Skip to main content
main-content
Top

Tip

Swipe om te navigeren naar een ander artikel

Gepubliceerd in: Quality of Life Research 11/2016

Open Access 13-08-2016

Measuring health-related quality of life in patients with conservatively managed stage 5 chronic kidney disease: limitations of the Medical Outcomes Study Short Form 36: SF-36

Auteurs: Gilli Erez, Lucy Selman, Fliss E. M. Murtagh

Gepubliceerd in: Quality of Life Research | Uitgave 11/2016

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail
insite
ZOEKEN

Abstract

Purpose

Chronic kidney disease (CKD) negatively affects health-related quality of life (HRQoL), which is often measured using the Medical Outcomes Study Short Form 36 (SF-36) questionnaire. However, the adequacy of SF-36 in this population has not been reported. We aimed to determine floor and ceiling effects and responsiveness to change of SF-36 in patients with conservatively managed stage 5 CKD.

Methods

SF-36 data were collected prospectively. Floor and ceiling effects were estimated for each SF-36 scale and summary measure based on raw scores. The minimal clinically important difference (MCID) was estimated using a combination of anchor-based and distribution-based methods. Responsiveness to change was assessed by comparing MCID for each scale and summary measure to its smallest detectable change.

Results

SF-36 data were available for 73 of the 74 study participants. Using baseline data, floor and/or ceiling effects were detected for 3 of the 8 SF-36 scales. The anchor-based estimation of MCID based on differences in baseline functional status yielded the most reliable results. For the physical component summary, MCID was estimated at 5.7 points. Whilst the two SF-36 summary measures were responsive to change and free of floor and/or ceiling effects, six of the eight scales were not.

Conclusions

This small study of patients with conservatively managed stage 5 CKD found that only the summary measures of SF-36 and 2 of its 8 scales can be used to assess changes in HRQoL over time. These findings suggest that in this population, alternative HRQoL assessment tools should be considered for future studies.

Background

The health-related quality of life (HRQoL) of patients with chronic kidney disease (CKD) is poorer than that of the general population, both in the early stages of CKD [15] and in advanced (stage 5) disease [69]. Stage 5 CKD is diagnosed when kidney function, measured by the estimated glomerular filtration rate (eGFR), falls below 15 mL/min/1.73 m2 [10]. Its prevalence and incidence in the developed world are increasing [1113]. In the UK, for example, prevalence has increased from 523 per million population (pmp) in 2000 to 861 pmp in 2012, and incidence rates have increased from 95 pmp in 2001 to 108 pmp in 2012 [11, 12]. In particular, prevalence in the over 85 age group is rising steeply and nearly doubled between 2006 and 2012 [11].
Stage 5 CKD is a life-limiting disease for which renal replacement therapy (RRT) is often recommended. However, RRT imposes a significant burden on those requiring it, with implications for the physical and social lives of patients and their carers [1416]. The survival advantage of RRT, and specifically that of dialysis treatment, appears to be limited to patients without multi-morbidity [1723]. Therefore, conservative management of stage 5 CKD is increasingly offered to selected patients [24], with a focus on best supportive care, often with input from palliative care services which actively manage symptoms and provide holistic care [21, 25].
Most studies of HRQoL in patients with stage 5 CKD use cross-sectional methods, and the few longitudinal studies yield conflicting results [6, 7, 15, 26]. Moreover, most studies focus on dialysis patients; therefore, little is known about the HRQoL of conservatively managed patients and its change over time [27, 28]. The interpretation of any report of HRQoL relies, however, on the validity and reliability of the tools used.
The Medical Outcomes Study Short Form 36 (SF-36) is a widely used HRQoL questionnaire which has been extensively validated in CKD populations, and is commonly used either in its original generic form or as part of the kidney disease quality of life (KDQOL) questionnaire developed for dialysis patients [29, 30]. SF-36 has also been used to measure the HRQoL of patients with advancing disease who are approaching death [7, 26], but to our knowledge its suitability in this population has not been tested.
The appropriateness of a HRQoL measurement tool relies in part on its measurement properties, including floor and/or ceiling effects and responsiveness to change, and on its interpretability [31]. Floor and/or ceiling effects are present when >15 % of the population score lowest or highest, respectively, on a certain scale [32]. When present, a tool cannot differentiate between people who may have had significantly different experiences not captured by the research tool. Responsiveness to change refers to the ability of a scale to detect clinically important changes over time [32]. Interpretability, the degree to which qualitative meaning can be assigned to quantitative scores [33] is also vital, because the magnitude and statistical significance of a reported change do not necessarily correlate with clinical relevance. An advantage of SF-36 is that as part of its scoring process, individual scores are compared to a reference (‘normative’) population. This facilitates intuitive interpretation of scores as ‘higher’ or ‘lower’ than average in the general population and enables indirect comparison of normed results between different studies [34]. In many populations, SF-36 is regarded sensitive to change, but robust estimations of its minimal clinically important difference (MCID) and interpretability are lacking.
The aim of the current study is to estimate floor and ceiling effects and responsiveness to change of SF-36 in patients with conservatively managed stage 5 CKD, to reflect on its appropriateness as a HRQoL measurement tool in this growing patient population.

Methods

This was a secondary data analysis. We used cross-sectional baseline data available from a primary study conducted by one of the authors (FM) [35]. Primary data were collected prospectively and longitudinally from participants recruited from three renal units in London and South-East England between April 2005 and November 2006. All three units had dedicated multi-disciplinary services for conservative management, offering needs-based physical, psychological and social support. Inclusion criteria were a diagnosis of stage 5 CKD with a confirmed decision for conservative management. The only exclusion criterion was lack of capacity to give consent to participate in the study. Potential participants were referred to the researcher (FM) by the clinical teams, following which informed consent was sought. Continued consent was obtained monthly by telephone.
One hundred and forty-two people were identified as potential participants. Of those, 40 were excluded, as shown in Fig. 1 [36]. Of the 102 remaining patients, 74 consented to participate and formed the final sample for the study. Clinical characteristics were similar between participants and non-participants, as were age and sex. Ethnicity was distributed unequally with a higher level of participation among those from minority ethnic groups as compared with white patients. Further details of the primary study were previously reported [35, 37, 38].
Baseline clinical and demographic data were collected from clinical files. Data regarding HRQoL were collected at baseline and every 3 months using a postal standard SF-36 questionnaire, which assesses participants’ HRQoL over the preceding 4 weeks. Data collection continued until death, withdrawal from the study or end of study.
The primary study had ethical approval from King’s College Hospital NHS Research Ethics Committee (number 04-03-092). Specific approval for this further analysis was waived by the Ethics Committee as it did not diverge from the original research to which participants consented.

Scoring participants’ responses to SF-36

SF-36 items were coded and scored as outlined in the SF-36 scoring manual [39]. Briefly, after appropriate recoding of complete and missing data, raw scores of the 8 scales [physical functioning (PF), role physical (RP), bodily pain (BP), general health (GH), vitality (VT), social functioning (SF), role emotional (RE) and mental health (MH)] were computed and transformed to a 0–100 scale, with higher scores representing better HRQoL. Norm-based transformation was carried out for each scale, and the two summary measures [physical component summary (PCS) and mental component summary (MCS)] were computed. Norm-based scoring yields a distribution of scores in which scores lower than 50 indicate poorer HRQoL compared to the reference (‘normative’) population, which in turns enables a more intuitive interpretation of the impact of the condition being examined, compared with the reference population. For this study, data from the Welsh Health Survey 2007 were used as reference [40, 41].

Selecting a normative population

The study population was an elderly population drawn from London and South-East England. An ideal normative data set would be drawn from the same area at the same time, but include similarly aged patients without CKD or with early-stage CKD. Unfortunately, such a normative data set was not available. The Welsh Health Study (WHS), drawn from the work of Burholt and Nash [40], but originally derived from the National Centre for Social Research on behalf of the Welsh Assembly Government [41], was chosen because data were collected in the UK at a contemporary time period and included elderly participants. HRQoL is known to be affected by age, but normative data for elderly participants are scarce [34]. We aimed to overcome this limitation by using as reference only WHS data which were derived from people of similar age to our sample (mean age 80.7 ± 6.8, median 81.4 and 25th percentile of 78.1). Weighted means and standard deviations (SDs) were calculated for WHS participants aged 75 and over. Those means and SDs were then used to calculate the study normed scores [39]. WHS data were drawn from a random sample of private households in Wales. Although not explicitly reported by Burholt and Nash [40], a potential disadvantage of WHS data was that ethnicity in this sample was likely to be predominantly white [42].

