Skip to main content
Top

2019 | OriginalPaper | Hoofdstuk

2. Neurowetenschappelijke concepten

Auteur : Dr. Ben van Cranenburgh

Gepubliceerd in: Neurorevalidatie

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

Het reflexmodel en stimulus-responsmodel zijn lang dominant geweest in de neurofysiologie en psychologie. Sinds 2000 is er weer plaats voor de wil en ‘spontaan’, zelf geïnitieerd gedrag: dit heeft zijn eigen unieke neurale basis. Vaste lokalisaties en centra zijn vervangen door flexibele neurale netwerken, ‘neurale ensembles’, met deelprocessen op verschillende plaatsen en niveaus. Een dergelijke neurale verankering geeft een grotere flexibiliteit en impliceert een soort ‘zelfherstellend’ vermogen. Menselijk handelen is veel meer dan ‘spieren activeren’: de rol van zintuiglijke informatie, met name de kinesthesie, is cruciaal. Dachten we vroeger dat motoriek begon in het stripje motorische schors van de gyrus precentralis, tegenwoordig weten we dat vele hersengebieden betrokken zijn, afhankelijk van het type taak: automatisch of bewust, in leerfase of routine, nadoen van visuele demonstratie of op basis van verbale instructie, spontaan of reactief handelen.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Ashby, F., et al. (2010). Cortical and basal ganglia contributions to habit learning and automaticity. Trends in Cognitive Sciences, 14, 208.CrossRef Ashby, F., et al. (2010). Cortical and basal ganglia contributions to habit learning and automaticity. Trends in Cognitive Sciences, 14, 208.CrossRef
go back to reference Boecker, H., et al. (1994). Functional cooperativity of human cortical motor areas during self-paced simple finger movements. A high resolution MRI study. Brain, 117, 1231–1239.CrossRef Boecker, H., et al. (1994). Functional cooperativity of human cortical motor areas during self-paced simple finger movements. A high resolution MRI study. Brain, 117, 1231–1239.CrossRef
go back to reference Gazzaniga, M. et al. (2002). Cognitive neuroscience (2nd ed.). New York: Norton. Gazzaniga, M. et al. (2002). Cognitive neuroscience (2nd ed.). New York: Norton.
go back to reference Gerloff, C., et al. (1997). Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences. Brain, 120, 1587–1602.CrossRef Gerloff, C., et al. (1997). Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences. Brain, 120, 1587–1602.CrossRef
go back to reference Gerloff, C., et al. (1998). Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain, 121, 1513–1531.CrossRef Gerloff, C., et al. (1998). Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain, 121, 1513–1531.CrossRef
go back to reference Haaland, K., et al. (2000). Neural representations of skilled movement. Brain, 123, 2306–2313.CrossRef Haaland, K., et al. (2000). Neural representations of skilled movement. Brain, 123, 2306–2313.CrossRef
go back to reference Halsband, U. et al. (1993) ‘The role of premotor cortex and the supplementary motor area in the temporal control of movement in man’. Brain 116, 243–266.CrossRef Halsband, U. et al. (1993) ‘The role of premotor cortex and the supplementary motor area in the temporal control of movement in man’. Brain 116, 243–266.CrossRef
go back to reference Hazeltine, E., et al. (1997). Attention and stimulus characteristics determine the locus of motor-sequence encoding. A PET study. Brain, 120, 123–140.CrossRef Hazeltine, E., et al. (1997). Attention and stimulus characteristics determine the locus of motor-sequence encoding. A PET study. Brain, 120, 123–140.CrossRef
go back to reference Hikosaka, O., et al. (1999). Parallel neural networks for learning sequential procedures. Trends in Neurosciences, 22, 464.CrossRef Hikosaka, O., et al. (1999). Parallel neural networks for learning sequential procedures. Trends in Neurosciences, 22, 464.CrossRef
go back to reference Hikosaka, O. et al. (2013). Why skill matters. Trends in Cognitive Sciences, 17(9), 434–441.CrossRef Hikosaka, O. et al. (2013). Why skill matters. Trends in Cognitive Sciences, 17(9), 434–441.CrossRef
go back to reference Hommel, B., & Wiers, R. (2017). Towards a unitary approach to human action control. Trends in Cognitive Sciences, 21(12), 940–949. Hommel, B., & Wiers, R. (2017). Towards a unitary approach to human action control. Trends in Cognitive Sciences, 21(12), 940–949.
go back to reference Hommel, B., et al. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–937.CrossRef Hommel, B., et al. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–937.CrossRef
go back to reference Honda, M., et al. (1998). Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study. Brain, 121, 2159–2173.CrossRef Honda, M., et al. (1998). Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study. Brain, 121, 2159–2173.CrossRef
go back to reference Jahanshahi, M., et al. (1995). Self-initiated versus externally triggered movements: I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain, 118, 913–933.CrossRef Jahanshahi, M., et al. (1995). Self-initiated versus externally triggered movements: I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain, 118, 913–933.CrossRef
go back to reference Jeannerod, M., et al. (1995). Grasping objects: The cortical mechanisms of visuomotor transformation. Trends in Neurosciences, 18, 314–320.CrossRef Jeannerod, M., et al. (1995). Grasping objects: The cortical mechanisms of visuomotor transformation. Trends in Neurosciences, 18, 314–320.CrossRef
