Skip to main content
Top

2022 | OriginalPaper | Hoofdstuk

7. Mobiliteit

Auteurs : Prof. dr. D. C. G. Cambier, Dr. T. Roman de Mettelinge

Gepubliceerd in: Geriatrie in de fysiotherapie en kinesitherapie

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

De gemiddelde levensverwachting is in de afgelopen decennia gigantisch gestegen. De structuren (bot, spieren, gewrichten) die borg staan voor onze gewrichtsbeweeglijkheid of analytische mobiliteit lijken deze lange levensduur echter niet altijd optimaal te kunnen bijbenen. Hieruit kunnen lokale of meer veralgemeende stoornissen ontstaan die daarom nog niet per definitie leiden tot beperkingen, maar ze kunnen vroeg of laat het activiteitengedrag en -niveau van de oudere persoon toch gaan belemmeren. In deze flow is het niet verwonderlijk dat ‘mobiliteit’ vaak wordt gezien als een ultieme eigenschap die de basis vormt voor iemands vrijheid en onafhankelijkheid, hoekstenen die wezenlijk bijdragen aan het welzijn en de levenskwaliteit van een (ouder) individu. In dit hoofdstuk richten we ons op twee niveaus van mobiliteit. Na een korte uitleg over wat mobiliteit behelst, gaan we dieper in op de status en determinanten van ‘gewrichtsmobiliteit’ ofwel range of motion (ROM) en ‘functionele mobiliteit’ bij het ouder worden.
Literatuur
2.
go back to reference Ebeling PR, Cicuttini F, Scott D, Jones G. Promoting mobility and healthy aging in men: a narrative review. Osteoporos Int. 2019;30(10):1911–22.PubMedCrossRef Ebeling PR, Cicuttini F, Scott D, Jones G. Promoting mobility and healthy aging in men: a narrative review. Osteoporos Int. 2019;30(10):1911–22.PubMedCrossRef
3.
go back to reference Rantakokko M, Mänty M, Rantanen T. Mobility decline in old age. Exerc Sport Sci Rev. 2013;41(1):19–25.PubMedCrossRef Rantakokko M, Mänty M, Rantanen T. Mobility decline in old age. Exerc Sport Sci Rev. 2013;41(1):19–25.PubMedCrossRef
4.
go back to reference Webber SC, Porter MM, Menec VH. Mobility in older adults: a comprehensive framework. Gerontologist. 2010;50(4):443–50.PubMedCrossRef Webber SC, Porter MM, Menec VH. Mobility in older adults: a comprehensive framework. Gerontologist. 2010;50(4):443–50.PubMedCrossRef
5.
go back to reference Araújo CGS. Flexitest: an innovative flexibility assessment method. Champaign: Human Kinetics; 2003. 205 p. Araújo CGS. Flexitest: an innovative flexibility assessment method. Champaign: Human Kinetics; 2003. 205 p.
6.
go back to reference Araújo CG. Flexibility assessment: normative values for flexitest from 5 to 91 years of age. Arq Bras Cardiol. 2008;90(4):257–63.PubMed Araújo CG. Flexibility assessment: normative values for flexitest from 5 to 91 years of age. Arq Bras Cardiol. 2008;90(4):257–63.PubMed
7.
go back to reference Medeiros HB, De Araújo DS, De Araújo CG. Age-related mobility loss is joint-specific: an analysis from 6,000 Flexitest results. Age (Dordr). 2013;35(6):2399–407.CrossRef Medeiros HB, De Araújo DS, De Araújo CG. Age-related mobility loss is joint-specific: an analysis from 6,000 Flexitest results. Age (Dordr). 2013;35(6):2399–407.CrossRef
9.
go back to reference Beissner KL, Collins JE, Holmes H. Muscle force and range of motion as predictors of function in older adults. Phys Therapy. 2000;80(6):556–63. Beissner KL, Collins JE, Holmes H. Muscle force and range of motion as predictors of function in older adults. Phys Therapy. 2000;80(6):556–63.
10.
go back to reference Oosterwijk AM, Nieuwenhuis MK, Van der Schans CP, Mouton LJ. Shoulder and elbow range of motion for the performance of activities of daily living: a systematic review. Physiother Theory Pract. 2018;34(7):505–28.PubMedCrossRef Oosterwijk AM, Nieuwenhuis MK, Van der Schans CP, Mouton LJ. Shoulder and elbow range of motion for the performance of activities of daily living: a systematic review. Physiother Theory Pract. 2018;34(7):505–28.PubMedCrossRef
11.
