Skip to main content
Top
Gepubliceerd in:

18-01-2019

Modeling strategies to improve parameter estimates in prognostic factors analyses with patient-reported outcomes in oncology

Auteurs: Francesco Cottone, Nina Deliu, Gary S. Collins, Amelie Anota, Franck Bonnetain, Kristel Van Steen, David Cella, Fabio Efficace

Gepubliceerd in: Quality of Life Research | Uitgave 5/2019

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Purpose

The inclusion of patient-reported outcome (PRO) questionnaires in prognostic factor analyses in oncology has substantially increased in recent years. We performed a simulation study to compare the performances of four different modeling strategies in estimating the prognostic impact of multiple collinear scales from PRO questionnaires.

Methods

We generated multiple scenarios describing survival data with different sample sizes, event rates and degrees of multicollinearity among five PRO scales. We used the Cox proportional hazards (PH) model to estimate the hazard ratios (HR) using automatic selection procedures, which were based on either the likelihood ratio-test (Cox-PV) or the Akaike Information Criterion (Cox-AIC). We also used Cox PH models which included all variables and were either penalized using the Ridge regression (Cox-R) or were estimated as usual (Cox-Full). For each scenario, we simulated 1000 independent datasets and compared the average outcomes of all methods.

Results

The Cox-R showed similar or better performances with respect to the other methods, particularly in scenarios with medium–high multicollinearity (ρ = 0.4 to ρ = 0.8) and small sample sizes (n = 100). Overall, the Cox-PV and Cox-AIC performed worse, for example they did not select one or more prognostic collinear PRO scales in some scenarios. Compared with the Cox-Full, the Cox-R provided HR estimates with similar bias patterns but smaller root-mean-squared errors, particularly in higher multicollinearity scenarios.