Handling of missing data

Missing items and missing questionnaires were differentially coded and reported. Handling of specific SF-36 missing items followed the SF-36 scoring manual [39]. The manual suggests that missing items can be estimated by a single imputation method if they contribute to <50 % of a given scale, and the imputation method is provided. If ≥50 % of items comprising a scale are missing, then the scale cannot be calculated and is regarded as missing.

Study outcomes

The primary outcome for this study was the PCS of the SF-36, which was selected as it has been shown to be most responsive to treatments that change physical morbidity [43]. Secondary outcomes were the MCS and the 8 SF-36 scales. The PF scale, the main contributor to PCS, was chosen as the key secondary outcome, as the developers of the SF-36 tool emphasise that despite the strengths of the component scores, they may not be as valid as a scale, especially when differences are concentrated in one scale [44].

Estimation of floor and/or ceiling effects

Floor and/or ceiling effects have been defined as present when >15 % of the population score lowest or highest, respectively, on a certain scale [32]. Floor and ceiling effect estimations for each of the 8 SF-36 scales were based on raw scores, as suggested by the manual [39]. For PCS and MCS, the lowest possible score was arbitrarily assumed to be either 10 or 20, as suggested by Taft et al. [45].

Estimation of responsiveness to change

Responsiveness to change refers to the ability of a scale to detect clinically important changes over time [32]. Its estimation is based on comparing the smallest detectable change (SDC), i.e. the smallest change which exceeds the measurement error of the tool, to the MCID, i.e. the smallest difference in a scale that patients perceive to be beneficial [46]. A tool can only be deemed sensitive to change if its MCID exceeds its SDC [32].
SDC was calculated using the formula: \({\text{SDC}} = 1.96 \times \surd 2 \times {\text{SEM }}\) (where SEM is the standard error of measurement) [32].
MCID can be estimated by a variety of methods, each with its advantages and inherent limitations, as reviewed by Crosby et al. [47]. Of those, we chose three methods which could be applied to our data and planned to compare estimations yielded by them. The method yielding the most stringent criteria was planned to be selected for further analyses. Anchor-based cross-sectional methods use a difference which is known to be clinically significant between two populations at one point in time, in order to estimate the minimal amount of change needed within one population over time which would be clinically significant.
1.
The anchor-based cross-sectional method of comparison to disease-related criteria:
 
The extent to which SF-36 scales and summary measures reflect differences between known contrasting groups was assessed following a method described by Cella et al. [48] Contrasting groups were chosen if they had been shown to influence SF-36 scores in the general English population (age, gender, comorbidities) [34], or if they had previously been shown to correlate with prognosis in this study’s population (performance status, eGFR) [38]. We used previously established assessment methods to quantify these domains: Karnofsky performance scale (KPS) [30, 49] for functional status, and both Charlson [50] and Davies [51] scales for comorbidities. Further justification for the use of those methods is provided elsewhere [35]. Groups were dichotomized across the median for each scale and summary measure and compared using the Mann–Whitney U test. Where significant differences were found, means were adjusted to age and gender using an ANCOVA model.
2.
The anchor-based cross-sectional method of comparison to a reference population:
 
We adjusted the method described by Jacobson and Truax, which is based on the assumption that there is a population which can be considered ‘functional’, i.e. normative, whereas the study population at baseline is considered ‘dysfunctional’ [52]. Mean scores for the functional and dysfunctional populations thus serve as anchors. A c value is calculated, beyond which the test score would be closer to the normative population mean than to the study mean. The equation is: \(c = \left( {S0M1 + S1M0} \right)/\left( {S0 + S1} \right)\), when M0 and S0 are mean and SD, respectively, for the normative (‘functional’) population, and M1 and S1 are mean and SD, respectively, for the study (‘dysfunctional’) population. We assumed that if a score obtained over time in the study population is closer to that of the ‘functional population’ at baseline than it is to the study population at baseline, i.e. it is beyond the c value cut-off, then this change is clinically significant. The amount of change can only be calculated in relation to the anchors, but the direction of change is irrelevant to its clinical significance; therefore, we used the formula:
$${\text{MCID }} = \left| {{\text{study}}\,{\text{mean}} {-} c} \right|$$
High-quality SF-36 data from people with less advanced CKD were not available; therefore, WHS 2007 data for people aged 75 and over were used as the normative population [40]. Study SF-36 transformed (not normed) scores were used for these comparisons. c value was determined for each SF-36 scale, and MCID was calculated using the equation above.
3.
The distribution-based method based on SEM:
 
SEM, the standard error of measurement, is a sample-independent measure which can be used to reflect a tool’s accuracy, i.e. differentiate between a true difference in scores and one that is due to measurement error [32]. It is also used to calculate the SDC, which in turn can be compared to the MCID to assess the tool’s responsiveness to change. Not all authors consider the SDC, and some have suggested that 1 SEM is an acceptable approximation of the MCID [46, 48]. Based on previous data for SF-36, [39] and on generally acceptable standards [32, 53], reliability (r) in the current study was estimated using Cronbach’s alpha for internal consistency reliability. SEM was estimated by the equation: \({\text{SEM}} = SD \times \surd \left( {1 - r} \right)\).
MCID was estimated using baseline SF-36 data and then re-estimated using the last available SF-36 data for each participant.

Data analysis

IBM-SPSS version 22 was used for data analysis [54]. As all data were not normally distributed, nonparametric descriptive statistics and tests were used throughout the analysis; however, as the tests compare means rather than medians, both means and medians are reported. Differences between groups were regarded as statistically significant if the two-tailed p value was smaller than 0.05. The Bonferroni method of adjusting for multiple comparisons was applied when primary comparisons yielded statistically significant results.

Results

38 men and 36 women were recruited. 51 of the 74 participants (68.9 %) were of white ethnicity. Mean age was 80.7 (±6.8) years, and mean eGFR was 11.67 (±2.75) mL/min/m2. Participants were followed up for a mean of 209 (±152.5) days (range 0–630 days) after enrolment. Baseline characteristics of the study population appear in Table 1.
Table 1
Baseline characteristics of the study population (N = 74)
Study site, N (%)
 Site 1
34 (45.9)
 Site 2
31 (41.9)
 Site 3
9 (12.2)
Age (years)
 Mean (SD)
80.7 (6.8)
 Median (IQR)
81.4 (78.1–85.2)
Sex, N (%)
 Male
38 (51.4)
 Female
36 (48.6)
Ethnicity, N (%)
 White
51 (68.9)
 Black
12 (16.2)
 South Asian
6 (8.1)
 Other
5 (6.8)
eGFR
 Mean (SD)
11.67 (2.75)
 Median (IQR)
12.25 (9.73–14.18)
Davies comorbidity index, N (%)
 Grade 0
14 (18.9)
 Grade 1
44 (59.5)
 Grade 2
16 (21.6)
Charlson comorbidity index
 Mean (SD)
4.4 (2.06)
 Median (IQR)
4.0 (3–5.25)
Karnofsky performance status
 
 Mean (SD)
62 (11.2)
 Median (IQR)
60 (50.0–70.0)
SF-36 data were available for 73 participants (98.6 %). There were no missing SF-36 items in the baseline measurements used for the current analysis. Nine of 2628 (0.34 %) items were missing in the analysis of last available SF-36 data. The characteristics of the 8 SF-36 scales and 2 summary measures at baseline are presented in Table 2. Floor and/or ceiling effects at baseline were detected for 3 of the 8 scales (RP, RE and BP) and were not detected for the summary measures PCS and MCS.
Table 2
Characteristics of SF-36 scales and summary measures at baseline (N = 73)
SF-36 scale
Normed scores
Raw scores
Mean (SD)
Median (IQR)
Possible range
Observed range
Floor/ceiling effects
Physical functioning
44.0 (6.4)
42.5 (39.4–47.2)
10–30
10–26
No
Role physical
44.6 (6.0)
45.3 (39.8–48.9)
4–20
4–17
Floor effect (19 % scored 4)
Bodily pain
53.6 (9.7)
52.4 (45.3–65.3)
2–12
3.2–12
Ceiling effect (30 % scored 12)
General health
41.2 (8.1)
41.4 (34.9–46.2)
5–25
5–21.4
No
Vitality
41.5 (8.7)
39.9 (34.3–48.2)
4–20
4–15
No
Social functioning
46.2 (8.7)
45.1 (41.3–52.7)
2–10
2–10
No
Role emotional
49.8 (8.9)
55.0 (42.8–57.4)
3–15
3–15
Ceiling effect (49 % scored 15)
Mental health
48.7 (9.8)
50.6 (44.0–56.0)
5–25
9–25
No
PCS
44.6 (5.8)
44.1 (40.9–47.8)
N/A
N/A
No
MCS
48.1 (8.8)
49.8 (42.4–54.9)
N/A
N/A
No
SD standard deviation, IQR inter-quartile range, PCS physical component summary (of SF-36), MCS mental component summary (of SF-36), N/A not applicable
Mean baseline values of each SF-36 scale and summary measure were compared by gender and across median values for age, KPS, Davies comorbidity index, Charlson comorbidity index and eGFR. For all scales and summary measures, and following Bonferroni adjustment for those six comparisons, mean scores were significantly different across performance status groups. MCID (i.e. within-group difference over time) was estimated as the difference between those KPS means (at one point in time), adjusted for age and sex (Table 3). Comparisons based on other criteria yielded insignificant differences between groups (at one point in time) and could therefore not be used to estimate MCID.
Table 3
Summary of estimations of MCID using the anchor-based and distribution-based approaches (with baseline data)
 
