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summary

Concordance statistic (C-statistic), which is equivalent to the area under a re-
ceiver operating characteristic curve (AUC), is frequently used to quantify the
discriminatory power (the ability of the model to distinguish low and high risk
patient) of a risk prediction model developed in the logistic regression frame-
work. Several methods for estimating concordance statistics including both non-
parametric and parametric have been proposed in the literature. Despite the
several proposals of the C-statistic, it is still unclear to the practical users which
approaches should be applied in practice. This paper reviewed and evaluated
some commonly used C-statistics by illustrating them using two datasets with dif-
ferent prognostic abilities and an extensive simulation study and compared their
results to make some practical recommendations. Several simulation scenarios
were considered by varying the sample size, prevalence of the binary outcome,
and distribution of prognostic index (or log-odds) derived from the model, to
mimic the scenarios in practice. The results revealed that both non-parametric
and Kernel-smoothing based methods showed comparable results in most simu-
lation scenarios but performed better than the parametric approach particularly
for small sample situation and skewed distribution of the prognostic index. Based
on the findings of the study, some practical recommendations are discussed.
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1 Introduction

Logistic regression models are frequently used in various clinical settings such as cardiology

and oncology to predict the probability of the occurrence of a binary outcome given a specific

vector of predictors (Royston and Altman, 2010; Austin and Steyerberg, 2012). For example,

in cardiology the models may be used to predict the risk of developing a cardiovascular

disease or death due to the disease using his/her clinical and demographic characteristics.

Predictions based on these models have an important role in classifying the patients with

low-and high-risk and hence in guiding their future courses of treatment(Steyerberg et al.,

2010). Given their important role in clinical research, it is very essential to evaluate the

predictive performance of the models before using these for clinical predictions (Wyatt

and Altman, 1995; Steyerberg, 2008). To characterize the predictive performance, two key

aspects of a model are usually evaluated (Altman and Royston, 2000; Moons et al., 2009).

These include (i) ‘calibration’-the agreement between the observed and predicted outcome

of interest (ii) ‘discrimination’-the ability of the model to distinguish between high and low

risk patients. Good discrimination of a model does not necessarily imply good calibration or

vice-verse. As suggested by Harrell et al. (1996) and Pencina and D’Agostino (2004) good

discrimination should be a primary focus. This is because re-calibration is always possible,

which is not true for discrimination. This paper focuses on discrimination in the risk models

developed using logistic regression framework.

Several methods have been proposed in the literature to quantify the discrimination

ability of the logistic regression models (Steyerberg, 2008; Metz, 1978). These includes

‘discrimination slope’, ‘integrated discrimination index’ (Pencina et al., 2017), Cohen and

Hedges distance (known as ‘effect size’) and ‘overlap’ between two distributions associated

with diseased and healthy population (Royston and Altman, 2010). Of them concordance

statistic (C-statistic), which is equivalent to the area under a receiver operating character-

istic curve (AUC): the graph of sensitivity (true-positive rate) versus one minus specificity

(true-negative rate) (Harrell et al., 1996), is widely used because of its straightforward clin-

ical interpretation (Antolini et al., 2004; Austin and Steyerberg, 2012). It quantifies the

probability that, for a randomly selected pair of subjects (event vs non-event), the subject

who developed the event has higher predicted probability (or risk score) than those who

didn’t develop the event. It ranges between 0.5 and 1: a value of 0.5 suggests no discrim-

inatory ability of the model between low and high risk patients and a value of 1 suggests

perfect discrimination. There are two main approaches for estimating concordance statistics

(Faraggi and Reiser, 2002): non-parametric and parametric. The former is based on Mann-

Whitney U statistic (Mann and Whitney, 1947) while the latter is based on comparison of

distribution of prognostic index or log-odds derived from the model for subjects with event

and those without event. An alternative to the Mann-Whitney statistic approach is sug-

gested by Lloyd (Lloyd, 1998), which is based on Kernel smoothing, to obtain an estimate

of C-statistic equivalent to the area under a smooth ROC curve.

