Skip to main content
Top

2019 | OriginalPaper | Hoofdstuk

4. Mitochondriale koolstofverbranding

Auteur : Prof. dr. F.C. Schuit

Gepubliceerd in: Leerboek metabolisme en voeding

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

Hoofdstuk 4 behandelt de mitochondriale koolstofverbranding van voor de mens belangrijke brandstoffen. Mitochondria zijn katabool bijzonder actieve celorganellen die opgebouwd zijn uit twee membranen, een intermembraanruimte en de centraal gelegen matrix. We beginnen met de verbranding van pyruvaat die verloopt via de oxidatieve decarboxylering tot acetyl-CoA en de verbranding van deze laatste tot CO2 in de citroenzuurcyclus (Krebs-cyclus – beide vinden plaats in de matrix). De citroenzuurcyclus werkt als een metabole cirkel met negen enzymatische reacties; hierbij ontstaan naast CO2 energierijke elektronen (NADH en FADH2) en GTP. Andere bronnen van acetyl-CoA ontstaan uit vetzuren (dit na opname door de cel, vetzuuractivatie, acylcarnitine-import en mitochondriale bèta-oxidatie), ketonlichamen (brandstof die de lever maakt uit vetzuren tijdens de gevaste toestand) en aminozuren. De citroenzuurcyclus kan ook anabool werken als vertrekpunt voor de synthese van vetzuren, heem en aminozuren. Via anaplerose (bijvoorbeeld pyruvaatcarboxylase) worden verbruikte citroenzuurcyclusmetabolieten weer aangevuld.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Baes, M. & Van Veldhoven, P.P. (2006). Generalised & conditional inactivation of Pex genes in mice. Biochimica et Biophysica Acta-Molecular Cell Research 1763, 1785–1793. Baes, M. & Van Veldhoven, P.P. (2006). Generalised & conditional inactivation of Pex genes in mice. Biochimica et Biophysica Acta-Molecular Cell Research 1763, 1785–1793.
go back to reference Baes, M., Gressens, P., Baumgart, E., Carmeliet, P., Casteels, M., Fransen, M., et al. (1997). A mouse model for Zellweger syndrome. Nature Genetics 17, 49–57.CrossRef Baes, M., Gressens, P., Baumgart, E., Carmeliet, P., Casteels, M., Fransen, M., et al. (1997). A mouse model for Zellweger syndrome. Nature Genetics 17, 49–57.CrossRef
go back to reference Beams-Mengerink, A.M., Majoie, C.B.L.M., Duran, M., Wanders, R.J.A., Van Hove, J., Scheurer, C.D., et al. (2006). MRI of the brain & cervical spinal cord in rhizomelic chondrodysplasia punctata. Neurology 66, 798–803. Beams-Mengerink, A.M., Majoie, C.B.L.M., Duran, M., Wanders, R.J.A., Van Hove, J., Scheurer, C.D., et al. (2006). MRI of the brain & cervical spinal cord in rhizomelic chondrodysplasia punctata. Neurology 66, 798–803.
go back to reference Bender, T. & Martinou, J.C. (2016). The mitochondrial pyruvate carrier in health and disease: To carry or not to carry? Biochim Biophys Acta. 1863, 2436–2442. Bender, T. & Martinou, J.C. (2016). The mitochondrial pyruvate carrier in health and disease: To carry or not to carry? Biochim Biophys Acta. 1863, 2436–2442.
go back to reference Brito, O.M. de & Scorrano, L. (2008). Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610. Brito, O.M. de & Scorrano, L. (2008). Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610.
go back to reference Brown, F.R., Mcadams, A.J., Cummins, J.W., Konkol, R., Singh, I., Moser, A.B., et al. (1982). Cerebro-hepato-renal (Zellweger) syndrome & neonatal adrenoleukodystrophy – Similarities in phenotype & accumulation of very long-chain fatty-acids. Johns Hopkins Medical Journal 151, 344–361. Brown, F.R., Mcadams, A.J., Cummins, J.W., Konkol, R., Singh, I., Moser, A.B., et al. (1982). Cerebro-hepato-renal (Zellweger) syndrome & neonatal adrenoleukodystrophy – Similarities in phenotype & accumulation of very long-chain fatty-acids. Johns Hopkins Medical Journal 151, 344–361.
go back to reference Burrage, L.C., Nagamani, S.C., Campeau, P.M. & Lee, B.H. (2014). Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders. Hum Mol Genet. Apr 1. [Epub ahead of print] PubMed PMID: 24651065. Burrage, L.C., Nagamani, S.C., Campeau, P.M. & Lee, B.H. (2014). Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders. Hum Mol Genet. Apr 1. [Epub ahead of print] PubMed PMID: 24651065.
go back to reference Busch, K.B., Kowald, A., Spelbrink, J.N. (2014). Quality matters: how does mitochondrial network dynamics and quality control impact on mtDNA integrity? Philos Trans R Soc Lond B Biol Sci. 369(1646).CrossRef Busch, K.B., Kowald, A., Spelbrink, J.N. (2014). Quality matters: how does mitochondrial network dynamics and quality control impact on mtDNA integrity? Philos Trans R Soc Lond B Biol Sci. 369(1646).CrossRef