12.
go back to reference Aunan JR, Watson MM, Hagland HR, Søreide K. Molecular and biological hallmarks of ageing. Br J Surg. 2016;103(2):e29-46.PubMedCrossRef Aunan JR, Watson MM, Hagland HR, Søreide K. Molecular and biological hallmarks of ageing. Br J Surg. 2016;103(2):e29-46.PubMedCrossRef
13.
go back to reference Roberts S, Colombier P, Sowman A, Mennan C, Rölfing JHD, Guicheux J, Edwards JR. Ageing in the musculoskeletal system. Acta Orthop. 2016;87(sup363):15–25.PubMedPubMedCentralCrossRef Roberts S, Colombier P, Sowman A, Mennan C, Rölfing JHD, Guicheux J, Edwards JR. Ageing in the musculoskeletal system. Acta Orthop. 2016;87(sup363):15–25.PubMedPubMedCentralCrossRef
14.
go back to reference Kassem M, Marie PJ. Senescence-associated intrinsic mechanisms of osteoblast dysfunctions. Aging Cell. 2011;10(2):191–7.PubMedCrossRef Kassem M, Marie PJ. Senescence-associated intrinsic mechanisms of osteoblast dysfunctions. Aging Cell. 2011;10(2):191–7.PubMedCrossRef
15.
go back to reference Cao JJ, Wronski TJ, Iwaniec U, et al. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. J Bone Min Res. 2005 May 2;20(9):1659–68.CrossRef Cao JJ, Wronski TJ, Iwaniec U, et al. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. J Bone Min Res. 2005 May 2;20(9):1659–68.CrossRef
16.
go back to reference Marie PJ, Kassem M. Extrinsic mechanisms involved in age-related defective bone formation. J Clin Endocrinol Metab. 2011;96(3):600–9.PubMedCrossRef Marie PJ, Kassem M. Extrinsic mechanisms involved in age-related defective bone formation. J Clin Endocrinol Metab. 2011;96(3):600–9.PubMedCrossRef
18.
go back to reference Gosman H, Stout SD, Larsen CS. Skeletal biology over the life span: a view from the surfaces. Am J Phys Anthropol. 2011;146(S53):86–98.PubMedCrossRef Gosman H, Stout SD, Larsen CS. Skeletal biology over the life span: a view from the surfaces. Am J Phys Anthropol. 2011;146(S53):86–98.PubMedCrossRef
19.
go back to reference Verborgt O, Gibson GJ, Schaffler MB. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Min Res. 2000 Jan 1;15(1):60–7.CrossRef Verborgt O, Gibson GJ, Schaffler MB. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Min Res. 2000 Jan 1;15(1):60–7.CrossRef
20.
go back to reference Baar MP, Perdiguero E, Muñoz-Cánoves P, De Keizer PL. Musculoskeletal senescence: a moving target ready to be eliminated. Curr Opin Pharmacol. 2018;40:147–55.PubMedCrossRef Baar MP, Perdiguero E, Muñoz-Cánoves P, De Keizer PL. Musculoskeletal senescence: a moving target ready to be eliminated. Curr Opin Pharmacol. 2018;40:147–55.PubMedCrossRef
21.
go back to reference Florencio-Silva R, Sasso GRDS, Sasso-Cerri E, et al. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015:1–17.CrossRef Florencio-Silva R, Sasso GRDS, Sasso-Cerri E, et al. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015:1–17.CrossRef
22.
go back to reference Boros K, Freemont T. Physiology of ageing of the musculoskeletal system. Best Pract Res Clin Rheumatol. 2017;31(2):203–17.PubMedCrossRef Boros K, Freemont T. Physiology of ageing of the musculoskeletal system. Best Pract Res Clin Rheumatol. 2017;31(2):203–17.PubMedCrossRef
23.
go back to reference Warming L, Hassager C, Christiansen C. Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporos Int. 2002 Feb 1;13(2):105–12.PubMedCrossRef Warming L, Hassager C, Christiansen C. Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporos Int. 2002 Feb 1;13(2):105–12.PubMedCrossRef
27.
go back to reference Loeser RF. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthr Cartil. 2009;17(8):971–9.CrossRef Loeser RF. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthr Cartil. 2009;17(8):971–9.CrossRef
29.