Conclusions

Our findings suggest that the Cox-R is the best approach when performing prognostic factor analyses with multiple and collinear PRO scales, particularly in situations of high multicollinearity, small sample sizes and low event rates.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
1.
go back to reference Gotay, C. C., Kawamoto, C. T., Bottomley, A., & Efficace, F. (2008). The prognostic significance of patient-reported outcomes in cancer clinical trials. Journal of Clinical Oncology, 26(8), 1355–1363.CrossRef Gotay, C. C., Kawamoto, C. T., Bottomley, A., & Efficace, F. (2008). The prognostic significance of patient-reported outcomes in cancer clinical trials. Journal of Clinical Oncology, 26(8), 1355–1363.CrossRef
2.
go back to reference Secord, A. A., Coleman, R. L., Havrilesky, L. J., Abernethy, A. P., Samsa, G. P., & CELLA, D. (2015). Patient-reported outcomes as end points and outcome indicators in solid tumours. Nature Reviews Clinical oncology, 12(6), 358–370.CrossRef Secord, A. A., Coleman, R. L., Havrilesky, L. J., Abernethy, A. P., Samsa, G. P., & CELLA, D. (2015). Patient-reported outcomes as end points and outcome indicators in solid tumours. Nature Reviews Clinical oncology, 12(6), 358–370.CrossRef
3.
go back to reference Efficace, F., Gaidano, G., Breccia, M., Voso, M. T., Cottone, F., Angelucci, E., et al. (2015). Prognostic value of self-reported fatigue on overall survival in patients with myelodysplastic syndromes: A multicentre, prospective, observational, cohort study. The Lancet Oncology, 16(15), 1506–1514.CrossRef Efficace, F., Gaidano, G., Breccia, M., Voso, M. T., Cottone, F., Angelucci, E., et al. (2015). Prognostic value of self-reported fatigue on overall survival in patients with myelodysplastic syndromes: A multicentre, prospective, observational, cohort study. The Lancet Oncology, 16(15), 1506–1514.CrossRef
4.
go back to reference Efficace, F., Bottomley, A., Coens, C., Van Steen, K., Conroy, T., Schoffski, P., et al. (2006). Does a patient’s self-reported health-related quality of life predict survival beyond key biomedical data in advanced colorectal cancer? European Journal of Cancer, 42(1), 42–49.CrossRef Efficace, F., Bottomley, A., Coens, C., Van Steen, K., Conroy, T., Schoffski, P., et al. (2006). Does a patient’s self-reported health-related quality of life predict survival beyond key biomedical data in advanced colorectal cancer? European Journal of Cancer, 42(1), 42–49.CrossRef
5.
go back to reference Quinten, C., Martinelli, F., Coens, C., Sprangers, M. A., Ringash, J., Gotay, C., et al. (2014). A global analysis of multitrial data investigating quality of life and symptoms as prognostic factors for survival in different tumor sites. Cancer, 120(2), 302–311.CrossRef Quinten, C., Martinelli, F., Coens, C., Sprangers, M. A., Ringash, J., Gotay, C., et al. (2014). A global analysis of multitrial data investigating quality of life and symptoms as prognostic factors for survival in different tumor sites. Cancer, 120(2), 302–311.CrossRef
6.
go back to reference Efficace, F., Biganzoli, L., Piccart, M., Coens, C., Van Steen, K., Cufer, T., et al. (2004). Baseline health-related quality-of-life data as prognostic factors in a phase III multicentre study of women with metastatic breast cancer. European Journal of Cancer, 40(7), 1021–1030.CrossRef Efficace, F., Biganzoli, L., Piccart, M., Coens, C., Van Steen, K., Cufer, T., et al. (2004). Baseline health-related quality-of-life data as prognostic factors in a phase III multicentre study of women with metastatic breast cancer. European Journal of Cancer, 40(7), 1021–1030.CrossRef
7.
go back to reference Maisey, N. R., Norman, A., Watson, M., Allen, M. J., Hill, M. E., & Cunningham, D. (2002). Baseline quality of life predicts survival in patients with advanced colorectal cancer. European Journal of Cancer, 38(10), 1351–1357.CrossRef Maisey, N. R., Norman, A., Watson, M., Allen, M. J., Hill, M. E., & Cunningham, D. (2002). Baseline quality of life predicts survival in patients with advanced colorectal cancer. European Journal of Cancer, 38(10), 1351–1357.CrossRef
8.
go back to reference Efficace, F., Innominato, P. F., Bjarnason, G., Coens, C., Humblet, Y., Tumolo, S., et al. (2008). Validation of patient’s self-reported social functioning as an independent prognostic factor for survival in metastatic colorectal cancer patients: results of an international study by the Chronotherapy Group of the European Organisation for Research and Treatment of Cancer. Journal of Clinical Oncology, 26(12), 2020–2026.CrossRef Efficace, F., Innominato, P. F., Bjarnason, G., Coens, C., Humblet, Y., Tumolo, S., et al. (2008). Validation of patient’s self-reported social functioning as an independent prognostic factor for survival in metastatic colorectal cancer patients: results of an international study by the Chronotherapy Group of the European Organisation for Research and Treatment of Cancer. Journal of Clinical Oncology, 26(12), 2020–2026.CrossRef