go back to reference Cahill, G.F., Jr. (2006). Fuel metabolism in starvation. Annu. Rev. Nutr. 26, 1–22.CrossRef Cahill, G.F., Jr. (2006). Fuel metabolism in starvation. Annu. Rev. Nutr. 26, 1–22.CrossRef
go back to reference Chuang, D.T., Chuang, J.L. & Wynn, R.M. (2006). Lessons from genetic disorders of branched-chain amino acid metabolism. J Nutr. 136, 243S–249S. Chuang, D.T., Chuang, J.L. & Wynn, R.M. (2006). Lessons from genetic disorders of branched-chain amino acid metabolism. J Nutr. 136, 243S–249S.
go back to reference De Meirleir, L. (2002). Defects of pyruvate metabolism & the Krebs cycle. J Child Neurol. 17 Suppl 3, 3S26–3S33. De Meirleir, L. (2002). Defects of pyruvate metabolism & the Krebs cycle. J Child Neurol. 17 Suppl 3, 3S26–3S33.
go back to reference Duttaroy, A.K. (2009). Transport of fatty acids across the human placenta: a review. Prog. Lipid Res. 48, 52–61.CrossRef Duttaroy, A.K. (2009). Transport of fatty acids across the human placenta: a review. Prog. Lipid Res. 48, 52–61.CrossRef
go back to reference Gray, M.W. (2017). Lynn Margulis and the endosymbiont hypothesis: 50 years later. Mol Biol Cell. 28,1285–1287.CrossRef Gray, M.W. (2017). Lynn Margulis and the endosymbiont hypothesis: 50 years later. Mol Biol Cell. 28,1285–1287.CrossRef
go back to reference Hengeveld, A.F. & de Kok, A. (2002). Structural basis of the dysfunctioning of human 2-oxo acid dehydrogenase complexes. Curr. Med. Chem. 9, 499–520. Hengeveld, A.F. & de Kok, A. (2002). Structural basis of the dysfunctioning of human 2-oxo acid dehydrogenase complexes. Curr. Med. Chem. 9, 499–520.
go back to reference Larsson, N.G. & Clayton, D.A. (1995). Molecular genetic aspects of human mitochondrial disorders. Annu. Rev. Genet. 29, 151–178. Larsson, N.G. & Clayton, D.A. (1995). Molecular genetic aspects of human mitochondrial disorders. Annu. Rev. Genet. 29, 151–178.
go back to reference Mattevi, A., Obmolova, G., Schulze, E., Kalk, K.H., Westphal, A.H., de Kok, A., et al. (1992). Atomic structure of the cubic core of the pyruvate dehydrogenase multienzyme complex. Science 255, 1544–1550.CrossRef Mattevi, A., Obmolova, G., Schulze, E., Kalk, K.H., Westphal, A.H., de Kok, A., et al. (1992). Atomic structure of the cubic core of the pyruvate dehydrogenase multienzyme complex. Science 255, 1544–1550.CrossRef
go back to reference Mootha, V.K., Bunkenborg, J., Olsen, J.V., Hjerrild, M., Wisniewski, J.R., Stahl, E., et al. (2003). Integrated analysis of protein composition, tissue diversity, & gene regulation in mouse mitochondria. Cell 115, 629–640. Mootha, V.K., Bunkenborg, J., Olsen, J.V., Hjerrild, M., Wisniewski, J.R., Stahl, E., et al. (2003). Integrated analysis of protein composition, tissue diversity, & gene regulation in mouse mitochondria. Cell 115, 629–640.
go back to reference Patel, M.S. & Harris, R.A. (1995). Mammalian alpha-keto acid dehydrogenase complexes: gene regulation & genetic defects. FASEB J 9, 1164–1172. Patel, M.S. & Harris, R.A. (1995). Mammalian alpha-keto acid dehydrogenase complexes: gene regulation & genetic defects. FASEB J 9, 1164–1172.
go back to reference Robinson, B.H. (2006). Lactic acidemia & mitochondrial disease. Mol. Genet. Metab. 89, 3–13. Robinson, B.H. (2006). Lactic acidemia & mitochondrial disease. Mol. Genet. Metab. 89, 3–13.
go back to reference Santel, A. & Fuller, M.T. (2001). Control of mitochondrial morphology by a human mitofusin. J Cell Sci. 114, 867–874. Santel, A. & Fuller, M.T. (2001). Control of mitochondrial morphology by a human mitofusin. J Cell Sci. 114, 867–874.
go back to reference Storch, J. & Corsico, B. (2008). The emerging functions & mechanisms of mammalian fatty acid-binding proteins. Ann. Rev. Nutr. 28, 73–95. Storch, J. & Corsico, B. (2008). The emerging functions & mechanisms of mammalian fatty acid-binding proteins. Ann. Rev. Nutr. 28, 73–95.
go back to reference Sugden, M.C. & Holness, M.J. (2006). Mechanisms underlying regulation of the expression & activities of the mammalian pyruvate dehydrogenase kinases. Arch. Physiol Biochem 112, 139–149. Sugden, M.C. & Holness, M.J. (2006). Mechanisms underlying regulation of the expression & activities of the mammalian pyruvate dehydrogenase kinases. Arch. Physiol Biochem 112, 139–149.
go back to reference Wanders, R.J.A. & Waterham, H.R. (2006). Biochemistry of mammalian peroxisomes revisited. Ann. Rev. Biochem. 75, 295–332. Wanders, R.J.A. & Waterham, H.R. (2006). Biochemistry of mammalian peroxisomes revisited. Ann. Rev. Biochem. 75, 295–332.
Metagegevens
Titel
Mitochondriale koolstofverbranding
Auteur
Prof. dr. F.C. Schuit
Copyright
2019
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/978-90-368-2358-6_4