30.
go back to reference Mobasheri A, Batt M. An update on the pathophysiology of osteoarthritis. Ann Phys Rehabil Med. 2016;59(5–6):333–9.PubMedCrossRef Mobasheri A, Batt M. An update on the pathophysiology of osteoarthritis. Ann Phys Rehabil Med. 2016;59(5–6):333–9.PubMedCrossRef
33.
go back to reference Loeser RF, Shakoor N. Aging or osteoarthritis: which is the problem? Rheum Dis Clin North Am. 2003;29(4):653–73.PubMedCrossRef Loeser RF, Shakoor N. Aging or osteoarthritis: which is the problem? Rheum Dis Clin North Am. 2003;29(4):653–73.PubMedCrossRef
36.
37.
go back to reference McCarthy MM, Hannafin JA. The mature athlete. Sports. Health. 2014;6(1):41–8. McCarthy MM, Hannafin JA. The mature athlete. Sports. Health. 2014;6(1):41–8.
38.
go back to reference J.R. Ralphs, M. Benjamin. The joint capsule: structure, composition, ageing and disease. J Anat. 1994(Pt 3):503–9. J.R. Ralphs, M. Benjamin. The joint capsule: structure, composition, ageing and disease. J Anat. 1994(Pt 3):503–9.
40.
go back to reference Maganaris CN, Narici MV, Reeves ND. In vivo human tendon mechanical properties: effect of resistance training in old age. J Musculoskelet Neuronal Interact. 2004;4:204–8.PubMed Maganaris CN, Narici MV, Reeves ND. In vivo human tendon mechanical properties: effect of resistance training in old age. J Musculoskelet Neuronal Interact. 2004;4:204–8.PubMed
41.
go back to reference Onambele GL, Narici MV, Maganaris CN. Calf muscle-tendon properties and postural balance in old age. J Appl Physiol. 1985;2006(100):2048–56. Onambele GL, Narici MV, Maganaris CN. Calf muscle-tendon properties and postural balance in old age. J Appl Physiol. 1985;2006(100):2048–56.
42.
go back to reference Roig M, Macintyre DL, Eng JJ, et al. Preservation of eccentric strength in older adults: evidence, mechanisms and implications for training and rehabilitation. Exp Gerontol. 2010;45:400–9.PubMedPubMedCentralCrossRef Roig M, Macintyre DL, Eng JJ, et al. Preservation of eccentric strength in older adults: evidence, mechanisms and implications for training and rehabilitation. Exp Gerontol. 2010;45:400–9.PubMedPubMedCentralCrossRef
44.
go back to reference Lim JY, Choi SJ, Widrick JJ, et al. Passive force and viscoelastic properties of single fibers in human aging muscles. Eur J Appl Physiol. 2019;119:2339–48.PubMedCrossRef Lim JY, Choi SJ, Widrick JJ, et al. Passive force and viscoelastic properties of single fibers in human aging muscles. Eur J Appl Physiol. 2019;119:2339–48.PubMedCrossRef
45.
go back to reference Olsson MC, Krüger M, Meyer L-H, et al. Fibre type-specific increase in passive muscle tension in spinal cord-injured subjects with spasticity. J Physiol. 2006;577:339–52.PubMedPubMedCentralCrossRef Olsson MC, Krüger M, Meyer L-H, et al. Fibre type-specific increase in passive muscle tension in spinal cord-injured subjects with spasticity. J Physiol. 2006;577:339–52.PubMedPubMedCentralCrossRef
46.
go back to reference Prado LG, Makarenko I, Andresen C, et al. Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles. J Gen Physiol. 2005;126:461–80.PubMedPubMedCentralCrossRef Prado LG, Makarenko I, Andresen C, et al. Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles. J Gen Physiol. 2005;126:461–80.PubMedPubMedCentralCrossRef
47.
go back to reference Wang K, McCarter R, Wright J, et al. Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension. Proc Natl Acad Sci USA. 1991;88:7101–5.PubMedPubMedCentralCrossRef Wang K, McCarter R, Wright J, et al. Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension. Proc Natl Acad Sci USA. 1991;88:7101–5.PubMedPubMedCentralCrossRef
48.
go back to reference Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 2004;84:649–98.PubMedCrossRef Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 2004;84:649–98.PubMedCrossRef
49.
go back to reference Marcucci L, Bondì M, Randazzo G, et al. Fibre and extracellular matrix contributions to passive forces in human skeletal muscles: an experimental based constitutive law for numerical modelling of the passive element in the classical Hill-type three element model. Plos One. 2019;14:e0224232. Marcucci L, Bondì M, Randazzo G, et al. Fibre and extracellular matrix contributions to passive forces in human skeletal muscles: an experimental based constitutive law for numerical modelling of the passive element in the classical Hill-type three element model. Plos One. 2019;14:e0224232.