Despite the proposal of several approaches of the C-statistic, it is still unclear to the prac-

tical users which approaches should be applied in practice, particularly when developing a
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prediction model for binary outcome using logistic regression framework. This is because

the estimation and interpretation of C-statistic (or AUC) for a multivariable logistic regres-

sion model are not straightforward like a continuous diagnostic marker (or biomarker) that

frequently used to determine the state of a disease in medicine. Generally a multivariate

logistic models yield a continuous risk score or log-odds, which is a linear combination of

several predictors (mixture of both continuous and categorical) weighted by the estimated

regression coefficients, and a transformation of which gives the estimated event probability

for an individual patient. This is generally known in literature as ‘risk model’ or ‘prognostic

model’ (Moons et al., 2009). The estimated risk score is used as the proxy of continuous

biomarker when estimating C-statistics. This paper reviewed and evaluated some popular

approaches of the C-statistic for assessing discriminatory power of the logistic regression

model by illustrating them using two real datasets of different prognostic abilities and an

extensive simulation study to make some practical recommendations.

The paper is organized as follows. Section 2 describes use of logistic regression model

in risk prediction and methods for estimating C-statistics. An illustration of the methods

using two practical datasets is described in Section 3, and Section 4 describes the simula-

tion study. Section 4 ends the paper with discussion of the major findings and providing

recommendations for practical use.

2 Methodology

2.1 The Model

Let Yi, (i = 1, 2, . . . , n), be a binary outcome (0/1) for the ith subject which follows Bernoulli

distribution with the probability πi = Pr(Yi = 1). The logistic regression model can be used

to model the relationship between the outcome and predictors and to predict the probability

of the positive outcome and is defined as

logit[Pr(Yi = 1|xi)] = log
( πi

1− πi

)
= ηi = βTxi,

where βT is a vector of regression coefficients of length (p+1), and xi is the ith row vector

of the predictor matrix x which has order n × (p + 1). The term ηi = βTxi is called as

risk score or ‘prognostic index (PI)’. The parameters of the model, β, can be estimated

using maximum likelihood estimation technique. Once the estimates, β̂ are available, the

prediction can be made using the following equation:

π(β̂|xi) = [1 + exp(−β̂Txi)]−1.

2.2 C-statistics

The C-statistic quantifies the probability that, for a randomly selected pair of subjects (event

vs non-event), the predicted event probability is higher for the subject who experienced the

event of interest than those who did not experience the event. Now for a pair of subjects
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(i, j), where i and j correspond to subject who experienced the event and those who did

not, respectively, with event probabilities {π(β|xi), π(β|xj)}, the C-statistic can be defined

as

C = Pr[π(β|xi)|Yi = 1 > π(β|xi)|Yi = 0].

Since there exists a one-to-one transformation between π and βTx, the above probability

expression can be written as

C = Pr[(βTxi|Yi = 1) > (βTxj |Yj = 0)].

The C-statistic for the logistic regression models can be estimated using both paramet-

ric and nonparametric approaches (Molodianovitch et al., 2006). The widely used non-

parametric approach to estimate the C-statistic is based on the Mann and Whitney U

statistic (Mann and Whitney, 1947) and does not require any distributional assumptions

regarding the prognostic index. Let η
(1)
i = βTxi|Yi = 1 and η

(0)
j = βTxj |Yj = 0 be the

prognostic index or log-odds derived by the model for subject i who had experienced the

event and for subject j who did not, respectively. Further, let n1 and n0 be the number of

events and non-events, respectively. Considering all pairs, the concordance statistic can be

estimated by analogy to the U statistic formulation (Hanley and McNeil, 1982) as

CU =
1

n1n0

n∑
i=1

n∑
j=1

I
(
η
(1)
i > η

(0)
j

)
+

1

2
I
(
η
(1)
i = η

(0)
j

)
,

where n1 =
∑n
i=1 I(Yi = 1) and n0 =

∑n
j=1 I(Yj = 0) and I(·) is the indicator function.

