerd in: Psychological Research | Uitgave 1/2019

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

In the number-to-position methodology, a number is presented on each trial and the observer places it on a straight line in a position that corresponds to its felt subjective magnitude. In the novel modification introduced in this study, the two-numbers-to-two-positions method, a pair of numbers rather than a single number is presented on each trial and the observer places them in appropriate positions on the same line. Responses in this method indicate not only the subjective magnitude of each single number but, simultaneously, provide a direct estimation of their subjective numerical distance. The results of four experiments provide strong evidence for a linear representation of numbers and, commensurately, for the linear representation of numerical distances. We attribute earlier results that indicate a logarithmic representation to the ordered nature of numbers and to the task used and not to a truly non-linear underlying representation.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Voetnoten
1
In order to control for confounds, an inclusive ANOVA was performed, including gender (male, female) and hand (left, right) as between-subjects variables, in addition to the main reported variables. For both number and distance estimation, the ANOVA did not yield main effects or interactions for gender and hand (p > 0.05). A similar analysis with respect to RT did not yield effects.
 
2
We did not record any systematic differences between our German and Israeli participants.
 
Literatuur
go back to reference Algom, D. (1992). Memory psychophysics: An examination of its perceptual and cognitive prospects. In D. Algom (Ed.), Psychophysical approaches to cognition (pp. 441–513). Amsterdam: Elsevier. CrossRef Algom, D. (1992). Memory psychophysics: An examination of its perceptual and cognitive prospects. In D. Algom (Ed.), Psychophysical approaches to cognition (pp. 441–513). Amsterdam: Elsevier. CrossRef
go back to reference Algom, D., & Marks, L. E. (1990). Range and regression, loudness scales, and loudness processing: Toward a context-bound psychophysics. Journal of Experimental Psychology Human Perception and Performance, 16(4), 706–727. PubMedCrossRef Algom, D., & Marks, L. E. (1990). Range and regression, loudness scales, and loudness processing: Toward a context-bound psychophysics. Journal of Experimental Psychology Human Perception and Performance, 16(4), 706–727. PubMedCrossRef
go back to reference Anderson, N. H. (1981). Foundations of information integration theory‏. New York: Academic Press. Anderson, N. H. (1981). Foundations of information integration theory‏. New York: Academic Press.
go back to reference Anderson, N. H. (1982). Methods of information integration theory. New York: Academic Press.‏. Anderson, N. H. (1982). Methods of information integration theory. New York: Academic Press.‏.
go back to reference Ashby, F. G., & Maddox, W. T. (1994). A response time theory of separability and integrality in speeded classification. Journal of Mathematical Psychology, 38(4), 423–466.‏. CrossRef Ashby, F. G., & Maddox, W. T. (1994). A response time theory of separability and integrality in speeded classification. Journal of Mathematical Psychology, 38(4), 423–466.‏. CrossRef
go back to reference Barth, H. C., & Paladino, A. M. (2011). The development of numerical estimation: Evidence against a representational shift. Developmental Science, 14(1), 125–135. PubMedCrossRef Barth, H. C., & Paladino, A. M. (2011). The development of numerical estimation: Evidence against a representational shift. Developmental Science, 14(1), 125–135. PubMedCrossRef
go back to reference Ben-Nathan, M., & Algom, D. (2007). The perceived magnitude of two-digit numbers: A functional measurement analysis. Teori and Modelli, 12, 87–96. Ben-Nathan, M., & Algom, D. (2007). The perceived magnitude of two-digit numbers: A functional measurement analysis. Teori and Modelli, 12, 87–96.
