Skip to main content
Top
Gepubliceerd in: Journal of Foot and Ankle Research 1/2008

Open Access 01-09-2008 | Keynote presentation

Multiscale modelling and team science: the future of orthopaedic biomechanics

Auteur: Marco Viceconti

Gepubliceerd in: Journal of Foot and Ankle Research | bijlage 1/2008

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail
insite
ZOEKEN

Introduction

Some of the most exciting developments in recent biomechanics research regard topics that lay at boundaries: boundaries between dimensional scales (i.e. cell-tissue interaction), between sub-systems (i.e. cardiovascular and musculoskeletal), or between different domains of biomedical knowledge (i.e. biology and engineering). This is a trend that we are observing in the entire biomedical research field, and undergoes the name of biomedical Integrative Research [1].
In order to follow this trend, every researcher needs to add to her tool chest two new tools: multiscale modelling, and team science.

Multiscale modelling

This term indicates the ability to models capable of predicting the physical behaviour of a complex system, which is regulated by multiple phenomena observable at radically different dimensional and/or temporal scales.
Given the level of complexity that integrative research involves, mathematical/numerical modelling appears the only viable option. However, this requires modelling methods that are not only multi-physics, but also multiscale.
The trivial declination of multiscale modelling are problems where all scale are regulated by exactly the same physics: if you need to model a single bolt whose loading is defined by the deformation of the entire car body, you have a significant difference in dimensions, but both models describe the elastic behaviour of a solid continuum; nowadays these problems are trivially solved with methods such as sub-structuring [2].
The true challenge is when each sub-model is a truly independent model, representing different physical behaviours, and most of the times using different mathematical approaches for the modelling. No off-the-shelf tool can currently solve this problem, but intense research activity is being conducted [3].

Team science

While multiscale modelling can help in integrating across sub-systems and across dimensional scales, to integrate across different domains of knowledge we need something else: team science. "Team science" refers to multi-partnered and multi-disciplinary research partnerships designed to bring together specialized researchers to work on specific facets of a larger project or study. In the context of integrative research the need for team science is being addressed in three directions: the development of consensus processes involving stakeholders from very different sub-domains of biomedical research, such as the one we developed in STEP [1]; to create Internet communities specifically oriented to team science and its support, such as Biomed Town [4]; and to develop specialised pre-post processing environments for the multiscale modelling that help in capturing and exchanging knowledge across domains. This latter activity it is still in its infancy, but some seminal work is being done in the context of the MAF framework [5].
Open AccessThis article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Onze productaanbevelingen

BSL Podotherapeut Totaal

Binnen de bundel kunt u gebruik maken van boeken, tijdschriften, e-learnings, web-tv's en uitlegvideo's. BSL Podotherapeut Totaal is overal toegankelijk; via uw PC, tablet of smartphone.

Literatuur
2.
go back to reference Feng F, et al: The mechanical and thermal effects of focused ultrasound in a model biological material. J Acoust Soc Am. 2005, 117 (4 Pt 1): 2347-55. 10.1121/1.1873372.CrossRefPubMed Feng F, et al: The mechanical and thermal effects of focused ultrasound in a model biological material. J Acoust Soc Am. 2005, 117 (4 Pt 1): 2347-55. 10.1121/1.1873372.CrossRefPubMed
3.
go back to reference Viceconti M, et al: Multiscale modelling of the skeleton for the prediction of the risk of fracture. Clin Biomech. 2008 Feb 25. PMID: 18304710. Viceconti M, et al: Multiscale modelling of the skeleton for the prediction of the risk of fracture. Clin Biomech. 2008 Feb 25. PMID: 18304710.
5.
go back to reference Viceconti M, et al: The multimod application framework: a rapid application development tool for computer aided medicine. Comput Methods Programs Biomed. 2007, 85 (2): 138-51. 10.1016/j.cmpb.2006.09.010.CrossRefPubMed Viceconti M, et al: The multimod application framework: a rapid application development tool for computer aided medicine. Comput Methods Programs Biomed. 2007, 85 (2): 138-51. 10.1016/j.cmpb.2006.09.010.CrossRefPubMed
Metagegevens
Titel
Multiscale modelling and team science: the future of orthopaedic biomechanics
Auteur
Marco Viceconti
Publicatiedatum
01-09-2008
Uitgeverij
BioMed Central
Gepubliceerd in
Journal of Foot and Ankle Research / Uitgave bijlage 1/2008
Elektronisch ISSN: 1757-1146
DOI
https://doi.org/10.1186/1757-1146-1-S1-K6

Andere artikelen bijlage 1/2008

Journal of Foot and Ankle Research 1/2008 Naar de uitgave