9.
go back to reference Fang, F. M., Tsai, W. L., Chiu, H. C., Kuo, W. R., & Hsiung, C. Y. (2004). Quality of life as a survival predictor for esophageal squamous cell carcinoma treated with radiotherapy. International Journal of Radiation Oncology, Biology, Physics, 58(5), 1394–1404.CrossRef Fang, F. M., Tsai, W. L., Chiu, H. C., Kuo, W. R., & Hsiung, C. Y. (2004). Quality of life as a survival predictor for esophageal squamous cell carcinoma treated with radiotherapy. International Journal of Radiation Oncology, Biology, Physics, 58(5), 1394–1404.CrossRef
10.
go back to reference Chau, I., Norman, A. R., Cunningham, D., Waters, J. S., Oates, J., & Ross, P. J. (2004). Multivariate prognostic factor analysis in locally advanced and metastatic esophago-gastric cancer–pooled analysis from three multicenter, randomized, controlled trials using individual patient data. Journal of Clinical Oncology, 22(12), 2395–2403.CrossRef Chau, I., Norman, A. R., Cunningham, D., Waters, J. S., Oates, J., & Ross, P. J. (2004). Multivariate prognostic factor analysis in locally advanced and metastatic esophago-gastric cancer–pooled analysis from three multicenter, randomized, controlled trials using individual patient data. Journal of Clinical Oncology, 22(12), 2395–2403.CrossRef
11.
go back to reference de Graeff, A., de Leeuw, J. R., Ros, W. J., Hordijk, G. J., Blijham, G. H., & Winnubst, J. A. (2001). Sociodemographic factors and quality of life as prognostic indicators in head and neck cancer. European Journal of Cancer, 37(3), 332–339.CrossRef de Graeff, A., de Leeuw, J. R., Ros, W. J., Hordijk, G. J., Blijham, G. H., & Winnubst, J. A. (2001). Sociodemographic factors and quality of life as prognostic indicators in head and neck cancer. European Journal of Cancer, 37(3), 332–339.CrossRef
12.
go back to reference Chiarion-Sileni, V., Del Bianco, P., De Salvo, G. L., Lo Re, G., Romanini, A., Labianca, R., et al. (2003). Quality of life evaluation in a randomised trial of chemotherapy versus bio-chemotherapy in advanced melanoma patients. European Journal of Cancer, 39(11), 1577–1585.CrossRef Chiarion-Sileni, V., Del Bianco, P., De Salvo, G. L., Lo Re, G., Romanini, A., Labianca, R., et al. (2003). Quality of life evaluation in a randomised trial of chemotherapy versus bio-chemotherapy in advanced melanoma patients. European Journal of Cancer, 39(11), 1577–1585.CrossRef
13.
go back to reference Dubois, D., Dhawan, R., van de Velde, H., Esseltine, D., Gupta, S., Viala, M., et al. (2006). Descriptive and prognostic value of patient-reported outcomes: the bortezomib experience in relapsed and refractory multiple myeloma. Journal of Clinical Oncology, 24(6), 976–982.CrossRef Dubois, D., Dhawan, R., van de Velde, H., Esseltine, D., Gupta, S., Viala, M., et al. (2006). Descriptive and prognostic value of patient-reported outcomes: the bortezomib experience in relapsed and refractory multiple myeloma. Journal of Clinical Oncology, 24(6), 976–982.CrossRef
14.
go back to reference Eton, D. T., Fairclough, D. L., Cella, D., Yount, S. E., Bonomi, P., & Johnson, D. H. (2003). Early change in patient-reported health during lung cancer chemotherapy predicts clinical outcomes beyond those predicted by baseline report: Results from Eastern Cooperative Oncology Group Study 5592. Journal of Clinical Oncology, 21(8), 1536–1543.CrossRef Eton, D. T., Fairclough, D. L., Cella, D., Yount, S. E., Bonomi, P., & Johnson, D. H. (2003). Early change in patient-reported health during lung cancer chemotherapy predicts clinical outcomes beyond those predicted by baseline report: Results from Eastern Cooperative Oncology Group Study 5592. Journal of Clinical Oncology, 21(8), 1536–1543.CrossRef
15.
go back to reference Bottomley, A., Coens, C., Efficace, F., Gaafar, R., Manegold, C., Burgers, S., et al. (2007). Symptoms and patient-reported well-being: Do they predict survival in malignant pleural mesothelioma? A prognostic factor analysis of EORTC-NCIC 08983: Randomized phase III study of cisplatin with or without raltitrexed in patients with malignant pleural mesothelioma. Journal of Clinical Oncology, 25(36), 5770–5776.CrossRef Bottomley, A., Coens, C., Efficace, F., Gaafar, R., Manegold, C., Burgers, S., et al. (2007). Symptoms and patient-reported well-being: Do they predict survival in malignant pleural mesothelioma? A prognostic factor analysis of EORTC-NCIC 08983: Randomized phase III study of cisplatin with or without raltitrexed in patients with malignant pleural mesothelioma. Journal of Clinical Oncology, 25(36), 5770–5776.CrossRef