Comparison to disease-related criteria (KPS)
Comparison to normative dataa
SEM
SDC
PCS
5.7
N/A
1.63
4.52
MCS
9.2
N/A
2.46
6.82
Physical functioning
7.9
7.4
2.24
6.21
Role physical
4.3
7.0
1.77
4.91
Bodily pain
7.1
5.2
2.71
7.51
General Health
8.2
9.2
3.61
10.01
Vitality
8.3
8.9
3.37
9.34
Social functioning
7.9
5.7
3.20
8.87
Role emotional
8.2
0.4
2.22
6.15
Mental health
9.7
1.3
3.42
9.48
KPS Karnofsky performance scale, SEM standard error of measurement, SDC smallest detectable change, PCS physical component summary, MCS mental component summary, N/A not applicable
aIn this column, scores are transformed (0–100 scale) but not normed
Table 3 compares MCID estimations derived by the different approaches: the anchor-based method based on KPS, the anchor-based method using c values (with WHS data as a comparative population) and MCID estimation based on the distribution-based method (SEM and SDC)—all using baseline data. As planned, we chose the method yielding the most stringent criteria for our final estimation of MCID. For PCS, MCID was thus estimated as 5.7 points, and for MCS MCID was estimated as 9.2 points.
SEMs were consistently smaller than anchor-based estimations of MCID. Further, SDCs for five of the eight scales (RP, BP, GH, VT and SF) were higher than MCIDs, suggesting that those scales are not sensitive to change in this study population. The summary scores PCS and MCS, and the scales PF and MH were sensitive to change and free from floor or ceiling effects in this population.
Re-estimation of floor and/or ceiling effect and MCID using last available data for each of the 73 participants was based on data collected a median of 29 days prior to last contact (or median of 40 days prior to death in the 49 participants who died during the study). For all scales and summary measures, mean and median scores were significantly lower at this point compared to baseline (data not shown). Floor and/or ceiling effects were observed for 5 scales (PF, RP, BP, VT and RE), but were not observed for the summary measures PCS and MCS. Scores for all scales and summary measures differed across KPS median. Table 4 presents MCID, SEM and SDC values using last available data. For PCS and MCS, SDCs and estimated MCIDs were similar to those obtained using baseline data.
Table 4
MCID, SEM and SDC estimations using the last available data (N = 73)
SF-36 scale
MCID
SEM
SDC
Responsiveness to changea
Floor/ceiling effect
PCS
6.3
1.52
4.21
Yes
None
MCS
8.7
2.54
7.03
Yes
None
PF
7.6
1.94
5.38
Yes
Floor effect
RP
6.1
1.71
4.75
Yes
Floor effect
BP
7.6
2.10
5.83
Yes
Ceiling effect
GH
7.5
3.52
9.75
No
None
VT
9.0
3.00
8.32
Yes
Floor effect
SF
7.1
4.04
11.20
No
None
RE
6.0
2.26
6.26
No
Ceiling effect
MH
11.3
3.85
10.66
Yes
None
MCID minimal clinically important difference, SEM standard error of measurement, SDC smallest detectable change
aResponsiveness to change was present if SDC < MCID

