Skip to main content
Top
Gepubliceerd in: Psychological Research 1/2009

01-01-2009 | Original Article

Microsaccadic responses in a bimodal oddball task

Auteurs: Matteo Valsecchi, Massimo Turatto

Gepubliceerd in: Psychological Research | Uitgave 1/2009

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

In a visual oddball task the presentation of rare targets induces a prolonged microsaccadic inhibition as compared to standards. Here, we replicated this effect also in the auditory modality. In addition, although auditory standards induced a more limited modulation of microsaccadic frequency as compared to visual standards, auditory oddballs induced a prolonged microsaccadic inhibition. With bimodal standard stimuli the microsaccadic response was determined by the attended modality, resembling that produced by attended unimodal stimuli. The present findings support the idea that the microsaccadic response to oddball and standard stimuli is partly driven by cognitive mechanisms common to both the visual and the auditory modality, and that microsaccades can be used as an implicit behavioral measure of ongoing cognitive processes.
Literatuur
go back to reference Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29, 1165–1188.CrossRef Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29, 1165–1188.CrossRef
go back to reference Bennington, J.Y., & Polich, J. (1999). Comparison of P300 from passive and active tasks for auditory and visual stimuli. International Journal of Psychophysiology, 34, 171–177.PubMedCrossRef Bennington, J.Y., & Polich, J. (1999). Comparison of P300 from passive and active tasks for auditory and visual stimuli. International Journal of Psychophysiology, 34, 171–177.PubMedCrossRef
go back to reference Besle, J., Fort, A., & Giard, M. H. (2005). Is the auditory sensory memory sensitive to visual information? Experimental Brain Research, 166, 337–344.CrossRef Besle, J., Fort, A., & Giard, M. H. (2005). Is the auditory sensory memory sensitive to visual information? Experimental Brain Research, 166, 337–344.CrossRef
go back to reference Betta, E., & Turatto, M. (2006). Are you ready? I can tell by looking at your microsaccades. Neuroreport, 17, 1001–1004.PubMedCrossRef Betta, E., & Turatto, M. (2006). Are you ready? I can tell by looking at your microsaccades. Neuroreport, 17, 1001–1004.PubMedCrossRef
go back to reference Betta, E., Galfano, G., & Turatto, M. (2007). Microsaccadic response during inhibition of return in a target-target paradigm. Vision Research, 47, 428–436.PubMedCrossRef Betta, E., Galfano, G., & Turatto, M. (2007). Microsaccadic response during inhibition of return in a target-target paradigm. Vision Research, 47, 428–436.PubMedCrossRef
go back to reference Bridgeman, B. (1998). Durations of stimuli displayed on video display terminals: (n − 1)/f + Persistence. Psychological Science, 9, 232–233.CrossRef Bridgeman, B. (1998). Durations of stimuli displayed on video display terminals: (n − 1)/f + Persistence. Psychological Science, 9, 232–233.CrossRef
go back to reference Brown, C. R., Clarke, A. R., & Barry, R. J. (2006). Inter-modal attention: ERPs to auditory targets in an inter-modal oddball task. International Journal of Psychophysiology, 62, 77–86.PubMedCrossRef Brown, C. R., Clarke, A. R., & Barry, R. J. (2006). Inter-modal attention: ERPs to auditory targets in an inter-modal oddball task. International Journal of Psychophysiology, 62, 77–86.PubMedCrossRef
go back to reference Brown, C. R., Clarke, A. R., & Barry, R. J. (2007). Auditory processing in an inter-modal oddball task: effects of a combined auditory/visual standard on auditory target ERPs. International Journal of Psychophysiology, 65, 122–131.PubMedCrossRef Brown, C. R., Clarke, A. R., & Barry, R. J. (2007). Auditory processing in an inter-modal oddball task: effects of a combined auditory/visual standard on auditory target ERPs. International Journal of Psychophysiology, 65, 122–131.PubMedCrossRef