An asymptotic confidence interval for true CU can be derived assuming that
(
ĈU −

CU
)
/

√
v̂ar[ĈU ] is asymptotically N(0, 1). The 100(1− α)% confidence interval for CU can

be obtained as (
ĈU − Zα/2

√
v̂ar[ĈU ], ĈU + Zα/2

√
v̂ar[ĈU ]

)
,

where Zα/2 is the upper α/2 percentile of standard normal distribution. Several approaches

have been proposed to estimate the variance of the area under ROC curve (Hanley and

McNeil, 1982; DeLong et al., 1988). However, it can be showed that all these approaches

are approximately equivalent when sample size is large. In this paper, the method of DeLong

et al. (1988) is adapted to derive the variance expression of CU for logistic regression model

as:

v̂ar[ĈU ] =
1

n1
SU10 +

1

n0
SU01,

where

SU10 = (n1 − 1)−1
n1∑
i=1

(
V U10 − ĈU

)2
SU01 = (n0 − 1)−1

n0∑
j=1

(
V U01 − ĈU

)2
V U10 = n−1

0

n0∑
j=1

I
(
η
(1)
i , η

(0)
j

)
for all η

(1)
i V U01 = n−1

1

n1∑
i=1

I
(
η
(0)
j , η

(1)
i

)
for all η

(0)
j .
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To obtain C-statistic from the area under a smooth ROC curve, an alternative to the

above estimator suggested by (Lloyd, 1998) is based on standard normal Kernel smoothing.

The resulting Kernel estimate of the C-statistic can be written as

CK =
1

n1n0

n1∑
i=1

n0∑
j=1

Φ

(
η
(1)
i − η

(0)
j√

h21 + h20

)
,

where h0 and h1 are the bandwidth that control the degree of smoothing in estimat-

ing CDF of η
(0)
i and η(1), respectively. There are several choices of bandwidth selection

(Zhou and Harezlak, 2002; Hall and Hyndman, 2003; Pulit, 2016). The general choice is

h1 = 0.9 min(s1, IQR1/1.34)n
−1/5
1 , where s1 and IQR1 are the standard deviation and in-

ter quartile range of risk score η
(1)
i and Φ(.) is the standard normal cumulative distribution

function. Similarly one can define h0 for risk score η
(0)
i . The asymptotic confidence interval

for the true CK can be obtained using the same approach discussed for CU .

In addition to the non-parametric approaches, the C-statistics can be estimated para-

metrically as follows. Based on the central limit theorem, the prognostic score ηi is likely to

follow normal distribution as the dimension of the parameter vector β increases (Choodari-

Oskooei et al., 2012). The parametric approach is based on the assumption of bi-normal

distribution of the prognostic score. Mathematically, assume that

η
(1)
i = (βTxi|Yi = 1) ∼ N(µ1, σ

2
1) and η

(0)
j = (βTxj |Yj = 1) ∼ N(µ0, σ

2
0).

Therefore, η
(1)
i − η

(0)
j ∼ N(µ1 − µ0, σ

2
1 + σ2

0). The parametric C-statistic

CP = Pr[η
(1)
i > η

(0)
j ]

can be obtained after standardizing the term η
(1)
i − η

(0)
j as

CP = Pr

[
Z <

µ1 − µ0√
σ2
1 + σ2

0

]
= Φ

(
µ1 − µ0√
σ2
1 + σ2

0

)
,

where Z ∼ (0, 1) and Φ(.) is the standard normal CDF. The estimate of the CP can be

obtained by replacing µ1, µ0 and σ2
1 , σ2

0 by their sample estimates (MLEs) x̄1, x̄0 and s21,

s22, respectively. An approximate 100(1 − α)% confidence interval interval for the true CP
is given by {

Φ
(
δ̂ − Zα/2

√
V̂ar ˆ(δ)

)
,Φ
(
δ̂ − Zα/2

√
V̂ar ˆ(δ)

)}
,

where Zα/2 is the (1−α/2) standard normal percentile and δ = (µ1−µ2)(σ2
1 +σ2

0)−1/2 and

Var(δ̂) given below can be estimated using Delta method provided that the variances of µ̂1,

µ̂0, σ̂2
1 and σ̂2

0 are available from the inverse of the Fisher information matrix obtained from

the maximum likelihood procedure for bi-normal distribution:

V̂ar ˆ(δ) =
[ σ̂2

1

n1
+
σ̂2
0

n0

]
× (σ̂2

1 + σ̂2
0)−1 +

(µ̂1 − µ̂2)2

4(σ̂2
1 + σ̂2

0)3
×
[ 2σ̂4

1

n1 − 1
+

2σ̂4
0

n0 − 1

]
.
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For more details on using Delta method for estimating variance see elsewhere (Reiser, 2000;

Faraggi, 2000).