Discussion

This study provides a robust assessment of responsiveness to change of SF-36, a widely used HRQoL assessment tool, in a population of patients with stage 5 CKD. It shows that whilst the usefulness of most SF-36 scales in assessing HRQoL in this population, especially over time, is largely limited by floor and/or ceiling effects or by poor responsiveness to change, the summary measures PCS and MCS are sensitive to change and free from floor or ceiling effects. For PCS, any change over time which is greater than 5.7 points is likely to be clinically significant. For MCS, this change must exceed 9.2 points.
SF-36 was originally designed as a HRQoL assessment tool for populations with chronic uncomplicated medical conditions [43, 55]. A particular concern was therefore that in this population of patients with an advanced life-limiting disease, substantial floor and/or ceiling effects would be found. This was not demonstrated. In fact, floor and/or ceiling effects at baseline were found for 3 scales: RP, RE and BP, similar to previous reports in different populations, including the one in which the tool was originally developed [55]. As the disease progressed though (measured here by the last available data), floor effects were also observed for the PF and VT scales, suggesting that in those with a short life expectancy, SF-36 scales may not be able to differentiate between the HRQoL of different individuals. The summary measures PCS and MCS did not, however, present a floor or ceiling effect in this population at any time. They may therefore be a more appropriate outcome measure in this population, yet must be considered in the context of the scales from which they are derived.
A second concern regarding the appropriateness of SF-36 in this population was its ability to detect clinically significant change over time. Previous studies using SF-36 in patients with advanced CKD reported changes smaller than 4 PCS points as statistically significant, without commenting on its clinical significance [6, 7]. We used several methods to specifically estimate the amount of change which would be clinically significant to patients (MCID), and compared it to the inherent accuracy of the tool (SDC) in this population. Terwee et al. [32] argue that for a tool to demonstrate acceptable responsiveness to change, SDC must be smaller than MCID. Applying this criterion, five of the eight SF-36 scales were found to be not responsive to change in this population, and a sixth had a ceiling effect at baseline. Therefore, only the summary measures (PCS and MCS) and their key contributors (PF and MH, respectively) provided acceptable data.
PCS and MCS were originally constructed in an attempt to aggregate SF-36 scales that have similar factor content, to simplify statistical testing and interpretation [44, 56]. Empirical data demonstrated their theoretical advantage in increasing the number of levels defined, decreasing confidence intervals, and eliminating floor and ceiling effects [56]. Those findings were replicated in our population of patients with advanced CKD, as demonstrated by freedom from floor and/or ceiling effects and good responsiveness to change for the summary measures. Importantly, results for PF and MH, the key contributors to PCS and MCS, respectively, mirror those of the summary measures, implying that those 2 domains, whether measured by a specific scale or by a summary measure, can be reliably measured in this population over time. Unfortunately, other domains of HRQoL (i.e. RP, BP, GH, VT, SF and RE) were not as reliably measureable in this population by this tool, as will be further discussed below.
Several methods were used to estimate the MCID. Of those, the anchor-based method of comparison to functional status produced the most stringent criteria, which also appeared to best fit previous results: unlike other potential anchors which were studied, baseline KPS scores significantly correlated with baseline PCS (data not shown). Previous studies of this population showed that KPS deteriorated as death approached [57], as might reasonably be expected for physical HRQoL. Estimating MCID using normative data appeared to be less useful. Since the same normative population was used for norming SF-36 scores and for this analysis, transformed (not normed) scores had to be used, and this limited comparability to SDC estimations (which were performed using normed scores) as well as to other populations. Also, MCID for the summary scores, including this study’s primary outcome PCS, could not be estimated.
Given the popularity of SF-36 as a HRQoL assessment tool in CKD and other populations, it is surprising that so little has been reported of its MCID. Key publications by the tool’s developers consistently avoided specifying any MCID [43, 44, 56, 58], as does the publicly accessible website (http://​www.​sf-36.​org/​). One user manual [59] was cited by others to indicate that ‘differences of 5.7 and 6.3 points for PCS and MCS scores, respectively, significant at the 95 % level, are considered clinically important’ [26]. We could not, however, obtain this manual to critically appraise the data on which this claim was based. Interestingly, for PCS this figure is identical to the estimation produced here.
Some authors have made assumptions regarding MCID: Luckett et al. [60] suggested that MCID should be 10 % of any given scale, but accepted that this was arbitrary. Others have chosen a 3–5 point difference as MCID for SF-36, with little justification [61, 62]. A review aimed at developing MCIDs concluded that for SF-36, MCID for all scales is 3–5 points, but this too was based on minimal data of questionable quality [63]. Those assumptions may be too lenient: Pagels et al. [3] showed that the mean difference in PCS scores between patients with CKD stages 2–3 to that of patients with CKD stages 4–5 was higher than 10 points, which suggests that a clinically meaningful change over time should at least match this figure. With a different HRQoL tool, a 5–10 % difference in scores was associated with ‘little’ patient-reported change over time, a 10–20 % difference with ‘moderate’ change and >20 % difference with ‘very much’ change [64]. Although this study was performed in a different population (cancer patients), and with a different tool (EORTC-QLQ-C30), its results do highlight that a patient felt change in HRQoL may be much larger than mean differences in scores which achieve statistical significance in a large sample.
Potential problems with focusing on MCIDs must be acknowledged. A widely used definition of MCID is ‘the smallest difference in score in the domain of interest which patients perceive as beneficial and which would mandate, in the absence of troublesome side effects and excessive cost, a change in the patient’s management’ [65]. Quantitative estimations of MCIDs, as described in our study, do not take into account cost-effectiveness. Furthermore, MCID can show significant between-population variation, even with the same tool [66]. Also, authors often fail to account for the impact of the chosen anchor (for anchor-based methods) or the sample (for distribution-based methods) on the estimated MCID [67]. Within-population variation was demonstrated in this study when different estimation methods were used and compared (Table 3). The magnitude of MCID may also vary according to baseline status (e.g. small improvements being more noticeable to those with poorer baseline HRQoL) and the direction of change (improvement vs. deterioration) [67, 68]. This was not accounted for in the current study. Finally, it should be acknowledged that it may be easier to demonstrate that a change of 3–5 points is clinically meaningful than to prove that a change of 1–2 points is not [67]. On another level, we note that MCID is a measure derived from populations, and as such, it averages scores and eliminates inter-individual variance. It may therefore not be suitable in assessing change in an individual over time.
A further limitation of this study is the choice of the reference population for producing normed SF-36 scores. As discussed, an ideal reference population was not available, and compromise had to be accepted. The WHS 2007 data were chosen on the basis of having been collected at a similar time to this study’s data collection, from a British general population. However, an alternative reference population could have been derived from the Health Survey for England 1996 [69, 70], which represented English people at an earlier time. A brief examination of this alternative reference population yielded overall lower scores on all SF-36 scales and summary measures (data not shown), suggesting that the choice of reference population could have influenced the MCID estimations as well.
This study recruited a relatively small convenience sample of conservatively managed individuals, who represent a minority of stage 5 CKD patients (10–20 % in the three recruiting renal units) [35]. However, data completeness was very high, and statistically significant results were obtained despite the use of highly conservative statistical methods (i.e. nonparametric tests and Bonferroni adjustment to multiple comparisons). The use of ANCOVA, a generally robust method to violations of normality, only marginally changed the non-adjusted results (data not shown). SEM is an inherently parametric construct but in our data yielded a less stringent estimation of MCID and was thus deemed less appropriate. That some of our results are comparable to previously published findings with SF-36 [55, 59] lends further strength to their generalizability.
This study was not designed to determine whether SF-36 is a valid measure for HRQoL assessment in this population of conservatively managed patients with stage 5 CKD. One can presume that those patients may have similar concerns to those of others with stage 5 CKD or to other palliative care populations, although this was not specifically sought or demonstrated. In stage 5 CKD, patients identified sexual functioning, body image, sleep and freedom or control as areas of importance [71, 72]. In palliative and end of life care, existential concerns, comfort and peace of mind were highlighted as important [7375]. All of those areas are not covered by SF-36. The content validity of SF-36 as a generic tool has previously been established, but it is recognized that it may miss content areas of relevance to particular populations [43]. In CKD, this led to the development of the KDQOL, a dialysis-specific QoL questionnaire with an SF-36 core [71]. SF-36 was not previously used in the context of palliative care, possibly because it does not address the unique concerns of patients with advanced disease [76].
In conclusion, the appropriateness of SF-36 as a HRQoL assessment tool in patients with stage 5 CKD is limited both by its floor and ceiling effects and by its poor responsiveness to change in this population. In addition, it does not include domains which become increasingly important as illness advances (such as existential concerns, comfort and peace of mind). Only the summary measures of SF-36, PCS and MCS, and their key contributors PF and MH, respectively, can be used to assess changes in HRQoL over time. The minimal amount of change which is likely to be clinically meaningful is 5.7 for PCS and 9.2 for MCS, which is much higher than that used in similar populations so far.
Despite widespread use of SF-36 in patients with CKD, a robust assessment of its responsiveness to change in this population has never (to our knowledge) been reported. This study adds such an assessment, and its results call into question the usefulness of this outcome measure in this population. We believe that this information will be valuable both in selecting HRQoL measures for future studies, and for interpreting the findings of previous published studies. Future research should focus on assessing the validity of SF-36 in this population and should include global measures most relevant to populations with advancing illness, such as the Integrated Palliative Care Outcome Scale [77, 78], alongside HRQoL measures. Such an approach will open the door to research which could determine the effectiveness of interventions (e.g. palliative care) on the HRQoL of patients with stage 5 CKD.