go back to reference Busse, L., Roberts, K. C., Crist, R. E., Weissman, D. H., & Woldorff, M. G. (2005). The spread of attention across modalities and space in a multisensory object. Proceedings of the National Academy of Sciences of the USA, 102, 18751–18756.PubMedCrossRef Busse, L., Roberts, K. C., Crist, R. E., Weissman, D. H., & Woldorff, M. G. (2005). The spread of attention across modalities and space in a multisensory object. Proceedings of the National Academy of Sciences of the USA, 102, 18751–18756.PubMedCrossRef
go back to reference Cornsweet, T. N. (1956). Determination of the stimuli for involuntary drifts and saccadic eye movements. Journal of the Optical Society of America, 46, 987–993.PubMedCrossRef Cornsweet, T. N. (1956). Determination of the stimuli for involuntary drifts and saccadic eye movements. Journal of the Optical Society of America, 46, 987–993.PubMedCrossRef
go back to reference Ditchburn, R. W., Fender, D. H., & Mayne, S. (1959). Vision with controlled movements of the retinal image. Journal of Physiology (London), 145, 98–107. Ditchburn, R. W., Fender, D. H., & Mayne, S. (1959). Vision with controlled movements of the retinal image. Journal of Physiology (London), 145, 98–107.
go back to reference Donchin, E., & Coles, M. G. H. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11, 357–427. Donchin, E., & Coles, M. G. H. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11, 357–427.
go back to reference Engbert, R. (2006). Microsaccades: a microcosm for research on oculomotor control, attention, and visual perception. Progress in Brain Research, 154, 179–194.CrossRef Engbert, R. (2006). Microsaccades: a microcosm for research on oculomotor control, attention, and visual perception. Progress in Brain Research, 154, 179–194.CrossRef
go back to reference Engbert, R., & Kliegl, R. (2003). Microsaccades uncover the orientation of covert attention. Vision Research, 43, 1035–1045.PubMedCrossRef Engbert, R., & Kliegl, R. (2003). Microsaccades uncover the orientation of covert attention. Vision Research, 43, 1035–1045.PubMedCrossRef
go back to reference Engbert, R., & Kliegl, R. (2004). Microsaccades keep the eyes’ balance during fixation. Psychological Science, 15, 431–436.PubMedCrossRef Engbert, R., & Kliegl, R. (2004). Microsaccades keep the eyes’ balance during fixation. Psychological Science, 15, 431–436.PubMedCrossRef
go back to reference Engbert, R., & Mergenthaler, K. (2006). Microsaccades are triggered by low retinal slip. Proceedings of the National Academy of Sciences of the USA, 103, 7192–8197.PubMedCrossRef Engbert, R., & Mergenthaler, K. (2006). Microsaccades are triggered by low retinal slip. Proceedings of the National Academy of Sciences of the USA, 103, 7192–8197.PubMedCrossRef
go back to reference Galfano, G., Betta, E., & Turatto, M. (2004). Inhibition of return in microsaccades. Experimental Brain Research, 159, 400–404.CrossRef Galfano, G., Betta, E., & Turatto, M. (2004). Inhibition of return in microsaccades. Experimental Brain Research, 159, 400–404.CrossRef
go back to reference Gescheider, G. A. (1988). Psychophysical scaling. Annual Reviews of Psychology, 39, 169–200.CrossRef Gescheider, G. A. (1988). Psychophysical scaling. Annual Reviews of Psychology, 39, 169–200.CrossRef
go back to reference Hafed, Z. M., & Clark, J. J. (2002). Microsaccades as an overt measure of covert attention shifts. Vision Research, 42, 2533–2545.PubMedCrossRef Hafed, Z. M., & Clark, J. J. (2002). Microsaccades as an overt measure of covert attention shifts. Vision Research, 42, 2533–2545.PubMedCrossRef