50.
go back to reference Delabastita T, Bogaerts S, Vanwanseele B. Age-related changes in achilles tendon stiffness and impact on functional activities: a systematic review and meta-analysis. J Aging Phys Act. 2018:1–12. Delabastita T, Bogaerts S, Vanwanseele B. Age-related changes in achilles tendon stiffness and impact on functional activities: a systematic review and meta-analysis. J Aging Phys Act. 2018:1–12.
51.
go back to reference Eriksen CS, Henkel C, Svensson RB, et al. Lower tendon stiffness in very old compared with old individuals is unaffected by short-term resistance training of skeletal muscle. J Appl Physiol. 1985;2018(125):205–14. Eriksen CS, Henkel C, Svensson RB, et al. Lower tendon stiffness in very old compared with old individuals is unaffected by short-term resistance training of skeletal muscle. J Appl Physiol. 1985;2018(125):205–14.
52.
go back to reference Hsiao M-Y, Chen Y-C, Lin C-Y, et al. Reduced patellar tendon elasticity with aging: in vivo assessment by shear wave elastography. Ultrasound Med Biol. 2015;41:2899–905. Hsiao M-Y, Chen Y-C, Lin C-Y, et al. Reduced patellar tendon elasticity with aging: in vivo assessment by shear wave elastography. Ultrasound Med Biol. 2015;41:2899–905.
53.
go back to reference Macaluso A, Nimmo MA, Foster JE, et al. Contractile muscle volume and agonist-antagonist coactivation account for differences in torque between young and older women. Muscle Nerve. 2002;25:858–63.PubMedCrossRef Macaluso A, Nimmo MA, Foster JE, et al. Contractile muscle volume and agonist-antagonist coactivation account for differences in torque between young and older women. Muscle Nerve. 2002;25:858–63.PubMedCrossRef
54.
go back to reference Hortobágyi T, Devita P. Mechanisms responsible for the age-associated increase in coactivation of antagonist muscles. Exerc Sport Sci Rev. 2006;34:29–35.PubMedCrossRef Hortobágyi T, Devita P. Mechanisms responsible for the age-associated increase in coactivation of antagonist muscles. Exerc Sport Sci Rev. 2006;34:29–35.PubMedCrossRef
55.
go back to reference Marques EA, Mota J, Carvalho J. Exercise effects on bone mineral density in older adults: a meta-analysis of randomized controlled trials. Age (Dordr). 2012;34(6):1493–515.CrossRef Marques EA, Mota J, Carvalho J. Exercise effects on bone mineral density in older adults: a meta-analysis of randomized controlled trials. Age (Dordr). 2012;34(6):1493–515.CrossRef
56.
go back to reference Zhao R, Zhao M, Xu Z. The effects of differing resistance training modes on the preservation of bone mineral density in postmenopausal women: a meta-analysis. Osteoporos Int. 2015;26(5):1605–18.PubMedCrossRef Zhao R, Zhao M, Xu Z. The effects of differing resistance training modes on the preservation of bone mineral density in postmenopausal women: a meta-analysis. Osteoporos Int. 2015;26(5):1605–18.PubMedCrossRef
57.
go back to reference McMichan L, Dick M, Skelton DA, Chastin SFM, Owen N, Dunstan DW, Fraser WD, Tang JCY, Greig CA, Agyapong-Badu S, Mavroeidi A. Sedentary behaviour and bone health in older adults: a systematic review. Osteoporos Int. 2021;32(8):1487–97.PubMedCrossRef McMichan L, Dick M, Skelton DA, Chastin SFM, Owen N, Dunstan DW, Fraser WD, Tang JCY, Greig CA, Agyapong-Badu S, Mavroeidi A. Sedentary behaviour and bone health in older adults: a systematic review. Osteoporos Int. 2021;32(8):1487–97.PubMedCrossRef
58.