16.
go back to reference Cella, D., Traina, S., Li, T., Johnson, K., Ho, K. F., Molina, A., et al. (2018). Relationship between patient-reported outcomes and clinical outcomes in metastatic castration-resistant prostate cancer: post hoc analysis of COU-AA-301 and COU-AA-302. Annals of Oncology, 29(2), 392–397.CrossRef Cella, D., Traina, S., Li, T., Johnson, K., Ho, K. F., Molina, A., et al. (2018). Relationship between patient-reported outcomes and clinical outcomes in metastatic castration-resistant prostate cancer: post hoc analysis of COU-AA-301 and COU-AA-302. Annals of Oncology, 29(2), 392–397.CrossRef
17.
go back to reference Movsas, B., Hu, C., Sloan, J., Bradley, J., Komaki, R., Masters, G., et al. (2016). Quality of life analysis of a radiation dose-escalation study of patients with non-small-cell lung cancer: A secondary analysis of the radiation therapy oncology group 0617 randomized clinical trial. JAMA Oncology, 2(3), 359–367.CrossRef Movsas, B., Hu, C., Sloan, J., Bradley, J., Komaki, R., Masters, G., et al. (2016). Quality of life analysis of a radiation dose-escalation study of patients with non-small-cell lung cancer: A secondary analysis of the radiation therapy oncology group 0617 randomized clinical trial. JAMA Oncology, 2(3), 359–367.CrossRef
18.
go back to reference Mauer, M., Bottomley, A., Coens, C., & Gotay, C. (2008). Prognostic factor analysis of health-related quality of life data in cancer: A statistical methodological evaluation. Expert Review of Pharmacoeconomics & Outcomes Research, 8(2), 179–196.CrossRef Mauer, M., Bottomley, A., Coens, C., & Gotay, C. (2008). Prognostic factor analysis of health-related quality of life data in cancer: A statistical methodological evaluation. Expert Review of Pharmacoeconomics & Outcomes Research, 8(2), 179–196.CrossRef
19.
go back to reference Van Steen, K., Curran, D., Kramer, J., Molenberghs, G., Van Vreckem, A., Bottomley, A., et al. (2002). Multicollinearity in prognostic factor analyses using the EORTC QLQ-C30: identification and impact on model selection. Statistics in Medicine, 21(24), 3865–3884.CrossRef Van Steen, K., Curran, D., Kramer, J., Molenberghs, G., Van Vreckem, A., Bottomley, A., et al. (2002). Multicollinearity in prognostic factor analyses using the EORTC QLQ-C30: identification and impact on model selection. Statistics in Medicine, 21(24), 3865–3884.CrossRef
20.
go back to reference Aaronson, N. K., Ahmedzai, S., Bergman, B., Bullinger, M., Cull, A., Duez, N. J., et al. (1993). The european organization for research and treatment of cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. Journal of the National Cancer Institute, 85(5), 365–376.CrossRef Aaronson, N. K., Ahmedzai, S., Bergman, B., Bullinger, M., Cull, A., Duez, N. J., et al. (1993). The european organization for research and treatment of cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. Journal of the National Cancer Institute, 85(5), 365–376.CrossRef
21.
go back to reference Cramer, E. M. (1985). Multicollinearity. In S. Kotz, N. L. Johnson & C. B. Read (Eds.), Encyclopedia of statistical sciences. (Vol. 2, pp. 639–643). New York, Wiley. Cramer, E. M. (1985). Multicollinearity. In S. Kotz, N. L. Johnson & C. B. Read (Eds.), Encyclopedia of statistical sciences. (Vol. 2, pp. 639–643). New York, Wiley.
22.
go back to reference Slinker, B. K., & Glantz, S. A. (1985). Multiple regression for physiological data analysis: The problem of multicollinearity. The American Journal of Physiology, 249(1 Pt 2), R1–R12.PubMed Slinker, B. K., & Glantz, S. A. (1985). Multiple regression for physiological data analysis: The problem of multicollinearity. The American Journal of Physiology, 249(1 Pt 2), R1–R12.PubMed
23.
go back to reference Sithisarankul, P., Weaver, V. M., Diener-West, M., & Strickland, P. T. (1997). Multicollinearity may lead to artificial interaction: An example from a cross sectional study of biomarkers. The Southeast Asian Journal of Tropical Medicine and Public Health, 28(2), 404–409.PubMed Sithisarankul, P., Weaver, V. M., Diener-West, M., & Strickland, P. T. (1997). Multicollinearity may lead to artificial interaction: An example from a cross sectional study of biomarkers. The Southeast Asian Journal of Tropical Medicine and Public Health, 28(2), 404–409.PubMed
24.
go back to reference Ediebah, D. E., Coens, C., Zikos, E., Quinten, C., Ringash, J., King, M. T., et al. (2014). Does change in health-related quality of life score predict survival? Analysis of EORTC 08975 lung cancer trial. British Journal of Cancer, 110(10), 2427–2433.CrossRef Ediebah, D. E., Coens, C., Zikos, E., Quinten, C., Ringash, J., King, M. T., et al. (2014). Does change in health-related quality of life score predict survival? Analysis of EORTC 08975 lung cancer trial. British Journal of Cancer, 110(10), 2427–2433.CrossRef