3 Illustration using Practical Data

First we describe illustration of the C-statistics using two datasets with different prognostic

abilities to see if there is any difference in the estimate of the C-statistics for each dataset

and between the datasets. One case study is based on data for low birth weight of new born

and the other is based on data for a patients at ICU in hospital. Details of the data and

analysis are discussed below.

Low Birth Weight Data

Low birth weight (LBW<2500 gm) is an adverse pregnancy outcome that has been of

concern to physicians for years. This is due to the fact that infant mortality rates and birth

defect rates are very high for low birth weight babies. A woman’s lifestyle during pregnancy

including diet, smoking habits, and receiving prenatal care can greatly alter the chances of

carrying the baby to term and, consequently, of delivering a baby of normal birth weight.

Data were collected on 189 women, 59 of which had low birth weight babies and 130 of

which had normal birth weight babies. The predictors of interest were age of mother in years

(AGE), weight in pounds at the last menstrual period (LWT), RACE (white, black, other),

smoking status during pregnancy (SMOKE: yes, no), history of premature labor (PTL: none,

at least one), history of hypertension (HT: yes, no), presence of uterine irritability (UI: yes,

no). For more details about the data, see elsewhere (Hosmer Jr et al., 2013). The main

focus here is to illustrate the C-statistics under study for assessing discriminatory power of

the risk model developed in the logistic regression framework to predict the risk of having

child with LBW.

Based on the literature model on low birth weight data and exploratory analysis (results

not shown), the model we developed for predicting risk of having child with LBW has the

following prognostic index:

η̂(x)lbw = β̂x = 0.633− 0.038 ∗AGE− 0.015 ∗ LWT + 1.212 ∗ RACE (black)

+0.805 ∗ RACE (other) + 0.846 ∗ SMOKE (yes) + 1.222 ∗ PTL (one or more)

+1.837 ∗HT (yes) + 0.711 ∗UI (yes).

Prediction (the risk of having child with LBW) can be made as π̂(x) = [1+exp(−η̂(x)lbw)]−1

for a subject with values for each of the predictors, x. The distribution of the prognostic

scores derived from the model for women having child with LBW and those having child

without LBW indicates that there is quite difference between two distributions suggesting

a certain amount of discrimination between the groups (Figure 1a). The corresponding C-

statistics suggest that the model has strong ability to discriminate the subjects with event

from those without event (Table 1).
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The ICU Data

This dataset (Hosmer Jr et al., 2013) contains the information of 200 patients following ad-

mission to an adult intensive care unit (ICU), of which 40 patients were died in ICU. Vital

status (alive/died) of patients after the admission in the ICU depends mostly in some clin-

ical and demographic factors such as age of the patients, service at ICU admission, history

of chronic renal failure, sex, systolic blood pressure at ICU admission etc. The predictors

of interest were AGE, SEX (male, female), service at ICU admission (SER: medical, surgi-

cal), cancer part of present problem (CAN: no, yes), history of chronic renal failure (CRN:

no, yes), infection probable at ICU admission (INF: no, yes)), CPR prior to ICU admis-

sion (CPR: no, yes)), systolic blood pressure at ICU admission (SYS), heart rate at ICU

admission (HRA), previous admission to an ICU within 6 months (PRE: no, yes), type of

admission (TYP:elective,emergency), fracture (FRA: no, yes) creatinine from initial blood

gases (CRE:cre≤2.0, cre>2.0) and level of consciousness at ICU admission (LOC:no, deep

stupor, coma). The main objective here is to develop a risk model to predict the risk of

mortality in ICU and assess its discriminatory ability using C-statistics. Based on literature

model and exploratory analysis (results not shown), the model developed for predicting the

risk of ICU mortality consists of the following prognostic index:

η̂(x)icu = β̂x = −3.608 + 0.034 ∗AGE0.759 ∗ CRN (yes) + 1.185 ∗ CPR (yes)

−0.014 ∗ SYS + 2.048 ∗ TYP (emergency) + 0.268 ∗ FRA (yes)

The distribution of the prognostic index derived from the model for the patient experienced

event and those who didn’t suggest that there is a quite strong discrimination between two

groups of the patients (Figure 1b). The estimates of the C-statistics suggest that the model

has strong ability to discriminate the patients who experienced the event from the counter

group (Table 1).