go back to reference Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79(4), 1016–1031‏. PubMedCrossRef Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79(4), 1016–1031‏. PubMedCrossRef
go back to reference Brannon, E. M., Wusthoff, C. J., Gallistel, C. R., & Gibbon, J. (2001). Numerical subtraction in the pigeon: Evidence for a linear subjective number scale. Psychological Science, 12(3), 238–243.‏. PubMedCrossRef Brannon, E. M., Wusthoff, C. J., Gallistel, C. R., & Gibbon, J. (2001). Numerical subtraction in the pigeon: Evidence for a linear subjective number scale. Psychological Science, 12(3), 238–243.‏. PubMedCrossRef
go back to reference Cohen, D. (2009). Integers do not automatically activate their magnitude representation. Psychonomic Bulletin and Review, 16, 332–336. PubMedCrossRef Cohen, D. (2009). Integers do not automatically activate their magnitude representation. Psychonomic Bulletin and Review, 16, 332–336. PubMedCrossRef
go back to reference Dehaene, S. (1997). The number sense. New York: Oxford University Press. Dehaene, S. (1997). The number sense. New York: Oxford University Press.
go back to reference Dehaene, S. (2001). Précis of the number sense. Mind and Language, 16(1), 16–36.‏. CrossRef Dehaene, S. (2001). Précis of the number sense. Mind and Language, 16(1), 16–36.‏. CrossRef
go back to reference Dehaene, S. (2003). The neural basis of the Weber–Fechner law: A logarithmic mental number line. Trends in Cognitive Sciences, 7(4), 145–147.‏. PubMedCrossRef Dehaene, S. (2003). The neural basis of the Weber–Fechner law: A logarithmic mental number line. Trends in Cognitive Sciences, 7(4), 145–147.‏. PubMedCrossRef
go back to reference Fischer, M. H., & Adam, J. J. (2001). Distractor effects in pointing: The role of spatial layout. Experimental Brain Research, 136(4), 507–513. PubMedCrossRef Fischer, M. H., & Adam, J. J. (2001). Distractor effects in pointing: The role of spatial layout. Experimental Brain Research, 136(4), 507–513. PubMedCrossRef
go back to reference Fischer, M. H., & Campens, H. (2009). Pointing to numbers and grasping magnitudes. Experimental Brain Research, 192(1), 149–153. PubMedCrossRef Fischer, M. H., & Campens, H. (2009). Pointing to numbers and grasping magnitudes. Experimental Brain Research, 192(1), 149–153. PubMedCrossRef
go back to reference Fitousi, D. (2010). Dissociating between cardinal and ordinal and between the value and size magnitudes of coins. Psychonomic Bulletin and Review, 17(6), 889–894.‏. PubMedCrossRef Fitousi, D. (2010). Dissociating between cardinal and ordinal and between the value and size magnitudes of coins. Psychonomic Bulletin and Review, 17(6), 889–894.‏. PubMedCrossRef
go back to reference Fitousi, D., & Algom, D. (2018). A system factorial technology analysis is of the size-congruity effect: Implications for numerical cognition. Journal of Mathematical Psychology, 84, 57–73. CrossRef Fitousi, D., & Algom, D. (2018). A system factorial technology analysis is of the size-congruity effect: Implications for numerical cognition. Journal of Mathematical Psychology, 84, 57–73. CrossRef
go back to reference Gallistel, C. R., Gelman, R., & Cordes, S. (2006). The cultural and evolutionary history of the real numbers. In Levinson, S. & Jaisson, P (Ed.). Evolution and culture: A Fyssen Foundation symposium (17, pp. 247–274). Cambridge: MIT Press. Gallistel, C. R., Gelman, R., & Cordes, S. (2006). The cultural and evolutionary history of the real numbers. In Levinson, S. & Jaisson, P (Ed.). Evolution and culture: A Fyssen Foundation symposium (17, pp. 247–274). Cambridge: MIT Press.