25.
go back to reference Staren, E. D., Gupta, D., & Braun, D. P. (2011). The prognostic role of quality of life assessment in breast cancer. The Breast Journal, 17(6), 571–578.CrossRef Staren, E. D., Gupta, D., & Braun, D. P. (2011). The prognostic role of quality of life assessment in breast cancer. The Breast Journal, 17(6), 571–578.CrossRef
26.
go back to reference Harrell, f. e. jr., Lee, K. L., Matchar, D. B., & Reichert, T. A. (1985). Regression models for prognostic prediction: Advantages, problems, and suggested solutions. Cancer Treatment Reports, 69(10), 1071–1077.PubMed Harrell, f. e. jr., Lee, K. L., Matchar, D. B., & Reichert, T. A. (1985). Regression models for prognostic prediction: Advantages, problems, and suggested solutions. Cancer Treatment Reports, 69(10), 1071–1077.PubMed
27.
go back to reference Harrell, F. E. (2015). Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis. Cham: Springer.CrossRef Harrell, F. E. (2015). Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis. Cham: Springer.CrossRef
28.
go back to reference Simon, R., & Altman, D. G. (1994). Statistical aspects of prognostic factor studies in oncology. British journal of cancer, 69(6), 979–985.CrossRef Simon, R., & Altman, D. G. (1994). Statistical aspects of prognostic factor studies in oncology. British journal of cancer, 69(6), 979–985.CrossRef
29.
go back to reference Cohen, J. (2003). Applied multiple regression/correlation analysis for the behavioral sciences. Mahwah: Lawrence Erlbaum Associates Publishers. Cohen, J. (2003). Applied multiple regression/correlation analysis for the behavioral sciences. Mahwah: Lawrence Erlbaum Associates Publishers.
30.
go back to reference Hoerl, A. E., & Kennard, R. W. (2000). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 42(1), 80–86.CrossRef Hoerl, A. E., & Kennard, R. W. (2000). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 42(1), 80–86.CrossRef
31.
go back to reference Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov, F. Csaki (Ed.), Second international symposium on information theory (pp. 267–281): Budapest: Akademai Kiado. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov, F. Csaki (Ed.), Second international symposium on information theory (pp. 267–281): Budapest: Akademai Kiado.
32.
go back to reference Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The elements of statistical learning: data mining, inference, and prediction. New York: Springer.CrossRef Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The elements of statistical learning: data mining, inference, and prediction. New York: Springer.CrossRef
33.
go back to reference Fayers, P., Aaronson, N. K., Bjordal, K., Groenvold, M., Curran, D., & Bottomley, A. on behalf of the EORTC Quality of Life Group. (2001). The EORTC QLQ-C30 Scoring Manual (3rd Edn). European Organisation for Research and Treatment of Cancer, Brussels. Fayers, P., Aaronson, N. K., Bjordal, K., Groenvold, M., Curran, D., & Bottomley, A. on behalf of the EORTC Quality of Life Group. (2001). The EORTC QLQ-C30 Scoring Manual (3rd Edn). European Organisation for Research and Treatment of Cancer, Brussels.
34.
go back to reference Masters, G. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174.CrossRef Masters, G. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174.CrossRef
35.
go back to reference Lee, E. T., & Go, O. T. (1997). Survival analysis in public health research. Annual Review of Public Health, 18, 105–134.CrossRef Lee, E. T., & Go, O. T. (1997). Survival analysis in public health research. Annual Review of Public Health, 18, 105–134.CrossRef
36.
go back to reference Bender, R., Augustin, T., & Blettner, M. (2005). Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine, 24(11), 1713–1723.CrossRef Bender, R., Augustin, T., & Blettner, M. (2005). Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine, 24(11), 1713–1723.CrossRef
37.
go back to reference Altman, D. G., & Andersen, P. K. (1989). Bootstrap investigation of the stability of a Cox regression model. Statistics in Medicine, 8(7), 771–783.CrossRef Altman, D. G., & Andersen, P. K. (1989). Bootstrap investigation of the stability of a Cox regression model. Statistics in Medicine, 8(7), 771–783.CrossRef
38.
go back to reference Sauerbrei, W., Boulesteix, A. L., & Binder, H. (2011). Stability investigations of multivariable regression models derived from low- and high-dimensional data. Journal of Biopharmaceutical Statistics, 21(6), 1206–1231.CrossRef Sauerbrei, W., Boulesteix, A. L., & Binder, H. (2011). Stability investigations of multivariable regression models derived from low- and high-dimensional data. Journal of Biopharmaceutical Statistics, 21(6), 1206–1231.CrossRef
