Skip to main content
Top
Gepubliceerd in: Psychological Research 1/2019

27-09-2018 | Original Article

Multiple distance cues do not prevent systematic biases in reach to grasp movements

Auteurs: Karl K. Kopiske, Chiara Bozzacchi, Robert Volcic, Fulvio Domini

Gepubliceerd in: Psychological Research | Uitgave 1/2019

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

The perceived distance of objects is biased depending on the distance from the observer at which objects are presented, such that the egocentric distance tends to be overestimated for closer objects, but underestimated for objects further away. This leads to the perceived depth of an object (i.e., the perceived distance from the front to the back of the object) also being biased, decreasing with object distance. Several studies have found the same pattern of biases in grasping tasks. However, in most of those studies, object distance and depth were solely specified by ocular vergence and binocular disparities. Here we asked whether grasping objects viewed from above would eliminate distance-dependent depth biases, since this vantage point introduces additional information about the object’s distance, given by the vertical gaze angle, and its depth, given by contour information. Participants grasped objects presented at different distances (1) at eye-height and (2) 130 mm below eye-height, along their depth axes. In both cases, grip aperture was systematically biased by the object distance along most of the trajectory. The same bias was found whether the objects were seen in isolation or above a ground plane to provide additional depth cues. In two additional experiments, we verified that a consistent bias occurs in a perceptual task. These findings suggest that grasping actions are not immune to biases typically found in perceptual tasks, even when additional cues are available. However, online visual control can counteract these biases when direct vision of both digits and final contact points is available.
Literatuur
go back to reference Brenner, E., & Smeets, J. B. J. (1997). Fast responses of the human hand to changes in target position. Journal of Motor Behavior, 29(4), 297–310.CrossRef Brenner, E., & Smeets, J. B. J. (1997). Fast responses of the human hand to changes in target position. Journal of Motor Behavior, 29(4), 297–310.CrossRef
go back to reference Campagnoli, C., & Domini, F. (2018). Depth-cue combination yields identical biases in perception and grasping. Manuscript submitted for publication. Campagnoli, C., & Domini, F. (2018). Depth-cue combination yields identical biases in perception and grasping. Manuscript submitted for publication.
go back to reference Domini, F., & Caudek, C. (2013). Perception and action without veridical metric reconstruction: An affine approach. In Shape perception in human and computer vision (pp. 285–298). London: Springer.CrossRef Domini, F., & Caudek, C. (2013). Perception and action without veridical metric reconstruction: An affine approach. In Shape perception in human and computer vision (pp. 285–298). London: Springer.CrossRef
go back to reference Franz, V. H. (2003). Manual size estimation: a neuropsychological measure of perception? Experimental Brain Research, 151, 471–477.CrossRef Franz, V. H. (2003). Manual size estimation: a neuropsychological measure of perception? Experimental Brain Research, 151, 471–477.CrossRef
go back to reference Glover, S., & Dixon, P. (2002). Dynamic effects of the Ebbinghaus illusion in grasping: Support for a planning/control model of action. Perception & Psychophysics, 64(2), 266–278.CrossRef Glover, S., & Dixon, P. (2002). Dynamic effects of the Ebbinghaus illusion in grasping: Support for a planning/control model of action. Perception & Psychophysics, 64(2), 266–278.CrossRef
go back to reference Goodale, M. A. (2011). Transforming vision into action. Vision Research, 51(13), 1567–1587.CrossRef Goodale, M. A. (2011). Transforming vision into action. Vision Research, 51(13), 1567–1587.CrossRef
go back to reference Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25.CrossRef Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25.CrossRef
go back to reference Jeannerod, M. (1984). The timing of natural prehension movements. Journal of Motor Behavior, 16(3), 235–254.CrossRef Jeannerod, M. (1984). The timing of natural prehension movements. Journal of Motor Behavior, 16(3), 235–254.CrossRef
go back to reference Jeannerod, M. (1986). The formation of finger grip during prehension. A cortically mediated visuomotor pattern. Behavioural Brain Research, 19, 99–116.CrossRef Jeannerod, M. (1986). The formation of finger grip during prehension. A cortically mediated visuomotor pattern. Behavioural Brain Research, 19, 99–116.CrossRef
go back to reference Nicolini, C., Fantoni, C., Mancuso, G., Volcic, R., & Domini, F. (2014). A framework for the study of vision in active observers. In B. Rogowitz, T. Pappas, & H. de Ridder (eds.), Proceedings of the SPIE (Vol. 9014, p. 901414). San Francisco. https://doi.org/10.1117/12.2045459. Nicolini, C., Fantoni, C., Mancuso, G., Volcic, R., & Domini, F. (2014). A framework for the study of vision in active observers. In B. Rogowitz, T. Pappas, & H. de Ridder (eds.), Proceedings of the SPIE (Vol. 9014, p. 901414). San Francisco. https://​doi.​org/​10.​1117/​12.​2045459.
go back to reference Servos, P., Goodale, M. A., & Jakobson, L. S. (1992). The role of binocular vision in prehension: A kinematic analysis. Vision Research, 32(8), 1513–1521.CrossRef Servos, P., Goodale, M. A., & Jakobson, L. S. (1992). The role of binocular vision in prehension: A kinematic analysis. Vision Research, 32(8), 1513–1521.CrossRef
go back to reference Smeets, J. B. J., & Brenner, E. (1999). A new view on grasping. Motor Control, 3(3), 237–271.CrossRef Smeets, J. B. J., & Brenner, E. (1999). A new view on grasping. Motor Control, 3(3), 237–271.CrossRef
go back to reference Snow, J. C., Pettypiece, C. E., McAdam, T. D., McLean, A. D., Stroman, P. W., Goodale, M. A., & Culham, J. C. (2011). Bringing the real world into the fMRI scanner: Repetition effects for pictures versus real objects.. Scientific Reports, 1, 1–10. https://doi.org/10.1038/srep00130.CrossRef Snow, J. C., Pettypiece, C. E., McAdam, T. D., McLean, A. D., Stroman, P. W., Goodale, M. A., & Culham, J. C. (2011). Bringing the real world into the fMRI scanner: Repetition effects for pictures versus real objects.. Scientific Reports, 1, 1–10. https://​doi.​org/​10.​1038/​srep00130.CrossRef
Metagegevens
Titel
Multiple distance cues do not prevent systematic biases in reach to grasp movements
Auteurs
Karl K. Kopiske
Chiara Bozzacchi
Robert Volcic
Fulvio Domini
Publicatiedatum
27-09-2018
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 1/2019
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-018-1101-9

Andere artikelen Uitgave 1/2019

Psychological Research 1/2019 Naar de uitgave