Skip to main content
Top
Gepubliceerd in: Psychological Research 6/2009

01-11-2009 | Original Article

Multiple cognitive control effects of error likelihood and conflict

Auteur: Joshua W. Brown

Gepubliceerd in: Psychological Research | Uitgave 6/2009

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Recent work on cognitive control has suggested a variety of performance monitoring functions of the anterior cingulate cortex such as errors, conflict, error likelihood, and others. Given the variety of monitoring effects, a corresponding variety of control effects on behavior might be expected. This paper explores whether conflict and error likelihood produce distinct cognitive control effects on behavior, as measured by response time. A Change signal task (Brown & Braver, Science 307:1118–1121, 2005) was modified to include conditions of likely errors due to tardy as well as premature responses in conditions with and without conflict. The results discriminate between competing hypotheses of independent versus interacting conflict and error likelihood control effects. Specifically, the results suggest that the likelihood of premature versus tardy response errors can lead to multiple distinct control effects, which are independent of cognitive control effects driven by response conflict. As a whole, the results point to the existence of multiple distinct cognitive control mechanisms and challenge existing models of cognitive control that incorporate only a single control signal.
Literatuur
go back to reference Behrens, T. E., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. (2007). Learning the value of information in an uncertain world. Nature Neuroscience, 10(9), 1214–1221.PubMedCrossRef Behrens, T. E., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. (2007). Learning the value of information in an uncertain world. Nature Neuroscience, 10(9), 1214–1221.PubMedCrossRef
go back to reference Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks. Psychological Review, 113(4), 700–765.PubMedCrossRef Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks. Psychological Review, 113(4), 700–765.PubMedCrossRef
go back to reference Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. C. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.PubMedCrossRef Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. C. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.PubMedCrossRef
go back to reference Botvinick, M. M., Nystrom, L., Fissel, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402(6758), 179–181.PubMedCrossRef Botvinick, M. M., Nystrom, L., Fissel, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402(6758), 179–181.PubMedCrossRef
go back to reference Brown, J., & Braver, T. S. (2007). Risk prediction and aversion by anterior cingulate cortex. Cognitive, Affective & Behavioral Neuroscience, 7(4), 266–277.CrossRef Brown, J., & Braver, T. S. (2007). Risk prediction and aversion by anterior cingulate cortex. Cognitive, Affective & Behavioral Neuroscience, 7(4), 266–277.CrossRef
go back to reference Brown, J., Reynolds, J., & Braver, T. S. (2007). A Computational model of fractionated conflict-control mechanisms in task switching. Cognitive Psychology, 55, 37–85.PubMedCrossRef Brown, J., Reynolds, J., & Braver, T. S. (2007). A Computational model of fractionated conflict-control mechanisms in task switching. Cognitive Psychology, 55, 37–85.PubMedCrossRef
go back to reference Brown, J. W., & Braver, T. S. (2005). Learned predictions of error likelihood in the anterior cingulate cortex. Science, 307(5712), 1118–1121.PubMedCrossRef Brown, J. W., & Braver, T. S. (2005). Learned predictions of error likelihood in the anterior cingulate cortex. Science, 307(5712), 1118–1121.PubMedCrossRef
go back to reference Brown, J. W., & Braver, T. S. (2008). A computational model of risk, conflict, and individual difference effects in the anterior cingulate cortex. Brain Research, 1202, 99–108.PubMedCrossRef Brown, J. W., & Braver, T. S. (2008). A computational model of risk, conflict, and individual difference effects in the anterior cingulate cortex. Brain Research, 1202, 99–108.PubMedCrossRef
go back to reference Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D. C., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280, 747–749.PubMedCrossRef Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D. C., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280, 747–749.PubMedCrossRef
go back to reference Dale, A. M. (1999). Optimal experimental design for event-related fMRI. Human Brain Mapping, 8, 109–114.PubMedCrossRef Dale, A. M. (1999). Optimal experimental design for event-related fMRI. Human Brain Mapping, 8, 109–114.PubMedCrossRef
go back to reference Dove, A., Pollmann, S., Schubert, T., Wiggins, C. J., & von Cramon, D. Y. (2000). Prefrontal cortex activation in task switching: An event-related fMRI study. Cognitive Brain Research, 9(1), 103–109.PubMedCrossRef Dove, A., Pollmann, S., Schubert, T., Wiggins, C. J., & von Cramon, D. Y. (2000). Prefrontal cortex activation in task switching: An event-related fMRI study. Cognitive Brain Research, 9(1), 103–109.PubMedCrossRef
go back to reference Gehring, W. J., & Knight, R. T. (2000). Prefrontal-cingulate interactions in action monitoring. Nature Neuroscience, 3(5), 516–520.PubMedCrossRef Gehring, W. J., & Knight, R. T. (2000). Prefrontal-cingulate interactions in action monitoring. Nature Neuroscience, 3(5), 516–520.PubMedCrossRef