Acknowledgments

This study was performed as part of the requirements towards MSc in Palliative Care. GE received a professional development Grant from Help the Hospices which part-funded tuition fees. The original study was funded by the Guy’s and St Thomas Charity.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail
Literatuur
1.
go back to reference Chow, F. Y., Briganti, E. M., Kerr, P. G., Chadban, S. J., Zimmet, P. Z., & Atkins, R. C. (2003). Health-related quality of life in Australian adults with renal insufficiency: A population-based study. American Journal of Kidney Diseases, 41(3), 596–604. doi: 10.​1053/​ajkd.​2003.​50121. PubMedCrossRef Chow, F. Y., Briganti, E. M., Kerr, P. G., Chadban, S. J., Zimmet, P. Z., & Atkins, R. C. (2003). Health-related quality of life in Australian adults with renal insufficiency: A population-based study. American Journal of Kidney Diseases, 41(3), 596–604. doi: 10.​1053/​ajkd.​2003.​50121. PubMedCrossRef
2.
go back to reference Kusek, J. W., Greene, P., Wang, S. R., Beck, G., West, D., Jamerson, K., et al. (2002). Cross-sectional study of health-related quality of life in African Americans with chronic renal insufficiency: The African American study of kidney disease and hypertension trial. American Journal of Kidney Diseases, 39(3), 513–524. PubMedCrossRef Kusek, J. W., Greene, P., Wang, S. R., Beck, G., West, D., Jamerson, K., et al. (2002). Cross-sectional study of health-related quality of life in African Americans with chronic renal insufficiency: The African American study of kidney disease and hypertension trial. American Journal of Kidney Diseases, 39(3), 513–524. PubMedCrossRef
4.
5.
go back to reference Perlman, R. L., Finkelstein, F. O., Liu, L., Roys, E., Kiser, M., Eisele, G., et al. (2005). Quality of life in chronic kidney disease (CKD): a cross-sectional analysis in the Renal Research Institute-CKD study. American Journal of Kidney Diseases, 45(4), 658–666. PubMedCrossRef Perlman, R. L., Finkelstein, F. O., Liu, L., Roys, E., Kiser, M., Eisele, G., et al. (2005). Quality of life in chronic kidney disease (CKD): a cross-sectional analysis in the Renal Research Institute-CKD study. American Journal of Kidney Diseases, 45(4), 658–666. PubMedCrossRef
6.
go back to reference Wu, A. W., Fink, N. E., Marsh-Manzi, J. V., Meyer, K. B., Finkelstein, F. O., Chapman, M. M., et al. (2004). Changes in quality of life during hemodialysis and peritoneal dialysis treatment: Generic and disease specific measures. Journal of the American Society of Nephrology, 15(3), 743–753. PubMedCrossRef Wu, A. W., Fink, N. E., Marsh-Manzi, J. V., Meyer, K. B., Finkelstein, F. O., Chapman, M. M., et al. (2004). Changes in quality of life during hemodialysis and peritoneal dialysis treatment: Generic and disease specific measures. Journal of the American Society of Nephrology, 15(3), 743–753. PubMedCrossRef
8.
go back to reference Griva, K., Kang, A. W., Yu, Z. L., Mooppil, N. K., Foo, M., Chan, C. M., et al. (2014). Quality of life and emotional distress between patients on peritoneal dialysis versus community-based hemodialysis. Quality of Life Research, 23(1), 57–66. doi: 10.​1007/​s11136-013-0431-8. PubMedCrossRef Griva, K., Kang, A. W., Yu, Z. L., Mooppil, N. K., Foo, M., Chan, C. M., et al. (2014). Quality of life and emotional distress between patients on peritoneal dialysis versus community-based hemodialysis. Quality of Life Research, 23(1), 57–66. doi: 10.​1007/​s11136-013-0431-8. PubMedCrossRef
10.
go back to reference CKD Work Group 2002. (2002). Part 4: Definition and classification of stages of chronic kidney disease. American Journal of Kidney Diseases, 39(2), S46–S75. CrossRef CKD Work Group 2002. (2002). Part 4: Definition and classification of stages of chronic kidney disease. American Journal of Kidney Diseases, 39(2), S46–S75. CrossRef
11.
go back to reference Shaw, C., Pitcher, D., Pruthi, R., & Fogarti, D. (2013). UK renal registry 16th annual report: Chapter 2 UK RRT prevalence in 2012: National and centre-specific analyses. UK: Renal Registry. Shaw, C., Pitcher, D., Pruthi, R., & Fogarti, D. (2013). UK renal registry 16th annual report: Chapter 2 UK RRT prevalence in 2012: National and centre-specific analyses. UK: Renal Registry.
12.
go back to reference Gilg, J., Rao, A., & Fogarti, D. (2013). UK renal registry 16th annual report: Chapter 1 UK renal replacement therapy incidence in 2012: National and centre-specific analyses. UK: Renal Registry. Gilg, J., Rao, A., & Fogarti, D. (2013). UK renal registry 16th annual report: Chapter 1 UK renal replacement therapy incidence in 2012: National and centre-specific analyses. UK: Renal Registry.
13.
go back to reference Canaud, B., Tong, L., Tentori, F., Akiba, T., Karaboyas, A., Gillespie, B., et al. (2011). Clinical practices and outcomes in elderly hemodialysis patients: Results from the dialysis outcomes and practice patterns study (DOPPS). Clinical Journal of the American Society of Nephrology, 6(7), 1651–1662. doi: 10.​2215/​CJN.​03530410. PubMedPubMedCentralCrossRef Canaud, B., Tong, L., Tentori, F., Akiba, T., Karaboyas, A., Gillespie, B., et al. (2011). Clinical practices and outcomes in elderly hemodialysis patients: Results from the dialysis outcomes and practice patterns study (DOPPS). Clinical Journal of the American Society of Nephrology, 6(7), 1651–1662. doi: 10.​2215/​CJN.​03530410. PubMedPubMedCentralCrossRef
15.
go back to reference Weisbord, S. D., Carmody, S. S., Bruns, F. J., Rotondi, A. J., Cohen, L. M., Zeidel, M. L., et al. (2003). Symptom burden, quality of life, advance care planning and the potential value of palliative care in severely ill haemodialysis patients. Nephrology, Dialysis, Transplantation, 18(7), 1345–1352. PubMedCrossRef Weisbord, S. D., Carmody, S. S., Bruns, F. J., Rotondi, A. J., Cohen, L. M., Zeidel, M. L., et al. (2003). Symptom burden, quality of life, advance care planning and the potential value of palliative care in severely ill haemodialysis patients. Nephrology, Dialysis, Transplantation, 18(7), 1345–1352. PubMedCrossRef
17.
go back to reference Munshi, S. K., Vijayakumar, N., Taub, N. A., Bhullar, H., Lo, T. C., & Warwick, G. (2001). Outcome of renal replacement therapy in the very elderly. Nephrology, Dialysis, Transplantation, 16(1), 128–133. PubMedCrossRef Munshi, S. K., Vijayakumar, N., Taub, N. A., Bhullar, H., Lo, T. C., & Warwick, G. (2001). Outcome of renal replacement therapy in the very elderly. Nephrology, Dialysis, Transplantation, 16(1), 128–133. PubMedCrossRef
19.
go back to reference Couchoud, C., Labeeuw, M., Moranne, O., Allot, V., Esnault, V., Frimat, L., et al. (2009). A clinical score to predict 6-month prognosis in elderly patients starting dialysis for end-stage renal disease. Nephrology, Dialysis, Transplantation, 24(5), 1553–1561. doi: 10.​1093/​ndt/​gfn698. PubMedCrossRef Couchoud, C., Labeeuw, M., Moranne, O., Allot, V., Esnault, V., Frimat, L., et al. (2009). A clinical score to predict 6-month prognosis in elderly patients starting dialysis for end-stage renal disease. Nephrology, Dialysis, Transplantation, 24(5), 1553–1561. doi: 10.​1093/​ndt/​gfn698. PubMedCrossRef
20.
go back to reference Hussain, J. A., Mooney, A., & Russon, L. (2013). Comparison of survival analysis and palliative care involvement in patients aged over 70 years choosing conservative management or renal replacement therapy in advanced chronic kidney disease. Palliative Medicine, 27(9), 829–839. doi: 10.​1177/​0269216313484380​. PubMedCrossRef Hussain, J. A., Mooney, A., & Russon, L. (2013). Comparison of survival analysis and palliative care involvement in patients aged over 70 years choosing conservative management or renal replacement therapy in advanced chronic kidney disease. Palliative Medicine, 27(9), 829–839. doi: 10.​1177/​0269216313484380​. PubMedCrossRef
21.
go back to reference Chandna, S. M., Da Silva-Gane, M., Marshall, C., Warwicker, P., Greenwood, R. N., & Farrington, K. (2011). Survival of elderly patients with stage 5 CKD: Comparison of conservative management and renal replacement therapy. Nephrology, Dialysis, Transplantation, 26(5), 1608–1614. doi: 10.​1093/​ndt/​gfq630. PubMedCrossRef Chandna, S. M., Da Silva-Gane, M., Marshall, C., Warwicker, P., Greenwood, R. N., & Farrington, K. (2011). Survival of elderly patients with stage 5 CKD: Comparison of conservative management and renal replacement therapy. Nephrology, Dialysis, Transplantation, 26(5), 1608–1614. doi: 10.​1093/​ndt/​gfq630. PubMedCrossRef
22.