go back to reference Garner, W. R. (1952). An equal discriminability scale for loudness judgments. Journal of Experimental Psychology, 43, 232–238. PubMedCrossRef Garner, W. R. (1952). An equal discriminability scale for loudness judgments. Journal of Experimental Psychology, 43, 232–238. PubMedCrossRef
go back to reference Gescheider, G. A. (1997). Psychophysics: The fundamentals. Mahwah: Erlbaum. Gescheider, G. A. (1997). Psychophysics: The fundamentals. Mahwah: Erlbaum.
go back to reference Gilboa, I. (2009). Theory of decision under uncertainty. Cambridge: Cambridge University Press.‏. CrossRef Gilboa, I. (2009). Theory of decision under uncertainty. Cambridge: Cambridge University Press.‏. CrossRef
go back to reference Goldfarb, L., Henik, A., Rubinsten, O., Bloch-David, Y., & Gertner, L. (2011). The numerical distance effect is task dependent. Memory and Cognition, 39, 1508–1517. PubMedCrossRef Goldfarb, L., Henik, A., Rubinsten, O., Bloch-David, Y., & Gertner, L. (2011). The numerical distance effect is task dependent. Memory and Cognition, 39, 1508–1517. PubMedCrossRef
go back to reference Guilford, J. P. (1954). Psychometric methods.‏. New York: McGraw-Hill. Guilford, J. P. (1954). Psychometric methods.‏. New York: McGraw-Hill.
go back to reference Helson, H. (1964). Adaptation-level theory.‏. Oxford: Harper & Row. Helson, H. (1964). Adaptation-level theory.‏. Oxford: Harper & Row.
go back to reference Henik, A., & Tzelgov, J. (1982). Is three greater than five: The relation between physical and semantic size in comparison tasks. Memory and Cognition, 10(4), 389–395.‏. PubMedCrossRef Henik, A., & Tzelgov, J. (1982). Is three greater than five: The relation between physical and semantic size in comparison tasks. Memory and Cognition, 10(4), 389–395.‏. PubMedCrossRef
go back to reference Izard, V., & Dehaene, S. (2008). Calibrating the mental number line. Cognition, 106(3), 1221–1247.‏. PubMedCrossRef Izard, V., & Dehaene, S. (2008). Calibrating the mental number line. Cognition, 106(3), 1221–1247.‏. PubMedCrossRef
go back to reference Kaufmann, L., Koppelstaetter, F., Delazer, M., Siedentopf, C., Rhomberg, P., Golaszewski, S., & Ischebeck, A. (2005). Neural correlates of distance and congruity effects in a numerical Stroop task: An event-related fMRI study. Neuroimage, 25(3), 888–898.‏. PubMedCrossRef Kaufmann, L., Koppelstaetter, F., Delazer, M., Siedentopf, C., Rhomberg, P., Golaszewski, S., & Ischebeck, A. (2005). Neural correlates of distance and congruity effects in a numerical Stroop task: An event-related fMRI study. Neuroimage, 25(3), 888–898.‏. PubMedCrossRef
go back to reference Krajcsi, A. (2017). Numerical distance and size effects dissociate in Indo-Arabic number comparison. Psychonomic Bulletin and Review, 24(3), 927–934. PubMedCrossRef Krajcsi, A. (2017). Numerical distance and size effects dissociate in Indo-Arabic number comparison. Psychonomic Bulletin and Review, 24(3), 927–934. PubMedCrossRef
go back to reference Krajcsi, A., Lengyel, G., & Kojouharova, P. (2018). Symbolic number comparison is not processed by the analogue number system: Different symbolic and nonsymbolic numerical distance and size effects. Frontiers in Psychology, 9, 124. PubMedPubMedCentralCrossRef Krajcsi, A., Lengyel, G., & Kojouharova, P. (2018). Symbolic number comparison is not processed by the analogue number system: Different symbolic and nonsymbolic numerical distance and size effects. Frontiers in Psychology, 9, 124. PubMedPubMedCentralCrossRef
go back to reference Krause, F., Bekkering, H., & Lindemann, O. (2013). A feeling for numbers: Shared metric for symbolic and tactile numerosities. Frontiers in psychology, 4(7), 1–8. Krause, F., Bekkering, H., & Lindemann, O. (2013). A feeling for numbers: Shared metric for symbolic and tactile numerosities. Frontiers in psychology, 4(7), 1–8.