go back to reference Leiner, H., et al. (1993). Cognitive and language functions of the human cerebellum. Trends in Neuroscience, 16, 444–454.CrossRef Leiner, H., et al. (1993). Cognitive and language functions of the human cerebellum. Trends in Neuroscience, 16, 444–454.CrossRef
go back to reference Lewis, G., et al. (2000). Stride length regulation in Parkinson’s disease: The use of extrinsic, visual cues. Brain, 123, 2077–2090.CrossRef Lewis, G., et al. (2000). Stride length regulation in Parkinson’s disease: The use of extrinsic, visual cues. Brain, 123, 2077–2090.CrossRef
go back to reference Ling, J., et al. (2012). Biomarkers of increased diffusion anisotropy in semi-acute mild traumatic brain injury: A longitudinal perspective. Brain, 135, 1281–1292.CrossRef Ling, J., et al. (2012). Biomarkers of increased diffusion anisotropy in semi-acute mild traumatic brain injury: A longitudinal perspective. Brain, 135, 1281–1292.CrossRef
go back to reference Marcel, A. (1998). Blindsight and shape perception: Deficit of visual consciousness or of visual function? Brain, 121, 1565–1588.CrossRef Marcel, A. (1998). Blindsight and shape perception: Deficit of visual consciousness or of visual function? Brain, 121, 1565–1588.CrossRef
go back to reference Martin, T., et al. (1996a). Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain, 119, 1183–1198.CrossRef Martin, T., et al. (1996a). Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain, 119, 1183–1198.CrossRef
go back to reference Martin, T., et al. (1996b). Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations. Brain, 119, 1199–1211.CrossRef Martin, T., et al. (1996b). Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations. Brain, 119, 1199–1211.CrossRef
go back to reference Milner, A., & Goodale, M. (1995). The visual brain in action. Oxford: Oxford University Press. Milner, A., & Goodale, M. (1995). The visual brain in action. Oxford: Oxford University Press.
go back to reference Molinari, M., et al. (1997). Cerebellum and procedural learning: Evidence from focal cerebellar lesions. Brain, 120, 1753–1762.CrossRef Molinari, M., et al. (1997). Cerebellum and procedural learning: Evidence from focal cerebellar lesions. Brain, 120, 1753–1762.CrossRef
go back to reference Ostry, D., & Gribble, P. (2016). Sensory plasticity in human motor learning. Trends in Neurosciences, 39(2), 114–123. Ostry, D., & Gribble, P. (2016). Sensory plasticity in human motor learning. Trends in Neurosciences, 39(2), 114–123.
go back to reference Otten, M., et al. (2012). Motor deficits correlate with resting state motor network connectivity in patients with brain tumors. Brain, 135, 1017–1026.CrossRef Otten, M., et al. (2012). Motor deficits correlate with resting state motor network connectivity in patients with brain tumors. Brain, 135, 1017–1026.CrossRef
go back to reference Porter, R., & Lemon, R. (1993). Corticospinal function and voluntary movement. Oxford: Clarendon Press. Porter, R., & Lemon, R. (1993). Corticospinal function and voluntary movement. Oxford: Clarendon Press.
go back to reference Passingham, R., (1993). The frontal lobes and voluntary action. Oxford: Oxford University Press. Passingham, R., (1993). The frontal lobes and voluntary action. Oxford: Oxford University Press.
go back to reference Roland, P., & Seitz, R. (1991). Positron emission tomography studies of the somatosensory system in man. In Chadwick, D. (Ed.), Exploring brain functional anatomy with positron tomography (pp. 113–124). Roland, P., & Seitz, R. (1991). Positron emission tomography studies of the somatosensory system in man. In Chadwick, D. (Ed.), Exploring brain functional anatomy with positron tomography (pp. 113–124).
go back to reference Sokolov, A., et al. (2017). The cerebellum: Adaptive prediction for movement and cognition. Trends in Cognitive Sciences, 21(5), 313–332.CrossRef Sokolov, A., et al. (2017). The cerebellum: Adaptive prediction for movement and cognition. Trends in Cognitive Sciences, 21(5), 313–332.CrossRef
go back to reference Stoerig, P., & Cowey, A. (1997). Blindsight in man and monkey. Brain 120, 535–559. Stoerig, P., & Cowey, A. (1997). Blindsight in man and monkey. Brain 120, 535–559.
go back to reference Thach, W. (1998). What is the role of the cerebellum in motor learning and cognition? Trends in Cognitive Neuroscience, 2, 331.CrossRef Thach, W. (1998). What is the role of the cerebellum in motor learning and cognition? Trends in Cognitive Neuroscience, 2, 331.CrossRef
go back to reference Van Cranenburgh, B. (2016). Van contractie naar actie. Houten: Bohn Stafleu van Loghum. Van Cranenburgh, B. (2016). Van contractie naar actie. Houten: Bohn Stafleu van Loghum.
go back to reference Van Cranenburgh, B. (2018). Muziek en brein. Haarlem: Stichting ITON. Van Cranenburgh, B. (2018). Muziek en brein. Haarlem: Stichting ITON.
go back to reference Wenger, E. et al. (2017). Expansion and renormalization of human brain structure during skill acquisition. Trends in Cognitive Sciences, 21(12), 930–939.CrossRef Wenger, E. et al. (2017). Expansion and renormalization of human brain structure during skill acquisition. Trends in Cognitive Sciences, 21(12), 930–939.CrossRef
go back to reference Weiskrantz, L. (1986). Blindsight. Oxford: Clarendon Press. Weiskrantz, L. (1986). Blindsight. Oxford: Clarendon Press.
Metagegevens
Titel
Neurowetenschappelijke concepten
Auteur
Dr. Ben van Cranenburgh
Copyright
2019
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/978-90-368-2318-0_2