go back to reference Murtagh, F. E., Marsh, J. E., Donohoe, P., Ekbal, N. J., Sheerin, N. S., & Harris, F. E. (2007). Dialysis or not? A comparative survival study of patients over 75 years with chronic kidney disease stage 5. Nephrology, Dialysis, Transplantation, 22(7), 1955–1962. doi: 10.​1093/​ndt/​gfm153. PubMedCrossRef Murtagh, F. E., Marsh, J. E., Donohoe, P., Ekbal, N. J., Sheerin, N. S., & Harris, F. E. (2007). Dialysis or not? A comparative survival study of patients over 75 years with chronic kidney disease stage 5. Nephrology, Dialysis, Transplantation, 22(7), 1955–1962. doi: 10.​1093/​ndt/​gfm153. PubMedCrossRef
23.
go back to reference Smith, C., Da Silva-Gane, M., Chandna, S., Warwicker, P., Greenwood, R., & Farrington, K. (2003). Choosing not to dialyse: Evaluation of planned non-dialytic management in a cohort of patients with end-stage renal failure. Nephron Clinical Practice, 95(2), c40–c46. doi: 10.​1159/​000073708. PubMedCrossRef Smith, C., Da Silva-Gane, M., Chandna, S., Warwicker, P., Greenwood, R., & Farrington, K. (2003). Choosing not to dialyse: Evaluation of planned non-dialytic management in a cohort of patients with end-stage renal failure. Nephron Clinical Practice, 95(2), c40–c46. doi: 10.​1159/​000073708. PubMedCrossRef
24.
go back to reference Davison, S. N., Levin, A., Moss, A. H., Jha, V., Brown, E. A., Brennan, F., et al. (2015). Executive summary of the KDIGO controversies conference on supportive care in chronic kidney disease: Developing a roadmap to improving quality care. Kidney International, 88(3), 447–459. doi: 10.​1038/​ki.​2015.​110. PubMedCrossRef Davison, S. N., Levin, A., Moss, A. H., Jha, V., Brown, E. A., Brennan, F., et al. (2015). Executive summary of the KDIGO controversies conference on supportive care in chronic kidney disease: Developing a roadmap to improving quality care. Kidney International, 88(3), 447–459. doi: 10.​1038/​ki.​2015.​110. PubMedCrossRef
25.
go back to reference Carson, R. C., Juszczak, M., Davenport, A., & Burns, A. (2009). Is maximum conservative management an equivalent treatment option to dialysis for elderly patients with significant comorbid disease? Clinical Journal of the American Society of Nephrology, 4(10), 1611–1619. doi: 10.​2215/​CJN.​00510109. PubMedPubMedCentralCrossRef Carson, R. C., Juszczak, M., Davenport, A., & Burns, A. (2009). Is maximum conservative management an equivalent treatment option to dialysis for elderly patients with significant comorbid disease? Clinical Journal of the American Society of Nephrology, 4(10), 1611–1619. doi: 10.​2215/​CJN.​00510109. PubMedPubMedCentralCrossRef
26.
go back to reference Harris, S. A., Lamping, D. L., Brown, E. A., Constantinovici, N., & North Thames Dialysis Study, G. (2002). Clinical outcomes and quality of life in elderly patients on peritoneal dialysis versus hemodialysis. Peritoneal Dialysis International, 22(4), 463–470. PubMed Harris, S. A., Lamping, D. L., Brown, E. A., Constantinovici, N., & North Thames Dialysis Study, G. (2002). Clinical outcomes and quality of life in elderly patients on peritoneal dialysis versus hemodialysis. Peritoneal Dialysis International, 22(4), 463–470. PubMed
28.
go back to reference Seow, Y. Y., Cheung, Y. B., Qu, L. M., & Yee, A. C. (2013). Trajectory of quality of life for poor prognosis stage 5D chronic kidney disease with and without dialysis. American Journal of Nephrology, 37(3), 231–238. doi: 10.​1159/​000347220. PubMedCrossRef Seow, Y. Y., Cheung, Y. B., Qu, L. M., & Yee, A. C. (2013). Trajectory of quality of life for poor prognosis stage 5D chronic kidney disease with and without dialysis. American Journal of Nephrology, 37(3), 231–238. doi: 10.​1159/​000347220. PubMedCrossRef
29.
go back to reference Cagney, K. A., Wu, A. W., Fink, N. E., Jenckes, M. W., Meyer, K. B., Bass, E. B., et al. (2000). Formal literature review of quality-of-life instruments used in end-stage renal disease. American Journal of Kidney Diseases, 36(2), 327–336. doi: 10.​1053/​ajkd.​2000.​8982. PubMedCrossRef Cagney, K. A., Wu, A. W., Fink, N. E., Jenckes, M. W., Meyer, K. B., Bass, E. B., et al. (2000). Formal literature review of quality-of-life instruments used in end-stage renal disease. American Journal of Kidney Diseases, 36(2), 327–336. doi: 10.​1053/​ajkd.​2000.​8982. PubMedCrossRef
30.
go back to reference Edgell, E. T., Coons, S. J., Carter, W. B., Kallich, J. D., Mapes, D., Damush, T. M., et al. (1996). A review of health-related quality-of-life measures used in end-stage renal disease. Clinical Therapeutics, 18(5), 887–938. PubMedCrossRef Edgell, E. T., Coons, S. J., Carter, W. B., Kallich, J. D., Mapes, D., Damush, T. M., et al. (1996). A review of health-related quality-of-life measures used in end-stage renal disease. Clinical Therapeutics, 18(5), 887–938. PubMedCrossRef
31.
go back to reference Mokkink, L. B., Terwee, C. B., Patrick, D. L., Alonso, J., Stratford, P. W., Knol, D. L., et al. (2010). The COSMIN checklist for assessing the methodological quality of studies on measurement properties of health status measurement instruments: An international delphi study. Quality of Life Research, 19(4), 539–549. doi: 10.​1007/​s11136-010-9606-8. PubMedPubMedCentralCrossRef Mokkink, L. B., Terwee, C. B., Patrick, D. L., Alonso, J., Stratford, P. W., Knol, D. L., et al. (2010). The COSMIN checklist for assessing the methodological quality of studies on measurement properties of health status measurement instruments: An international delphi study. Quality of Life Research, 19(4), 539–549. doi: 10.​1007/​s11136-010-9606-8. PubMedPubMedCentralCrossRef
33.
go back to reference Lohr, K. N., Aaronson, N. K., Alonso, J., Burnam, M. A., Patrick, D. L., Perrin, E. B., et al. (1996). Evaluating quality-of-life and health status instruments: Development of scientific review criteria. Clinical Therapeutics, 18(5), 979–992. PubMedCrossRef Lohr, K. N., Aaronson, N. K., Alonso, J., Burnam, M. A., Patrick, D. L., Perrin, E. B., et al. (1996). Evaluating quality-of-life and health status instruments: Development of scientific review criteria. Clinical Therapeutics, 18(5), 979–992. PubMedCrossRef
34.
go back to reference Bowling, A., Bond, M., Jenkinson, C., & Lamping, D. L. (1999). Short Form 36 (SF-36) Health survey questionnaire: Which normative data should be used? Comparisons between the norms provided by the omnibus survey in Britain, the health survey for England and the Oxford healthy life survey. Journal of Public Health Medicine, 21(3), 255–270. PubMedCrossRef Bowling, A., Bond, M., Jenkinson, C., & Lamping, D. L. (1999). Short Form 36 (SF-36) Health survey questionnaire: Which normative data should be used? Comparisons between the norms provided by the omnibus survey in Britain, the health survey for England and the Oxford healthy life survey. Journal of Public Health Medicine, 21(3), 255–270. PubMedCrossRef
35.
go back to reference Murtagh, F. E. (2008). Understanding and improving quality of care for people with conservatively- managed stage 5 chronic kidney disease: The course of symptoms and other concerns over time., King’s College London, Murtagh, F. E. (2008). Understanding and improving quality of care for people with conservatively- managed stage 5 chronic kidney disease: The course of symptoms and other concerns over time., King’s College London,
37.
go back to reference Murtagh, F. E., Addington-Hall, J. M., Edmonds, P. M., Donohoe, P., Carey, I., Jenkins, K., et al. (2007). Symptoms in advanced renal disease: A cross-sectional survey of symptom prevalence in stage 5 chronic kidney disease managed without dialysis. Journal of Palliative Medicine, 10(6), 1266–1276. doi: 10.​1089/​jpm.​2007.​0017. PubMedCrossRef Murtagh, F. E., Addington-Hall, J. M., Edmonds, P. M., Donohoe, P., Carey, I., Jenkins, K., et al. (2007). Symptoms in advanced renal disease: A cross-sectional survey of symptom prevalence in stage 5 chronic kidney disease managed without dialysis. Journal of Palliative Medicine, 10(6), 1266–1276. doi: 10.​1089/​jpm.​2007.​0017. PubMedCrossRef
38.
go back to reference Murtagh, F. E., Sheerin, N. S., Addington-Hall, J., & Higginson, I. J. (2011). Trajectories of illness in stage 5 chronic kidney disease: A longitudinal study of patient symptoms and concerns in the last year of life. Clinical Journal of the American Society of Nephrology, 6(7), 1580–1590. doi: 10.​2215/​CJN.​09021010. PubMedCrossRef Murtagh, F. E., Sheerin, N. S., Addington-Hall, J., & Higginson, I. J. (2011). Trajectories of illness in stage 5 chronic kidney disease: A longitudinal study of patient symptoms and concerns in the last year of life. Clinical Journal of the American Society of Nephrology, 6(7), 1580–1590. doi: 10.​2215/​CJN.​09021010. PubMedCrossRef