go back to reference Kirk B, Feehan J, Lombardi G, Duque G. Muscle, bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines. Curr Osteoporos Rep. 2020;18(4):388–400.PubMedCrossRef Kirk B, Feehan J, Lombardi G, Duque G. Muscle, bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines. Curr Osteoporos Rep. 2020;18(4):388–400.PubMedCrossRef
59.
go back to reference Zamoscinska M, Faber IR, Büsch D. Do older adults with reduced bone mineral density benefit from strength training? A critically appraised topic. J Sport Rehabil. 2019 Dec 12;29(6):833–40.PubMedCrossRef Zamoscinska M, Faber IR, Büsch D. Do older adults with reduced bone mineral density benefit from strength training? A critically appraised topic. J Sport Rehabil. 2019 Dec 12;29(6):833–40.PubMedCrossRef
60.
go back to reference Ferrucci L, Cooper R, Shardell M, Simonsick EM, Schrack JA, Kuh D. Age-related change in mobility: perspectives from life course epidemiology and geroscience. J Gerontol A Biol Sci Med Sci. 2016;71(9):1184–94.PubMedPubMedCentralCrossRef Ferrucci L, Cooper R, Shardell M, Simonsick EM, Schrack JA, Kuh D. Age-related change in mobility: perspectives from life course epidemiology and geroscience. J Gerontol A Biol Sci Med Sci. 2016;71(9):1184–94.PubMedPubMedCentralCrossRef
61.
go back to reference Ebeling PR, Cicuttini F, Scott D, Jones G. Promoting mobility and healthy aging in men: a narrative review. Osteoporos Int. 2019;30(10):1911–22.PubMedCrossRef Ebeling PR, Cicuttini F, Scott D, Jones G. Promoting mobility and healthy aging in men: a narrative review. Osteoporos Int. 2019;30(10):1911–22.PubMedCrossRef
62.
go back to reference Ferrucci L, Baroni M, Ranchelli A, Lauretani F, Maggio M, Mecocci P, Ruggiero C. Interaction between bone and muscle in older persons with mobility limitations. Curr Pharm Des. 2014;20(19):3178–97.PubMedPubMedCentralCrossRef Ferrucci L, Baroni M, Ranchelli A, Lauretani F, Maggio M, Mecocci P, Ruggiero C. Interaction between bone and muscle in older persons with mobility limitations. Curr Pharm Des. 2014;20(19):3178–97.PubMedPubMedCentralCrossRef
63.
go back to reference Ross M, Lithgow H, Hayes L, Florida-James G. Potential cellular and biochemical mechanisms of exercise and physical activity on the ageing process. Subcell Biochem. 2019;91:311–38.PubMedCrossRef Ross M, Lithgow H, Hayes L, Florida-James G. Potential cellular and biochemical mechanisms of exercise and physical activity on the ageing process. Subcell Biochem. 2019;91:311–38.PubMedCrossRef
67.
go back to reference Paulson S, Gray M. Parameters of gait among community-dwelling older adults. J Geriatr Phys Ther. 2015;38(1):28–32.PubMedCrossRef Paulson S, Gray M. Parameters of gait among community-dwelling older adults. J Geriatr Phys Ther. 2015;38(1):28–32.PubMedCrossRef
68.
go back to reference Binotto MA, Lenardt MH, Rodríguez-Martínez MDC. Physical frailty and gait speed in community elderly: a systematic review. Rev Esc Enferm USP. 2018;52:e03392. Binotto MA, Lenardt MH, Rodríguez-Martínez MDC. Physical frailty and gait speed in community elderly: a systematic review. Rev Esc Enferm USP. 2018;52:e03392.