go back to reference Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W. (1973). Electrical signs of selective attention in the human brain. Science, 182, 177–180.PubMedCrossRef Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W. (1973). Electrical signs of selective attention in the human brain. Science, 182, 177–180.PubMedCrossRef
go back to reference Horowitz, T. S., Fine, E. M., Fencsik, D. E., Yurgenson, S., & Wolfe, J. M. (2007). Fixational eye movements are not an index of covert attention. Psychological Science, 18, 356–363.PubMedCrossRef Horowitz, T. S., Fine, E. M., Fencsik, D. E., Yurgenson, S., & Wolfe, J. M. (2007). Fixational eye movements are not an index of covert attention. Psychological Science, 18, 356–363.PubMedCrossRef
go back to reference Jiang, W., Wallace, M. T., Jiang, H., Vaughan, J. W., & Stein, B. E. (2001). Two cortical areas mediate multisensory integration in superior collicuclus neurons. Journal of Neurophysiology, 85, 506–522.PubMed Jiang, W., Wallace, M. T., Jiang, H., Vaughan, J. W., & Stein, B. E. (2001). Two cortical areas mediate multisensory integration in superior collicuclus neurons. Journal of Neurophysiology, 85, 506–522.PubMed
go back to reference Katayama, J., & Polich, J. (1999). Auditory and visual P300 topography from a 3 stimulus paradigm. Clinical Neurophysiology, 110, 463–468.PubMedCrossRef Katayama, J., & Polich, J. (1999). Auditory and visual P300 topography from a 3 stimulus paradigm. Clinical Neurophysiology, 110, 463–468.PubMedCrossRef
go back to reference Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38, 557–577.PubMedCrossRef Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38, 557–577.PubMedCrossRef
go back to reference Kowler, E., & Steinman, R. M. (1980). Small saccades serve no useful purpose: reply to a letter by R.W. Ditchburn. Vision Research, 20, 273–276.PubMedCrossRef Kowler, E., & Steinman, R. M. (1980). Small saccades serve no useful purpose: reply to a letter by R.W. Ditchburn. Vision Research, 20, 273–276.PubMedCrossRef
go back to reference Laubrock, J., Engbert, R., & Kliegl, R. (2005). Microsaccade dynamics during covert attention. Vision Research, 45, 721–730.PubMedCrossRef Laubrock, J., Engbert, R., & Kliegl, R. (2005). Microsaccade dynamics during covert attention. Vision Research, 45, 721–730.PubMedCrossRef
go back to reference Laubrock, J., Engbert, R., Rolfs, M., & Kliegl, R. (2007). Microsaccades are an index of covert attention: commentary on Horowitz, Fine, Fencsik, Yurgenson, and Wolfe (2007). Psychological Science, 18, 364–366.PubMedCrossRef Laubrock, J., Engbert, R., Rolfs, M., & Kliegl, R. (2007). Microsaccades are an index of covert attention: commentary on Horowitz, Fine, Fencsik, Yurgenson, and Wolfe (2007). Psychological Science, 18, 364–366.PubMedCrossRef
go back to reference Marks, L. E., Szczesiul, R., & Ohlott, P. (1986). On the cross-modal perception of intensity. Journal of Experimental Psychology: Human Perception and Performance, 12, 517–534.PubMedCrossRef Marks, L. E., Szczesiul, R., & Ohlott, P. (1986). On the cross-modal perception of intensity. Journal of Experimental Psychology: Human Perception and Performance, 12, 517–534.PubMedCrossRef
go back to reference Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2000). Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys. Nature Neuroscience, 3, 251–258.PubMedCrossRef Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2000). Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys. Nature Neuroscience, 3, 251–258.PubMedCrossRef
go back to reference Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2002). The function of bursts of spikes during visual fixation in the awake primate lateral geniculate nucleus and primary visual cortex. Proceedings of the National Academy of Sciences of the USA, 99, 13920–13925.PubMedCrossRef Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2002). The function of bursts of spikes during visual fixation in the awake primate lateral geniculate nucleus and primary visual cortex. Proceedings of the National Academy of Sciences of the USA, 99, 13920–13925.PubMedCrossRef