Table 1: Estimated C-statistics for the model for both LBW and ICU data

LBW ICU

C-stat. Est. SE 90% CI Est. SE 90% CI

CU 0.7462 0.0375 [0.6844, 0.8079] 0.7901 0.0429 [0.7195, 0.8607]

CK 0.7464 0.0375 [0.6845, 0.8081] 0.7902 0.0429 [0.7196, 0.8608]

CP 0.7505 0.1155 [0.6865, 0.8068] 0.7858 0.1365 [0.7148, 0.8454]

Comparing the results for two datasets, the model for ICU patients is reported to show

stronger discriminatory power than that for LBW data. For the both models, the estimates

of CU and CK and their standard error are observed to be quite similar, however, the

estimates of CP and its standard error is quite different from those for CU and CK , given

the distribution of the prognostic index between the subjects with event and those without
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Figure 1: Visualization of the observed discrimination between event vs non-event derived
from the respective data.

event were approximately normal. These findings motivated us to perform a simulation

study to assess some statistical properties of a good estimator of the C-statistic and compare

their results for practical recommendations.

4 Simulation Study

4.1 Simulation Design

The performance of different versions of the C-statistic was investigated using an extensive

simulation study based on LBW data. More specifically, without generating all the risk

factors (covariates) in the original data, we generated only binary outcome from Bernoulli

distribution with probability (π̂) derived from a true logistic model fitted using the LBW

data. The model we developed for LBW data in section 3 was considered as true model. As

distributional assumption of parametric approach of C-statistic is required, some simulation

scenarios were created varying the shape of the distribution of the prognostic index as i)
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bell shaped (normal), ii) right skewed, and iii) left skewed. Under each of the distributional

scenarios, four scenarios were created by varying the prevalence as 45%, 30%, 20%, and 10%

to mimic the scenarios with low to high prevalence of the binary outcome of interest. Under

each of these scenarios, data were generated for different sample sizes such as 189, 100, 75,

and 50, altogether for 16 scenarios. The sample size 189 represent the size of the original

data and all other sample scenarios were created by taking a random sample of required size

from 189. Under each simulation scenarios, a total of 1000 replicated datasets of the same

size were generated. For each dataset, we developed a model and estimated each of the

C-statistics (CU , CK , and CP ) under study. Finally bias, mean squared errors (MSE) and

coverage for each estimator were reported. The bias was calculated as the difference between

the estimate (average over 1000 replications) and the true C-statistic (derived for the true

model). The MSE was calculated as mean of the squared differences between the estimated

and true value over 1000 simulations and the coverage was calculated as the proportion of

the 90% CIs out of 1000 containing the true C.

4.2 Simulation Results

The simulation results obtained considering the normal (bell-shaped) distribution of prog-

nostic index associated with the true model were summarized in Table 2. The Table 2

suggest that, in general for all types of C-statistic, the amount of bias increase with the de-

creasing sample size, which is true for all scenarios with both high and low prevalence rate

of the binary outcome. The amount of bias was greater for the parametric CP compared to

CU and CK , particularly for small sample situation. The MSE value, in general, increases

with the decreasing sample size. When the sample size is small (50), lower MSE values are

observed for CU and CK compared to CP . When assessing against the varying prevalence

rate of binary outcome, both the bias and MSE increased with decreasing prevalence rate,

and the amount of bias and MSE is comparatively higher for low prevalence rate (Table 2).

In terms of coverage of 90% CI for true C, both CU and CK showed better performance

than CP particularly when sample size is small. Both non-parametric and smooth estima-

tors (CU , CK) showed comparable results in all simulation scenarios under the bell-shaped

distribution of the prognostic index.