39.
go back to reference Efron, B. (1977). The efficiency of Cox’s likelihood function for censored data. Journal of the American Statistical Association, 72, 557–565.CrossRef Efron, B. (1977). The efficiency of Cox’s likelihood function for censored data. Journal of the American Statistical Association, 72, 557–565.CrossRef
41.
go back to reference Morozova, O., Levina, O., Uuskula, A., & Heimer, R. (2015). Comparison of subset selection methods in linear regression in the context of health-related quality of life and substance abuse in Russia. BMC Medical Research Methodology, 15, 71.CrossRef Morozova, O., Levina, O., Uuskula, A., & Heimer, R. (2015). Comparison of subset selection methods in linear regression in the context of health-related quality of life and substance abuse in Russia. BMC Medical Research Methodology, 15, 71.CrossRef
42.
go back to reference Steyerberg, E. W., Eijkemans, M. J., Harrell, F. E. Jr., & Habbema, J. D. (2000). Prognostic modelling with logistic regression analysis: A comparison of selection and estimation methods in small data sets. Statistics in Medicine, 19(8), 1059–1079.CrossRef Steyerberg, E. W., Eijkemans, M. J., Harrell, F. E. Jr., & Habbema, J. D. (2000). Prognostic modelling with logistic regression analysis: A comparison of selection and estimation methods in small data sets. Statistics in Medicine, 19(8), 1059–1079.CrossRef
43.
go back to reference Yoo, W., Mayberry, R., Bae, S., Singh, K., He, P., Q., & Lillard, J. W. Jr. (2014). A study of effects of multicollinearity in the multivariable analysis. International Journal of Applied Science and Technology, 4(5), 9–19.PubMedPubMedCentral Yoo, W., Mayberry, R., Bae, S., Singh, K., He, P., Q., & Lillard, J. W. Jr. (2014). A study of effects of multicollinearity in the multivariable analysis. International Journal of Applied Science and Technology, 4(5), 9–19.PubMedPubMedCentral
44.
go back to reference Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., et al. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46.CrossRef Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., et al. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46.CrossRef
45.
go back to reference Xue, X., Kim, M. Y., & Shore, R. E. (2007). Cox regression analysis in presence of collinearity: An application to assessment of health risks associated with occupational radiation exposure. Lifetime Data Analysis, 13(3), 333–350.CrossRef Xue, X., Kim, M. Y., & Shore, R. E. (2007). Cox regression analysis in presence of collinearity: An application to assessment of health risks associated with occupational radiation exposure. Lifetime Data Analysis, 13(3), 333–350.CrossRef
46.
go back to reference Sauerbrei, W., & Schumacher, M. (1992). A bootstrap resampling procedure for model building: Application to the Cox regression model. Statistics in Medicine, 11(16), 2093–2109.CrossRef Sauerbrei, W., & Schumacher, M. (1992). A bootstrap resampling procedure for model building: Application to the Cox regression model. Statistics in Medicine, 11(16), 2093–2109.CrossRef
47.
go back to reference Peduzzi, P., Concato, J., Kemper, E., Holford, T. R., & Feinstein, A. R. (1996). A simulation study of the number of events per variable in logistic regression analysis. Journal of Clinical Epidemiology, 49(12), 1373–1379.CrossRef Peduzzi, P., Concato, J., Kemper, E., Holford, T. R., & Feinstein, A. R. (1996). A simulation study of the number of events per variable in logistic regression analysis. Journal of Clinical Epidemiology, 49(12), 1373–1379.CrossRef
48.
go back to reference Harrell, F. E. Jr., Lee, K. L., Califf, R. M., Pryor, D. B., & Rosati, R. A. (1984). Regression modelling strategies for improved prognostic prediction. Statistics in Medicine, 3(2), 143–152.CrossRef Harrell, F. E. Jr., Lee, K. L., Califf, R. M., Pryor, D. B., & Rosati, R. A. (1984). Regression modelling strategies for improved prognostic prediction. Statistics in Medicine, 3(2), 143–152.CrossRef
Metagegevens
Titel
Modeling strategies to improve parameter estimates in prognostic factors analyses with patient-reported outcomes in oncology
Auteurs
Francesco Cottone
Nina Deliu
Gary S. Collins
Amelie Anota
Franck Bonnetain
Kristel Van Steen
David Cella
Fabio Efficace
Publicatiedatum
18-01-2019
Uitgeverij
Springer International Publishing
Gepubliceerd in
Quality of Life Research / Uitgave 5/2019
Print ISSN: 0962-9343
Elektronisch ISSN: 1573-2649
DOI
https://doi.org/10.1007/s11136-018-02097-2

Andere artikelen Uitgave 5/2019

Quality of Life Research 5/2019 Naar de uitgave