go back to reference Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2004). The role of fixational eye movements in visual perception. Nature Reviews Neuroscience, 5, 229–240.PubMedCrossRef Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2004). The role of fixational eye movements in visual perception. Nature Reviews Neuroscience, 5, 229–240.PubMedCrossRef
go back to reference Martinez-Conde, S., Macknik, S. L., Troncoso, X. G., & Dyar, T. A. (2006). Microsaccades counteract visual fading during fixation. Neuron, 49, 297–305.PubMedCrossRef Martinez-Conde, S., Macknik, S. L., Troncoso, X. G., & Dyar, T. A. (2006). Microsaccades counteract visual fading during fixation. Neuron, 49, 297–305.PubMedCrossRef
go back to reference Mergenthaler, K., & Engbert, R. (2007). Modeling the control of fixational eye movements with neurophysiological delays. Physical Review Letters, 98, 138104.PubMedCrossRef Mergenthaler, K., & Engbert, R. (2007). Modeling the control of fixational eye movements with neurophysiological delays. Physical Review Letters, 98, 138104.PubMedCrossRef
go back to reference Näätänen, R., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42, 313–329.PubMedCrossRef Näätänen, R., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42, 313–329.PubMedCrossRef
go back to reference Perrault, T. J., Vaughan, J. W., Stein, B. E., & Wallace, M. T. (2005). Superior colliculus neurons use distinct operational modes in the integration of multisensory stimuli. Journal of Neurophysiology, 93, 2575–2586.PubMedCrossRef Perrault, T. J., Vaughan, J. W., Stein, B. E., & Wallace, M. T. (2005). Superior colliculus neurons use distinct operational modes in the integration of multisensory stimuli. Journal of Neurophysiology, 93, 2575–2586.PubMedCrossRef
go back to reference Robinson, D. A. (1972). Eye movements evoked by collicular stimulation in the alert monkey. Vision Research, 12, 1795–1808.PubMedCrossRef Robinson, D. A. (1972). Eye movements evoked by collicular stimulation in the alert monkey. Vision Research, 12, 1795–1808.PubMedCrossRef
go back to reference Rolfs, M., Engbert, R., & Kliegl, R. (2004). Microsaccade orientation supports attentional enhancement opposite to a peripheral cue: commentary on Tse, Sheinberg and Logothetis. Psychological Science, 15, 705–707.PubMedCrossRef Rolfs, M., Engbert, R., & Kliegl, R. (2004). Microsaccade orientation supports attentional enhancement opposite to a peripheral cue: commentary on Tse, Sheinberg and Logothetis. Psychological Science, 15, 705–707.PubMedCrossRef
go back to reference Rolfs, M., Engbert, R., & Kliegl, R. (2005). Crossmodal coupling of oculomotor control and spatial attention in vision and audition. Experimental Brain Research, 166, 427–439.CrossRef Rolfs, M., Engbert, R., & Kliegl, R. (2005). Crossmodal coupling of oculomotor control and spatial attention in vision and audition. Experimental Brain Research, 166, 427–439.CrossRef
go back to reference Rolfs, M., Laubrock, J., & Kliegl, R. (2006). Shortening and prolongation of saccade latencies following microsaccades. Experimental Brain Research, 169, 369–376.CrossRef Rolfs, M., Laubrock, J., & Kliegl, R. (2006). Shortening and prolongation of saccade latencies following microsaccades. Experimental Brain Research, 169, 369–376.CrossRef
go back to reference Sparks, D. L. (1986). Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. Physiological Reviews, 66, 118–171.PubMed Sparks, D. L. (1986). Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. Physiological Reviews, 66, 118–171.PubMed