go back to reference Krause, F., & Lindemann, O. (2014). Expyriment: A Python library for cognitive and neuroscientific experiments. Behavior Research Methods, 46(2), 416–428. PubMedCrossRef Krause, F., & Lindemann, O. (2014). Expyriment: A Python library for cognitive and neuroscientific experiments. Behavior Research Methods, 46(2), 416–428. PubMedCrossRef
go back to reference Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles. Cognition, 105, 395–438. PubMedCrossRef Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles. Cognition, 105, 395–438. PubMedCrossRef
go back to reference Leth-Steensen, C., & Marley, A. A. J. (2000). A model of response time effects in symbolic comparison. Psychological Review, 107(1), 62–100. PubMedCrossRef Leth-Steensen, C., & Marley, A. A. J. (2000). A model of response time effects in symbolic comparison. Psychological Review, 107(1), 62–100. PubMedCrossRef
go back to reference Link, T., Nuerk, H.-G., & Moeller, K. (2014). On the relation between the mental number line and arithmetic competencies. The Quarterly Journal of Experimental Psychology, 67, 1597–1613. PubMedCrossRef Link, T., Nuerk, H.-G., & Moeller, K. (2014). On the relation between the mental number line and arithmetic competencies. The Quarterly Journal of Experimental Psychology, 67, 1597–1613. PubMedCrossRef
go back to reference Marks, L. E. (1974). Sensory processes: The new psychophysics. New York: Academic Press. Marks, L. E. (1974). Sensory processes: The new psychophysics. New York: Academic Press.
go back to reference Marks, L. E., & Algom, D. (1998). Psychophysical scaling. In H. M. Birnbaum (Ed.), Measurement, judgment, and decision making (pp. 81–178). New York: Academic Press. CrossRef Marks, L. E., & Algom, D. (1998). Psychophysical scaling. In H. M. Birnbaum (Ed.), Measurement, judgment, and decision making (pp. 81–178). New York: Academic Press. CrossRef
go back to reference Moyer, R. S. (1973). Comparing objects in memory: Evidence suggesting an internal psychophysics. Perception and Psychophysics, 13(2), 180–184.‏. CrossRef Moyer, R. S. (1973). Comparing objects in memory: Evidence suggesting an internal psychophysics. Perception and Psychophysics, 13(2), 180–184.‏. CrossRef
go back to reference Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality.‏. Nature, 215, 1519–1520. PubMedCrossRef Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality.‏. Nature, 215, 1519–1520. PubMedCrossRef
go back to reference Namdar, G., Ganel, T., & Algom, D. (2018). The size congruity effect vanishes in grasping: Implications for the processing of numerical information. Scientific Reports, 8, 2723. PubMedPubMedCentralCrossRef Namdar, G., Ganel, T., & Algom, D. (2018). The size congruity effect vanishes in grasping: Implications for the processing of numerical information. Scientific Reports, 8, 2723. PubMedPubMedCentralCrossRef
go back to reference Norwich, K. H. (1992). Information, sensation, and perception. New York: Academic Press. Norwich, K. H. (1992). Information, sensation, and perception. New York: Academic Press.