69.
go back to reference Kuo HK, Leveille SG, Yen CJ, Chai HM, Chang CH, Yeh YC, et al. Exploring how peak leg power and usual gait speed are linked to late-life disability: data from the National Health and Nutrition Examination Survey (NHANES), 1999–2002. Am J Phys Med Rehabil. 2006;85(8):650–8.PubMedPubMedCentralCrossRef Kuo HK, Leveille SG, Yen CJ, Chai HM, Chang CH, Yeh YC, et al. Exploring how peak leg power and usual gait speed are linked to late-life disability: data from the National Health and Nutrition Examination Survey (NHANES), 1999–2002. Am J Phys Med Rehabil. 2006;85(8):650–8.PubMedPubMedCentralCrossRef
70.
go back to reference Chou MY, Nishita Y, Nakagawa T, Tange C, Tomida M, Shimokata H, et al. Role of gait speed and grip strength in predicting 10-year cognitive decline among community-dwelling older people. BMC Geriatr. 2019;19(1):186.PubMedPubMedCentralCrossRef Chou MY, Nishita Y, Nakagawa T, Tange C, Tomida M, Shimokata H, et al. Role of gait speed and grip strength in predicting 10-year cognitive decline among community-dwelling older people. BMC Geriatr. 2019;19(1):186.PubMedPubMedCentralCrossRef
71.
go back to reference Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, Brach J, Chandler J, Cawthon P, Connor EB, Nevitt M, Visser M, Kritchevsky S, Badinelli S, Harris T, Newman AB, Cauley J, Ferrucci L, Guralnik J. Gait speed and survival in older adults. JAMA. 2011 Jan 5;305(1):50–8.PubMedPubMedCentralCrossRef Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, Brach J, Chandler J, Cawthon P, Connor EB, Nevitt M, Visser M, Kritchevsky S, Badinelli S, Harris T, Newman AB, Cauley J, Ferrucci L, Guralnik J. Gait speed and survival in older adults. JAMA. 2011 Jan 5;305(1):50–8.PubMedPubMedCentralCrossRef
72.
go back to reference Mielke MM, Roberts RO, Savica R, Cha R, Drubach DI, Christianson T, et al. Assessing the temporal relationship between cognition and gait: slow gait predicts cognitive decline in the Mayo Clinic Study of Aging. J Gerontol A Biol Sci Med Sci. 2013;68(8):929–37.PubMedCrossRef Mielke MM, Roberts RO, Savica R, Cha R, Drubach DI, Christianson T, et al. Assessing the temporal relationship between cognition and gait: slow gait predicts cognitive decline in the Mayo Clinic Study of Aging. J Gerontol A Biol Sci Med Sci. 2013;68(8):929–37.PubMedCrossRef
73.
go back to reference Montero-Odasso M, Speechley M, Muir-Hunter SW, Pieruccini-Faria F, Sarquis-Adamson Y, Hachinski V, et al. Dual decline in gait speed and cognition is associated with future dementia: evidence for a phenotype. Age Ageing. 2020;49(6):995–1002.PubMedPubMedCentralCrossRef Montero-Odasso M, Speechley M, Muir-Hunter SW, Pieruccini-Faria F, Sarquis-Adamson Y, Hachinski V, et al. Dual decline in gait speed and cognition is associated with future dementia: evidence for a phenotype. Age Ageing. 2020;49(6):995–1002.PubMedPubMedCentralCrossRef
74.
go back to reference Vermeulen J, Neyens JC, Van Rossum E, Spreeuwenberg MD, De Witte LP. Predicting ADL disability in community-dwelling elderly people using physical frailty indicators: a systematic review. BMC Geriatr. 2011;11:33.PubMedPubMedCentralCrossRef Vermeulen J, Neyens JC, Van Rossum E, Spreeuwenberg MD, De Witte LP. Predicting ADL disability in community-dwelling elderly people using physical frailty indicators: a systematic review. BMC Geriatr. 2011;11:33.PubMedPubMedCentralCrossRef
75.
go back to reference Verghese J, Wang C, Holtzer R. Relationship of clinic-based gait speed measurement to limitations in community-based activities in older adults. Arch Phys Med Rehabil. 2011;92(5):844–6.PubMedPubMedCentralCrossRef Verghese J, Wang C, Holtzer R. Relationship of clinic-based gait speed measurement to limitations in community-based activities in older adults. Arch Phys Med Rehabil. 2011;92(5):844–6.PubMedPubMedCentralCrossRef
76.
