Skip to main content
main-content
Top

Tip

Swipe om te navigeren naar een ander artikel

01-03-2015 | Response Shift methods | Uitgave 3/2015

Quality of Life Research 3/2015

Method variation in the impact of missing data on response shift detection

Tijdschrift:
Quality of Life Research > Uitgave 3/2015
Auteurs:
Carolyn E. Schwartz, Tolulope T. Sajobi, Mathilde G. E. Verdam, Veronique Sebille, Lisa M. Lix, Alice Guilleux, Mirjam A.G. Sprangers
Belangrijke opmerkingen
On behalf of the Response Shift Special Interest Group of ISOQOL.
"The best solution to the missing data problem is not to have any."
Michael S. Lewis-Beck [1]

Abstract

Purpose

Missing data due to attrition or item non-response can result in biased estimates and loss of power in longitudinal quality-of-life (QOL) research. The impact of missing data on response shift (RS) detection is relatively unknown. This overview article synthesizes the findings of three methods tested in this special section regarding the impact of missing data patterns on RS detection in incomplete longitudinal data.

Methods

The RS detection methods investigated include: (1) Relative importance analysis to detect reprioritization RS in stroke caregivers; (2) Oort’s structural equation modeling (SEM) to detect recalibration, reprioritization, and reconceptualization RS in cancer patients; and (3) Rasch-based item-response theory-based (IRT) models as compared to SEM models to detect recalibration and reprioritization RS in hospitalized chronic disease patients. Each method dealt with missing data differently, either with imputation (1), attrition-based multi-group analysis (2), or probabilistic analysis that is robust to missingness due to the specific objectivity property (3).

Results

Relative importance analyses were sensitive to the type and amount of missing data and imputation method, with multiple imputation showing the largest RS effects. The attrition-based multi-group SEM revealed differential effects of both the changes in health-related QOL and the occurrence of response shift by attrition stratum, and enabled a more complete interpretation of findings. The IRT RS algorithm found evidence of small recalibration and reprioritization effects in General Health, whereas SEM mostly evidenced small recalibration effects. These differences may be due to differences between the two methods in handling of missing data.

Conclusions

Missing data imputation techniques result in different conclusions about the presence of reprioritization RS using the relative importance method, while the attrition-based SEM approach highlighted different recalibration and reprioritization RS effects by attrition group. The IRT analyses detected more recalibration and reprioritization RS effects than SEM, presumably due to IRT’s robustness to missing data. Future research should apply simulation techniques in order to make conclusive statements about the impacts of missing data according to the type and amount of RS.

Log in om toegang te krijgen

Met onderstaand(e) abonnement(en) heeft u direct toegang:

BSL Podotherapeut Totaal

Binnen de bundel kunt u gebruik maken van boeken, tijdschriften, e-learnings, web-tv's en uitlegvideo's. BSL Podotherapeut Totaal is overal toegankelijk; via uw PC, tablet of smartphone.

Literatuur
Over dit artikel

Andere artikelen Uitgave 3/2015

Quality of Life Research 3/2015 Naar de uitgave