39.
go back to reference Ware, J. E, Jr, Kosinski, M., & Dewey, J. E. (2000). How to score version 2 of the SF-36 health survey. Lincoln, RI: QualityMetric Incorporated. Ware, J. E, Jr, Kosinski, M., & Dewey, J. E. (2000). How to score version 2 of the SF-36 health survey. Lincoln, RI: QualityMetric Incorporated.
43.
go back to reference Ware, J. E, Jr, & Gandek, B. (1998). Overview of the SF-36 health survey and the international quality of life assessment (IQOLA) project. Journal of Clinical Epidemiology, 51(11), 903–912. PubMedCrossRef Ware, J. E, Jr, & Gandek, B. (1998). Overview of the SF-36 health survey and the international quality of life assessment (IQOLA) project. Journal of Clinical Epidemiology, 51(11), 903–912. PubMedCrossRef
44.
go back to reference Ware, J. E., & Kosinski, M. (2001). Interpreting SF-36 summary health measures: A response. Quality of Life Research, 10(5), 405–413. (discussion 415-420). PubMedCrossRef Ware, J. E., & Kosinski, M. (2001). Interpreting SF-36 summary health measures: A response. Quality of Life Research, 10(5), 405–413. (discussion 415-420). PubMedCrossRef
45.
go back to reference Taft, C., Karlsson, J., & Sullivan, M. (2001). Do SF-36 summary component scores accurately summarize subscale scores? Quality of Life Research, 10(5), 395–404. PubMedCrossRef Taft, C., Karlsson, J., & Sullivan, M. (2001). Do SF-36 summary component scores accurately summarize subscale scores? Quality of Life Research, 10(5), 395–404. PubMedCrossRef
46.
go back to reference Wyrwich, K. W., Tierney, W. M., & Wolinsky, F. D. (1999). Further evidence supporting an SEM-based criterion for identifying meaningful intra-individual changes in health-related quality of life. Journal of Clinical Epidemiology, 52(9), 861–873. PubMedCrossRef Wyrwich, K. W., Tierney, W. M., & Wolinsky, F. D. (1999). Further evidence supporting an SEM-based criterion for identifying meaningful intra-individual changes in health-related quality of life. Journal of Clinical Epidemiology, 52(9), 861–873. PubMedCrossRef
47.
go back to reference Crosby, R. D., Kolotkin, R. L., & Williams, G. R. (2003). Defining clinically meaningful change in health-related quality of life. Journal of Clinical Epidemiology, 56(5), 395–407. PubMedCrossRef Crosby, R. D., Kolotkin, R. L., & Williams, G. R. (2003). Defining clinically meaningful change in health-related quality of life. Journal of Clinical Epidemiology, 56(5), 395–407. PubMedCrossRef
48.
go back to reference Cella, D., Eton, D. T., Fairclough, D. L., Bonomi, P., Heyes, A. E., Silberman, C., et al. (2002). What is a clinically meaningful change on the functional assessment of cancer therapy-lung (FACT-L) questionnaire? Results from eastern cooperative oncology group (ECOG) study 5592. Journal of Clinical Epidemiology, 55(3), 285–295. PubMedCrossRef Cella, D., Eton, D. T., Fairclough, D. L., Bonomi, P., Heyes, A. E., Silberman, C., et al. (2002). What is a clinically meaningful change on the functional assessment of cancer therapy-lung (FACT-L) questionnaire? Results from eastern cooperative oncology group (ECOG) study 5592. Journal of Clinical Epidemiology, 55(3), 285–295. PubMedCrossRef
49.
go back to reference Mor, V., Laliberte, L., Morris, J. N., & Wiemann, M. (1984). The Karnofsky performance status scale. An examination of its reliability and validity in a research setting. Cancer, 53(9), 2002–2007. PubMedCrossRef Mor, V., Laliberte, L., Morris, J. N., & Wiemann, M. (1984). The Karnofsky performance status scale. An examination of its reliability and validity in a research setting. Cancer, 53(9), 2002–2007. PubMedCrossRef
50.
go back to reference Charlson, M., Szatrowski, T. P., Peterson, J., & Gold, J. (1994). Validation of a combined comorbidity index. Journal of Clinical Epidemiology, 47(11), 1245–1251. PubMedCrossRef Charlson, M., Szatrowski, T. P., Peterson, J., & Gold, J. (1994). Validation of a combined comorbidity index. Journal of Clinical Epidemiology, 47(11), 1245–1251. PubMedCrossRef
51.
go back to reference Davies, S. J. (2003). Assessment of comorbidity in peritoneal dialysis patients. Contributions to Nephrology, 140, 98–103. PubMedCrossRef Davies, S. J. (2003). Assessment of comorbidity in peritoneal dialysis patients. Contributions to Nephrology, 140, 98–103. PubMedCrossRef
52.
go back to reference Jacobson, N. S., & Truax, P. (1991). Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychology, 59(1), 12–19. PubMedCrossRef Jacobson, N. S., & Truax, P. (1991). Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychology, 59(1), 12–19. PubMedCrossRef
53.
go back to reference Aaronson, N., Alonso, J., Burnam, A., Lohr, K. N., Patrick, D. L., Perrin, E., et al. (2002). Assessing health status and quality-of-life instruments: Attributes and review criteria. Quality of Life Research, 11(3), 193–205. PubMedCrossRef Aaronson, N., Alonso, J., Burnam, A., Lohr, K. N., Patrick, D. L., Perrin, E., et al. (2002). Assessing health status and quality-of-life instruments: Attributes and review criteria. Quality of Life Research, 11(3), 193–205. PubMedCrossRef
54.
go back to reference IBM-Corp. (Released 2013). IBM SPSS statistics for windows, Version 22.0. Armonk, NY: IBM Corp. IBM-Corp. (Released 2013). IBM SPSS statistics for windows, Version 22.0. Armonk, NY: IBM Corp.
55.
go back to reference McHorney, C. A., Ware, J. E, Jr, Lu, J. F., & Sherbourne, C. D. (1994). The MOS 36-item short-form health survey (SF-36): III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups. Medical Care, 32(1), 40–66. PubMedCrossRef McHorney, C. A., Ware, J. E, Jr, Lu, J. F., & Sherbourne, C. D. (1994). The MOS 36-item short-form health survey (SF-36): III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups. Medical Care, 32(1), 40–66. PubMedCrossRef
56.
go back to reference Ware, J. E, Jr, Kosinski, M., Bayliss, M. S., McHorney, C. A., Rogers, W. H., & Raczek, A. (1995). Comparison of methods for the scoring and statistical analysis of SF-36 health profile and summary measures: Summary of results from the Medical Outcomes Study. Medical Care, 33(4 Suppl), AS264–AS279. PubMed Ware, J. E, Jr, Kosinski, M., Bayliss, M. S., McHorney, C. A., Rogers, W. H., & Raczek, A. (1995). Comparison of methods for the scoring and statistical analysis of SF-36 health profile and summary measures: Summary of results from the Medical Outcomes Study. Medical Care, 33(4 Suppl), AS264–AS279. PubMed
58.
go back to reference Ware, J. E, Jr, Kemp, J. P., Buchner, D. A., Singer, A. E., Nolop, K. B., & Goss, T. F. (1998). The responsiveness of disease-specific and generic health measures to changes in the severity of asthma among adults. Quality of Life Research, 7(3), 235–244. PubMedCrossRef Ware, J. E, Jr, Kemp, J. P., Buchner, D. A., Singer, A. E., Nolop, K. B., & Goss, T. F. (1998). The responsiveness of disease-specific and generic health measures to changes in the severity of asthma among adults. Quality of Life Research, 7(3), 235–244. PubMedCrossRef
59.
go back to reference Ware, J. E., Kosinski, M. A., & Keller, S. D. (1994). SF-36 physical and mental component summary measures: A user’s manual. Boston, MA: The Health Institute, New England Medical Center. Ware, J. E., Kosinski, M. A., & Keller, S. D. (1994). SF-36 physical and mental component summary measures: A user’s manual. Boston, MA: The Health Institute, New England Medical Center.
60.
go back to reference Luckett, T., King, M., Butow, P., Friedlander, M., & Paris, T. (2010). Assessing health-related quality of life in gynecologic oncology: A systematic review of questionnaires and their ability to detect clinically important differences and change. International Journal of Gynecological Cancer, 20(4), 664–684. doi: 10.​1111/​IGC.​0b013e3181dad379​. PubMedCrossRef Luckett, T., King, M., Butow, P., Friedlander, M., & Paris, T. (2010). Assessing health-related quality of life in gynecologic oncology: A systematic review of questionnaires and their ability to detect clinically important differences and change. International Journal of Gynecological Cancer, 20(4), 664–684. doi: 10.​1111/​IGC.​0b013e3181dad379​. PubMedCrossRef
61.
go back to reference Lopes, A. A., Bragg-Gresham, J. L., Satayathum, S., McCullough, K., Pifer, T., Goodkin, D. A., et al. (2003). Health-related quality of life and associated outcomes among hemodialysis patients of different ethnicities in the United States: The dialysis outcomes and practice patterns study (DOPPS). American Journal of Kidney Diseases, 41(3), 605–615. doi: 10.​1053/​ajkd.​2003.​50122. PubMedCrossRef Lopes, A. A., Bragg-Gresham, J. L., Satayathum, S., McCullough, K., Pifer, T., Goodkin, D. A., et al. (2003). Health-related quality of life and associated outcomes among hemodialysis patients of different ethnicities in the United States: The dialysis outcomes and practice patterns study (DOPPS). American Journal of Kidney Diseases, 41(3), 605–615. doi: 10.​1053/​ajkd.​2003.​50122. PubMedCrossRef