go back to reference Núñez, R. E. (2017). Is there really an evolved capacity for number? Trends in Cognitive Sciences, 21(6), 409–424. PubMedCrossRef Núñez, R. E. (2017). Is there really an evolved capacity for number? Trends in Cognitive Sciences, 21(6), 409–424. PubMedCrossRef
go back to reference Pansky, A., & Algom, D. (2002). Comparative judgment of numerosity and numerical magnitude: Attention preempts automaticity. Journal of Experimental Psychology Learning Memory and Cognition, 28(2), 259. CrossRefPubMed Pansky, A., & Algom, D. (2002). Comparative judgment of numerosity and numerical magnitude: Attention preempts automaticity. Journal of Experimental Psychology Learning Memory and Cognition, 28(2), 259. CrossRefPubMed
go back to reference Parducci, A. (1965). Category judgment: A range-frequency model. Psychological Review, 72(6), 407–418‏. PubMedCrossRef Parducci, A. (1965). Category judgment: A range-frequency model. Psychological Review, 72(6), 407–418‏. PubMedCrossRef
go back to reference Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 41(6), 983–993. PubMedCrossRef Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 41(6), 983–993. PubMedCrossRef
go back to reference Pinheiro-Chagas, P., Dotan, D., Piazza, M., & Dehaene, S. (2017). Finger tracking reveals the covert stages of mental arithmetic. Open Mind, 1(1), 30–41‏. PubMedCrossRef Pinheiro-Chagas, P., Dotan, D., Piazza, M., & Dehaene, S. (2017). Finger tracking reveals the covert stages of mental arithmetic. Open Mind, 1(1), 30–41‏. PubMedCrossRef
go back to reference Restle, F., & Greeno, J. G. (1970). Introduction to mathematical psychology. Oxford: Addison-Wesley‏. Restle, F., & Greeno, J. G. (1970). Introduction to mathematical psychology. Oxford: Addison-Wesley‏.
go back to reference Reynvoet, B., & Sasanguie, D. (2016). The symbol grounding problem revisited: A thorough evaluation of the ANS mapping account and the proposal of an alternative account based on symbol–symbol associations. Frontiers in Psychology, 7, 1581 PubMedPubMedCentralCrossRef Reynvoet, B., & Sasanguie, D. (2016). The symbol grounding problem revisited: A thorough evaluation of the ANS mapping account and the proposal of an alternative account based on symbol–symbol associations. Frontiers in Psychology, 7, 1581 PubMedPubMedCentralCrossRef
go back to reference Rips, L. J. (2013). How many is a zillion? Sources of number distortion. Journal of Experimental Psychology Learning Memory and Cognition, 39(4), 1257–1264‏. CrossRefPubMed Rips, L. J. (2013). How many is a zillion? Sources of number distortion. Journal of Experimental Psychology Learning Memory and Cognition, 39(4), 1257–1264‏. CrossRefPubMed
go back to reference Rouder, J. N., & Geary, D. C. (2014). Children’s cognitive representation of the mathematical number line. Developmental Science, 17(4), 525–536‏. PubMedPubMedCentralCrossRef Rouder, J. N., & Geary, D. C. (2014). Children’s cognitive representation of the mathematical number line. Developmental Science, 17(4), 525–536‏. PubMedPubMedCentralCrossRef
go back to reference Sasanguie, D., et al. (2014). The approximate number system is not predictive for symbolic number processing in kindergarteners. Quarterly Journal of Experimental Psychology, 67(2), 271–280. CrossRef Sasanguie, D., et al. (2014). The approximate number system is not predictive for symbolic number processing in kindergarteners. Quarterly Journal of Experimental Psychology, 67(2), 271–280. CrossRef
go back to reference Sasanguie, D., De Smedt, B., & Reynvoet, B. (2017). Evidence for distinct magnitude systems for symbolic and non-symbolic number. Psychological Research Psychologische Forschung, 81(1), 231–242. PubMedCrossRef Sasanguie, D., De Smedt, B., & Reynvoet, B. (2017). Evidence for distinct magnitude systems for symbolic and non-symbolic number. Psychological Research Psychologische Forschung, 81(1), 231–242. PubMedCrossRef