go back to reference Stein, B. E., Wallace, M. W., Stanford, T. R., & Jiang, W. (2002). Cortex governs multisensory integration in the midbrain. The Neuroscientist, 8, 306–314.PubMedCrossRef Stein, B. E., Wallace, M. W., Stanford, T. R., & Jiang, W. (2002). Cortex governs multisensory integration in the midbrain. The Neuroscientist, 8, 306–314.PubMedCrossRef
go back to reference Steinman, R. M., Haddad, G. M., Skavenski, A. A., & Wyman, D. (1973). Miniature eye movement. Science, 181, 810–819.PubMedCrossRef Steinman, R. M., Haddad, G. M., Skavenski, A. A., & Wyman, D. (1973). Miniature eye movement. Science, 181, 810–819.PubMedCrossRef
go back to reference Turatto, M., Valsecchi, M., Tamè, L., & Betta, E. (2007). Microsaccades distinguish between global and local visual processing. Neuroreport, 18, 1015–1018.PubMedCrossRef Turatto, M., Valsecchi, M., Tamè, L., & Betta, E. (2007). Microsaccades distinguish between global and local visual processing. Neuroreport, 18, 1015–1018.PubMedCrossRef
go back to reference Ulrich, R., & Miller, J. (2001). Using the jackknife-based scoring method for measuring LRP onset effects in factorial designs. Psychophysiology, 38, 816–827.PubMedCrossRef Ulrich, R., & Miller, J. (2001). Using the jackknife-based scoring method for measuring LRP onset effects in factorial designs. Psychophysiology, 38, 816–827.PubMedCrossRef
go back to reference Valsecchi, M., & Turatto, M. (2007). Microsaccadic response to visual events that are invisible to the Superior Colliculus. Behavioral Neuroscience, 121, 786–793.PubMedCrossRef Valsecchi, M., & Turatto, M. (2007). Microsaccadic response to visual events that are invisible to the Superior Colliculus. Behavioral Neuroscience, 121, 786–793.PubMedCrossRef
go back to reference Valsecchi, M., Betta, E., & Turatto, M. (2007). Visual oddballs induce prolonged microsaccadic inhibition. Experimental Brain Research, 177, 196–208.CrossRef Valsecchi, M., Betta, E., & Turatto, M. (2007). Visual oddballs induce prolonged microsaccadic inhibition. Experimental Brain Research, 177, 196–208.CrossRef
go back to reference Verleger, R. (1988). Event-related potentials and cognition: a critique of the context updating hypothesis and an alternative interpretation of P3. Behavioral and Brain Sciences, 11, 343–356.CrossRef Verleger, R. (1988). Event-related potentials and cognition: a critique of the context updating hypothesis and an alternative interpretation of P3. Behavioral and Brain Sciences, 11, 343–356.CrossRef
go back to reference Wallace, M. T., Meredith, M. A., & Stein, B. E. (1993). Converging evidence from visual, auditory, and somatosensory cortices onto output neurons of the superior colliculus. Journal of Neurophysiology, 69, 1797–1809.PubMed Wallace, M. T., Meredith, M. A., & Stein, B. E. (1993). Converging evidence from visual, auditory, and somatosensory cortices onto output neurons of the superior colliculus. Journal of Neurophysiology, 69, 1797–1809.PubMed
go back to reference Wyszecki, G., & Stiles, W. S. (1982). Color science: concepts and methods, quantitative data and formulae. (2nd ed.) New York: John Wiley & Sons, Inc. Wyszecki, G., & Stiles, W. S. (1982). Color science: concepts and methods, quantitative data and formulae. (2nd ed.) New York: John Wiley & Sons, Inc.
go back to reference Zuber, B. L., Stark, L., & Cook, M. (1965). Microsaccades and the velocity-amplitude relationship for saccadic eye movements. Science, 150, 1459–1460.PubMedCrossRef Zuber, B. L., Stark, L., & Cook, M. (1965). Microsaccades and the velocity-amplitude relationship for saccadic eye movements. Science, 150, 1459–1460.PubMedCrossRef
Metagegevens
Titel
Microsaccadic responses in a bimodal oddball task
Auteurs
Matteo Valsecchi
Massimo Turatto
Publicatiedatum
01-01-2009
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 1/2009
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-008-0142-x

Andere artikelen Uitgave 1/2009

Psychological Research 1/2009 Naar de uitgave