77.
go back to reference Schmid A, Duncan PW, Studenski S, Lai SM, Richards L, Perera S, et al. Improvements in speed-based gait classifications are meaningful. Stroke. 2007;38(7):2096–100.PubMedCrossRef Schmid A, Duncan PW, Studenski S, Lai SM, Richards L, Perera S, et al. Improvements in speed-based gait classifications are meaningful. Stroke. 2007;38(7):2096–100.PubMedCrossRef
78.
go back to reference Dyer AH, Lawlor B, Kennelly SP. Gait speed, cognition and falls in people living with mild-to-moderate Alzheimer disease: data from NILVAD. BMC Geriatr. 2020;20(1):117.PubMedPubMedCentralCrossRef Dyer AH, Lawlor B, Kennelly SP. Gait speed, cognition and falls in people living with mild-to-moderate Alzheimer disease: data from NILVAD. BMC Geriatr. 2020;20(1):117.PubMedPubMedCentralCrossRef
79.
go back to reference Kyrdalen IL, Thingstad P, Sandvik L, Ormstad H. Associations between gait speed and well-known fall risk factors among community-dwelling older adults. Physiother Res Int. 2019;24(1):e1743. Kyrdalen IL, Thingstad P, Sandvik L, Ormstad H. Associations between gait speed and well-known fall risk factors among community-dwelling older adults. Physiother Res Int. 2019;24(1):e1743.
80.
go back to reference Van Schooten KS, Pijnappels M, Rispens SM, Elders PJ, Lips P, Daffertshofer A, et al. Daily-life gait quality as predictor of falls in older people: a 1-year prospective cohort study. PLoS One. 2016;11(7):e0158623. Van Schooten KS, Pijnappels M, Rispens SM, Elders PJ, Lips P, Daffertshofer A, et al. Daily-life gait quality as predictor of falls in older people: a 1-year prospective cohort study. PLoS One. 2016;11(7):e0158623.
81.
go back to reference Cesari M, Kritchevsky SB, Penninx BW, Nicklas BJ, Simonsick EM, Newman AB, et al. Prognostic value of usual gait speed in well-functioning older people–results from the Health, Aging and Body Composition Study. J Am Geriatr Soc. 2005;53(10):1675–80.PubMedCrossRef Cesari M, Kritchevsky SB, Penninx BW, Nicklas BJ, Simonsick EM, Newman AB, et al. Prognostic value of usual gait speed in well-functioning older people–results from the Health, Aging and Body Composition Study. J Am Geriatr Soc. 2005;53(10):1675–80.PubMedCrossRef
82.
go back to reference Fritz S, Lusardi M. White paper: “walking speed: the sixth vital sign.” J Geriatr Phys Ther. 2009;32(2):46–9.PubMedCrossRef Fritz S, Lusardi M. White paper: “walking speed: the sixth vital sign.” J Geriatr Phys Ther. 2009;32(2):46–9.PubMedCrossRef
83.
go back to reference Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV, et al. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci. 2000;55(4):M221–31.PubMedCrossRef Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV, et al. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci. 2000;55(4):M221–31.PubMedCrossRef
84.
go back to reference Rugbeer N, Ramklass S, McKune A, Van Heerden J. The effect of group exercise frequency on health related quality of life in institutionalized elderly. Pan Afr Med J. 2017;26:35.PubMedPubMedCentralCrossRef Rugbeer N, Ramklass S, McKune A, Van Heerden J. The effect of group exercise frequency on health related quality of life in institutionalized elderly. Pan Afr Med J. 2017;26:35.PubMedPubMedCentralCrossRef
85.
go back to reference Kwon J, Yoshida Y, Yoshida H, Kim H, Suzuki T, Lee Y. Effects of a combined physical training and nutrition intervention on physical performance and health-related quality of life in prefrail older women living in the community: a randomized controlled trial. J Am Med Dir Assoc. 2015;16(3):263.e1-8.CrossRef Kwon J, Yoshida Y, Yoshida H, Kim H, Suzuki T, Lee Y. Effects of a combined physical training and nutrition intervention on physical performance and health-related quality of life in prefrail older women living in the community: a randomized controlled trial. J Am Med Dir Assoc. 2015;16(3):263.e1-8.CrossRef
87.
go back to reference Stewart S, Darwood A, Masouros A, Higgins C, Ramasamy A. Mechanotransduction in osteogenesis. Bone Joint Res. 2019;9(1):1–14.CrossRef Stewart S, Darwood A, Masouros A, Higgins C, Ramasamy A. Mechanotransduction in osteogenesis. Bone Joint Res. 2019;9(1):1–14.CrossRef
Metagegevens
Titel
Mobiliteit
Auteurs
Prof. dr. D. C. G. Cambier
Dr. T. Roman de Mettelinge
Copyright
2022
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/978-90-368-2783-6_7