go back to reference Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237–250‏. PubMedCrossRef Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237–250‏. PubMedCrossRef
go back to reference Siegler, R. S., Thompson, C. A., & Opfer, J. E. (2009). The logarithmic-to-linear shift: One learning sequence, many tasks, many time scales. Mind Brain and Education, 3(3), 143–150. CrossRef Siegler, R. S., Thompson, C. A., & Opfer, J. E. (2009). The logarithmic-to-linear shift: One learning sequence, many tasks, many time scales. Mind Brain and Education, 3(3), 143–150. CrossRef
go back to reference Slusser, E., & Barth, H. (2017). Intuitive proportion judgment in number-line estimation: Converging evidence from multiple tasks. Journal of Experimental Child Psychology, 162, 181–198. PubMedCrossRef Slusser, E., & Barth, H. (2017). Intuitive proportion judgment in number-line estimation: Converging evidence from multiple tasks. Journal of Experimental Child Psychology, 162, 181–198. PubMedCrossRef
go back to reference Slusser, E. B., Santiago, R. T., & Barth, H. C. (2013). Developmental change in numerical estimation. Journal of Experimental Psychology General, 142(1), 193–208. PubMedCrossRef Slusser, E. B., Santiago, R. T., & Barth, H. C. (2013). Developmental change in numerical estimation. Journal of Experimental Psychology General, 142(1), 193–208. PubMedCrossRef
go back to reference Stevens, J. C. (1971). Psychophysics. In W. S. Cain & L. E. Marks (Eds.), Stimulus and sensation: Readings is sensory psychology. Boston: Little, Brown & Company. Stevens, J. C. (1971). Psychophysics. In W. S. Cain & L. E. Marks (Eds.), Stimulus and sensation: Readings is sensory psychology. Boston: Little, Brown & Company.
go back to reference Stevens, S. S. (1975). Psychophysics. New York: Wiley‏. Stevens, S. S. (1975). Psychophysics. New York: Wiley‏.
go back to reference Van’t Noordende, J. E., Van Hoogmoed, A. H., Schot, W. D., & Kroesbergen, E. H. (2016). Number line estimation strategies in children with mathematical learning difficulties measured by eye tracking. Psychological Research Psychologische Forschung, 80(3), 368–378. CrossRef Van’t Noordende, J. E., Van Hoogmoed, A. H., Schot, W. D., & Kroesbergen, E. H. (2016). Number line estimation strategies in children with mathematical learning difficulties measured by eye tracking. Psychological Research Psychologische Forschung, 80(3), 368–378. CrossRef
go back to reference Verguts, T., Fias, W., & Stevens, M. (2005). A model of exact small-number representation. Psychonomic Bulletin and Review, 12(1), 66–80.‏. PubMedCrossRef Verguts, T., Fias, W., & Stevens, M. (2005). A model of exact small-number representation. Psychonomic Bulletin and Review, 12(1), 66–80.‏. PubMedCrossRef
go back to reference Verguts, T., & Van Opstal, F. (2005). Dissociation of the distance and size effects in one-digit numbers. Psychonomic Bulletin and Review, 12(5), 925–930. PubMedCrossRef Verguts, T., & Van Opstal, F. (2005). Dissociation of the distance and size effects in one-digit numbers. Psychonomic Bulletin and Review, 12(5), 925–930. PubMedCrossRef
go back to reference Verguts, T., & Van Opstal, F. (2014). A delta-rule model of numerical and non-numerical order processing. Journal of Experimental Psychology Human Perception and Performance, 40(3), 1092–1102. PubMedCrossRef Verguts, T., & Van Opstal, F. (2014). A delta-rule model of numerical and non-numerical order processing. Journal of Experimental Psychology Human Perception and Performance, 40(3), 1092–1102. PubMedCrossRef
Metagegevens
Titel
On the linear representation of numbers: evidence from a new two-numbers-to-two positions task
Auteurs
Hofit Bar
Martin H. Fischer
Daniel Algom
Publicatiedatum
02-08-2018
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 1/2019
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-018-1063-y