When assessing the performance of the C-statistics under the right skewed distribution

of the prognostic index derived from the model, the results suggest that both bias and MSE

increase with decreasing sample size, which is true for all types of the C-statistic (Table

3). Of them, CP showed greater amount of bias compared to those associated with the

CU , CK for all scenarios under the right skewed distribution. Although the MSE for CP
is comparatively lower than those associated with the other C-statistics under study when

sample size is large but higher when sample size is small (50). In terms of coverage, both the

CU and CK showed better performance than that associated with CP . Similar results can

be observed for all simulation scenarios under the left skewed distribution of the prognostic

index (Table 4). The amount of bias for all types of C-statistic for all scenarios under skewed

(both left and right skewed) prognostic index are slightly larger than those associated with
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Table 2: Empirical comparison of concordance statistics when the distribution of prognostic
score is normal distribution

Prev. Sample size C-statistic Estimate Bias MSE Coverage

45% 189 CU 0.74639 0.00039 0.00108 0.918

CK 0.74639 0.00039 0.00108 0.918

CP 0.74702 0.00102 0.00105 0.922

100 CU 0.74744 0.00144 0.00216 0.906

CK 0.74744 0.00144 0.00215 0.906

CP 0.74747 0.00147 0.00192 0.924

75 CU 0.76083 0.01483 0.00332 0.868

CK 0.76084 0.01484 0.00332 0.870

CP 0.76199 0.01599 0.00294 0.918

50 CU 0.72038 -0.02563 0.00698 0.912

CK 0.72033 -0.02567 0.00699 0.910

CP 0.64758 -0.09843 0.01005 0.994

30% 189 CU 0.74853 -0.00147 0.00130 0.906

CK 0.74852 -0.00148 0.00130 0.906

CP 0.74969 -0.00031 0.00125 0.904

100 CU 0.75167 0.00167 0.00236 0.910

CK 0.75168 0.00168 0.00236 0.910

CP 0.75184 0.00184 0.00215 0.930

75 CU 0.76591 0.01591 0.00317 0.876

CK 0.76594 0.01594 0.00318 0.876

CP 0.76729 0.01729 0.00299 0.906

50 CU 0.72143 -0.02857 0.00762 0.902

CK 0.72139 -0.02861 0.00761 0.902

CP 0.64694 -0.10307 0.01098 0.994

20% 189 CU 0.75527 0.00227 0.00143 0.918

CK 0.75526 0.00226 0.00143 0.920

CP 0.75615 0.00315 0.00133 0.932

100 CU 0.75030 0.00269 0.00328 0.892

CK 0.75032 0.00267 0.00327 0.890

CP 0.74911 -0.00389 0.00305 0.908

75 CU 0.77109 0.01809 0.00468 0.856

CK 0.77102 0.01802 0.00467 0.858

CP 0.77129 0.01829 0.00434 0.894

50 CU 0.72313 -0.02987 0.00769 0.912

CK 0.72301 -0.02999 0.00766 0.918

CP 0.65809 -0.09492 0.00945 1.000

10% 189 CU 0.75736 -0.00264 0.00319 0.904

CK 0.75733 -0.00267 0.00319 0.908

CP 0.75721 -0.00279 0.00321 0.890

100 CU 0.75661 -0.00339 0.00475 0.894

CK 0.75661 -0.00339 0.00475 0.894

CP 0.75559 -0.00441 0.00419 0.918

75 CU 0.78224 0.02224 0.00714 0.830

CK 0.78231 0.02231 0.00710 0.830

CP 0.78199 0.02299 0.00692 0.872

50 CU 0.79238 0.03238 0.01738 0.844

CK 0.76010 0.00010 0.00927 0.900

CP 0.71708 0.04292 0.00299 0.994
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the scenarios under the bell-shaped (normally distributed) prognostic index. Both CU and

CK showed comparable results for all scenarios under the skewed distribution.