go back to reference Gemba, H., Sasaki, K., & Brooks, V. B. (1986). ‘Error’ potentials in limbic cortex (anterior cingulate area 24) of monkeys during motor learning. Neuroscience Letters, 70(2), 223–227.PubMedCrossRef Gemba, H., Sasaki, K., & Brooks, V. B. (1986). ‘Error’ potentials in limbic cortex (anterior cingulate area 24) of monkeys during motor learning. Neuroscience Letters, 70(2), 223–227.PubMedCrossRef
go back to reference Goschke, T. (2000). Intentional reconfiguration and involuntary persistence in task set switching. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 331–3555). Cambridge: The MIT Press. Goschke, T. (2000). Intentional reconfiguration and involuntary persistence in task set switching. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 331–3555). Cambridge: The MIT Press.
go back to reference Husain, M., Parton, A., Hodgson, T. L., Mort, D., & Rees, G. (2003). Self-control during response conflict by human supplementary eye field. Nature Neuroscience, 6(2), 117–118.PubMedCrossRef Husain, M., Parton, A., Hodgson, T. L., Mort, D., & Rees, G. (2003). Self-control during response conflict by human supplementary eye field. Nature Neuroscience, 6(2), 117–118.PubMedCrossRef
go back to reference Ito, S., Stuphorn, V., Brown, J., & Schall, J. D. (2003). Performance monitoring by anterior cingulate cortex during saccade countermanding. Science, 302, 120–122.PubMedCrossRef Ito, S., Stuphorn, V., Brown, J., & Schall, J. D. (2003). Performance monitoring by anterior cingulate cortex during saccade countermanding. Science, 302, 120–122.PubMedCrossRef
go back to reference Jones, A. D., Cho, R., Nystrom, L. E., Cohen, J. D., & Braver, T. S. (2002). A computational model of anterior cingulate function in speeded response tasks: Effects of frequency, sequence, and conflict. Cognitive, Affective & Behavioral Neuroscience, 2(4), 300–317.CrossRef Jones, A. D., Cho, R., Nystrom, L. E., Cohen, J. D., & Braver, T. S. (2002). A computational model of anterior cingulate function in speeded response tasks: Effects of frequency, sequence, and conflict. Cognitive, Affective & Behavioral Neuroscience, 2(4), 300–317.CrossRef
go back to reference Laming, D. R. J. (1968). Information theory of choice reaction times. London: Academic Press. Laming, D. R. J. (1968). Information theory of choice reaction times. London: Academic Press.
go back to reference Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought and action: A theory of an act of control. Psychological Review, 91(3), 295–327.CrossRef Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought and action: A theory of an act of control. Psychological Review, 91(3), 295–327.CrossRef
go back to reference MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal cortex and anterior cingulate cortex in cognitive control. Science, 288, 1835–1838.PubMedCrossRef MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal cortex and anterior cingulate cortex in cognitive control. Science, 288, 1835–1838.PubMedCrossRef
go back to reference Magno, E., Foxe, J. J., Molholm, S., Robertson, I. H., & Garavan, H. (2006). The anterior cingulate and error avoidance. Journal of Neuroscience, 26(18), 4769–4773.PubMedCrossRef Magno, E., Foxe, J. J., Molholm, S., Robertson, I. H., & Garavan, H. (2006). The anterior cingulate and error avoidance. Journal of Neuroscience, 26(18), 4769–4773.PubMedCrossRef
go back to reference Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6(5), 450–452.PubMed Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6(5), 450–452.PubMed
go back to reference Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.), Consciousness and self-regulation (Vol. 4, pp. 1–18). NY: Plenum Press. Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.), Consciousness and self-regulation (Vol. 4, pp. 1–18). NY: Plenum Press.
go back to reference Posner, M. I., & DiGirolamo, G. (1998). Conflict, target detection and cognitive control. In R. Parasuraman (Ed.), The attentive brain. Cambridge: MIT Press. Posner, M. I., & DiGirolamo, G. (1998). Conflict, target detection and cognitive control. In R. Parasuraman (Ed.), The attentive brain. Cambridge: MIT Press.
go back to reference Reynolds, J. R., Braver, T. S., Brown, J., & Stigchel, S. (2006). Computational and neural mechanisms of task switching. Neurocomputing, 69(10), 1332–1336.CrossRef Reynolds, J. R., Braver, T. S., Brown, J., & Stigchel, S. (2006). Computational and neural mechanisms of task switching. Neurocomputing, 69(10), 1332–1336.CrossRef
go back to reference Stuphorn, V., Taylor, T. L., & Schall, J. D. (2000). Performance monitoring by the supplementary eye field. Nature, 408, 857–860.PubMedCrossRef Stuphorn, V., Taylor, T. L., & Schall, J. D. (2000). Performance monitoring by the supplementary eye field. Nature, 408, 857–860.PubMedCrossRef
Metagegevens
Titel
Multiple cognitive control effects of error likelihood and conflict
Auteur
Joshua W. Brown
Publicatiedatum
01-11-2009
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 6/2009
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-008-0198-7

Andere artikelen Uitgave 6/2009

Psychological Research 6/2009 Naar de uitgave