62.
go back to reference Moist, L. M., Bragg-Gresham, J. L., Pisoni, R. L., Saran, R., Akiba, T., Jacobson, S. H., et al. (2008). Travel time to dialysis as a predictor of health-related quality of life, adherence, and mortality: The dialysis outcomes and practice patterns study (DOPPS). American Journal of Kidney Diseases, 51(4), 641–650. doi: 10.​1053/​j.​ajkd.​2007.​12.​021. PubMedCrossRef Moist, L. M., Bragg-Gresham, J. L., Pisoni, R. L., Saran, R., Akiba, T., Jacobson, S. H., et al. (2008). Travel time to dialysis as a predictor of health-related quality of life, adherence, and mortality: The dialysis outcomes and practice patterns study (DOPPS). American Journal of Kidney Diseases, 51(4), 641–650. doi: 10.​1053/​j.​ajkd.​2007.​12.​021. PubMedCrossRef
63.
go back to reference Samsa, G., Edelman, D., Rothman, M. L., Williams, G. R., Lipscomb, J., & Matchar, D. (1999). Determining clinically important differences in health status measures: A general approach with illustration to the health utilities index mark II. Pharmacoeconomics, 15(2), 141–155. PubMedCrossRef Samsa, G., Edelman, D., Rothman, M. L., Williams, G. R., Lipscomb, J., & Matchar, D. (1999). Determining clinically important differences in health status measures: A general approach with illustration to the health utilities index mark II. Pharmacoeconomics, 15(2), 141–155. PubMedCrossRef
64.
go back to reference Osoba, D., Rodrigues, G., Myles, J., Zee, B., & Pater, J. (1998). Interpreting the significance of changes in health-related quality-of-life scores. Journal of Clinical Oncology, 16(1), 139–144. PubMed Osoba, D., Rodrigues, G., Myles, J., Zee, B., & Pater, J. (1998). Interpreting the significance of changes in health-related quality-of-life scores. Journal of Clinical Oncology, 16(1), 139–144. PubMed
65.
go back to reference Jaeschke, R., Singer, J., & Guyatt, G. H. (1989). Measurement of health status. Ascertaining the minimal clinically important difference. Controlled Clinical Trials, 10(4), 407–415. PubMedCrossRef Jaeschke, R., Singer, J., & Guyatt, G. H. (1989). Measurement of health status. Ascertaining the minimal clinically important difference. Controlled Clinical Trials, 10(4), 407–415. PubMedCrossRef
67.
go back to reference Hays, R. D., & Woolley, J. M. (2000). The concept of clinically meaningful difference in health-related quality-of-life research. How meaningful is it? Pharmacoeconomics, 18(5), 419–423. PubMedCrossRef Hays, R. D., & Woolley, J. M. (2000). The concept of clinically meaningful difference in health-related quality-of-life research. How meaningful is it? Pharmacoeconomics, 18(5), 419–423. PubMedCrossRef
68.
go back to reference Gum, J. L., Glassman, S. D., & Carreon, L. Y. (2013). Clinically important deterioration in patients undergoing lumbar spine surgery: A choice of evaluation methods using the oswestry disability Index, 36-Item short form health survey, and pain scales. Clinical article. Journal of Neurosurgery Spine, 19(5), 564–568. doi: 10.​3171/​2013.​8.​SPINE12804. PubMedCrossRef Gum, J. L., Glassman, S. D., & Carreon, L. Y. (2013). Clinically important deterioration in patients undergoing lumbar spine surgery: A choice of evaluation methods using the oswestry disability Index, 36-Item short form health survey, and pain scales. Clinical article. Journal of Neurosurgery Spine, 19(5), 564–568. doi: 10.​3171/​2013.​8.​SPINE12804. PubMedCrossRef
69.
go back to reference Prescott-Clarke, P., & Primatesta, P. E. (1998). Health survey for England 1996 (Vol. Vol. 1: Findings). London: The Stationery Office. Prescott-Clarke, P., & Primatesta, P. E. (1998). Health survey for England 1996 (Vol. Vol. 1: Findings). London: The Stationery Office.
70.
go back to reference Joint Health Surveys Unit of Social and Community Planning Research and University College London. (2010). Health survey for England, 1996. [data collection]. 4th Ed. UK Data Service. SN: 3886. Doi: 10.​5255/​UKDA-SN-3886-1. Joint Health Surveys Unit of Social and Community Planning Research and University College London. (2010). Health survey for England, 1996. [data collection]. 4th Ed. UK Data Service. SN: 3886. Doi: 10.​5255/​UKDA-SN-3886-1.
71.
go back to reference Hays, R. D., Kallich, J. D., Mapes, D. L., Coons, S. J., & Carter, W. B. (1994). Development of the kidney disease quality of life (KDQOL) instrument. Quality of Life Research, 3(5), 329–338. PubMedCrossRef Hays, R. D., Kallich, J. D., Mapes, D. L., Coons, S. J., & Carter, W. B. (1994). Development of the kidney disease quality of life (KDQOL) instrument. Quality of Life Research, 3(5), 329–338. PubMedCrossRef
72.
go back to reference Bass, E. B., Jenckes, M. W., Fink, N. E., Cagney, K. A., Wu, A. W., Sadler, J. H., et al. (1999). Use of focus groups to identify concerns about dialysis: Choice study. Medical Decision Making, 19(3), 287–295. PubMedCrossRef Bass, E. B., Jenckes, M. W., Fink, N. E., Cagney, K. A., Wu, A. W., Sadler, J. H., et al. (1999). Use of focus groups to identify concerns about dialysis: Choice study. Medical Decision Making, 19(3), 287–295. PubMedCrossRef
73.
go back to reference Cohen, S. R., Mount, B. M., Strobel, M. G., & Bui, F. (1995). The McGill quality of life questionnaire: A measure of quality of life appropriate for people with advanced disease. A preliminary study of validity and acceptability. Palliative Medicine, 9(3), 207–219. PubMedCrossRef Cohen, S. R., Mount, B. M., Strobel, M. G., & Bui, F. (1995). The McGill quality of life questionnaire: A measure of quality of life appropriate for people with advanced disease. A preliminary study of validity and acceptability. Palliative Medicine, 9(3), 207–219. PubMedCrossRef
74.
go back to reference Stewart, A. L., Teno, J., Patrick, D. L., & Lynn, J. (1999). The concept of quality of life of dying persons in the context of health care. Journal of Pain and Symptom Management, 17(2), 93–108. PubMedCrossRef Stewart, A. L., Teno, J., Patrick, D. L., & Lynn, J. (1999). The concept of quality of life of dying persons in the context of health care. Journal of Pain and Symptom Management, 17(2), 93–108. PubMedCrossRef
75.
go back to reference Byock, I. R., & Merriman, M. P. (1998). Measuring quality of life for patients with terminal illness: The Missoula-VITAS quality of life index. Palliative Medicine, 12(4), 231–244. PubMedCrossRef Byock, I. R., & Merriman, M. P. (1998). Measuring quality of life for patients with terminal illness: The Missoula-VITAS quality of life index. Palliative Medicine, 12(4), 231–244. PubMedCrossRef
76.
go back to reference Albers, G., Echteld, M. A., de Vet, H. C., Onwuteaka-Philipsen, B. D., van der Linden, M. H., & Deliens, L. (2010). Evaluation of quality-of-life measures for use in palliative care: A systematic review. Palliative Medicine, 24(1), 17–37. doi: 10.​1177/​0269216309346593​. PubMedCrossRef Albers, G., Echteld, M. A., de Vet, H. C., Onwuteaka-Philipsen, B. D., van der Linden, M. H., & Deliens, L. (2010). Evaluation of quality-of-life measures for use in palliative care: A systematic review. Palliative Medicine, 24(1), 17–37. doi: 10.​1177/​0269216309346593​. PubMedCrossRef
78.
go back to reference Schildmann, E. K., Groeneveld, E. I., Denzel, J., Brown, A., Bernhardt, F., Bailey, K., et al. (2015). Discovering the hidden benefits of cognitive interviewing in two languages: The first phase of a validation study of the integrated palliative care outcome scale. Palliative Medicine. doi: 10.​1177/​0269216315608348​. PubMedCentral Schildmann, E. K., Groeneveld, E. I., Denzel, J., Brown, A., Bernhardt, F., Bailey, K., et al. (2015). Discovering the hidden benefits of cognitive interviewing in two languages: The first phase of a validation study of the integrated palliative care outcome scale. Palliative Medicine. doi: 10.​1177/​0269216315608348​. PubMedCentral
Metagegevens
Titel
Measuring health-related quality of life in patients with conservatively managed stage 5 chronic kidney disease: limitations of the Medical Outcomes Study Short Form 36: SF-36
Auteurs
Gilli Erez
Lucy Selman
Fliss E. M. Murtagh
Publicatiedatum
13-08-2016
Uitgeverij
Springer International Publishing
Gepubliceerd in
Quality of Life Research / Uitgave 11/2016
Print ISSN: 0962-9343
Elektronisch ISSN: 1573-2649
DOI
https://doi.org/10.1007/s11136-016-1313-7