Table 3: Empirical comparison of concordance statistic for right skewed distribution of the
prognostic score

Prev. Sample size C-statistics Estimate Bias MSE Coverage

45% 189 CU 0.70204 0.00304 0.00139 0.908
CK 0.70205 0.00305 0.00139 0.908
CP 0.69381 -0.00519 0.00039 0.998

100 CU 0.70226 0.00326 0.00235 0.916
CK 0.70222 0.00322 0.00235 0.918
CP 0.68074 -0.01826 0.00086 0.980

75 CU 0.68681 -0.01219 0.00380 0.906
CK 0.68679 -0.01221 0.00380 0.908
CP 0.69078 -0.00823 0.00071 0.990

50 CU 0.63857 -0.06043 0.01022 0.844
CK 0.63852 -0.06048 0.01023 0.848
CP 0.56863 -0.13037 0.01701 0.014

10% 189 CU 0.54562 0.00862 0.00187 0.884
CK 0.54562 0.00862 0.00187 0.884
CP 0.55712 0.02012 0.00192 0.876

100 CU 0.55334 0.01634 0.00294 0.922
CK 0.55333 0.01633 0.00294 0.922
CP 0.56856 0.03156 0.00305 0.902

75 CU 0.56627 0.02927 0.00479 0.882
CK 0.56628 0.02928 0.00479 0.884
CP 0.59015 0.05315 0.00616 0.802

50 CU 0.52794 -0.00907 0.00649 0.916
CK 0.52791 -0.00909 0.00649 0.916
CP 0.57752 0.04052 0.00167 0.990

5 Discussion

The concordance statistic (C-statistic) is frequently used to assess the discriminatory ability

of a risk model developed in the logistic regression framework for binary data. Given the

several approaches of the C-statistics in the literature, this paper evaluated some commonly

used C-statistics by an extensive simulation study and illustrating them using two datasets

of different prognostic abilities and compared their performance in order to make practical
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Table 4: Empirical comparison of concordance statistic for left skewed distribution of the
prognostic score

Prev. Sample size C-statistics Estimate Bias MSE Coverage

45% 189 CU 0.79052 0.00552 0.00088 0.922
CK 0.79055 0.00556 0.00087 0.922
CP 0.77477 -0.01023 0.00030 0.994

100 CU 0.79399 0.00899 0.00164 0.904
CK 0.79396 0.00896 0.00164 0.902
CP 0.75776 -0.02724 0.00098 0.988

75 CU 0.79698 0.01198 0.00251 0.878
CK 0.79689 0.01189 0.00249 0.880
CP 0.77182 -0.01318 0.00043 0.990

50 CU 0.73734 -0.04766 0.00693 0.878
CK 0.73734 -0.04766 0.00687 0.874
CP 0.56838 -0.21662 0.04693 0.010

10% 189 CU 0.95115 0.00415 0.00037 0.842
CK 0.95115 0.00415 0.00364 0.846
CP 0.90344 -0.04357 0.00202 0.061

100 CU 0.96152 0.01453 0.00053 0.658
CK 0.96165 0.01465 0.00053 0.656
CP 0.91825 -0.02875 0.00094 0.326

75 CU 0.95302 0.00602 0.00077 0.820
CK 0.95257 0.00557 0.00074 0.813
CP 0.89346 -0.05354 0.00311 0.049

50 CU 0.57601 -0.37098 0.17672 0.978
CK 0.42374 -0.52326 0.30323 0.233
CP 0.28923 -0.65778 0.43382 0.072

recommendations. Illustration using two datasets of different prognostic abilities suggest

that there are some differences in the estimates between the C-statistics under study prob-

ably due to the difference in the prevalence of the binary outcome, sample size, and the

distribution of the prognostic score derived from the model. Further, the simulation studies

based on low-birth weight data suggest that all the C-statistics (CU , CK , and CP ) provide

comparable results when the distribution of the prognostic index derived from the model is

normal and sample size is large. However, all of them showed increasing bias and MSE with

decreasing sample size and the proportion of binary outcome, and greater bias and MSE for

the skewed distribution of the prognostic index. Of them, the parametric C-statistic, CP ,

showed worst performance by providing largest amount of bias and MSE and poor coverage

probability when sample is small or prevalence of binary outcome is low or distribution of

the prognostic index is skewed or any combination of these scenarios. Both the CU and CK
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showed comparable results in most simulation scenarios.

The reason for the poor performance of the parametric C-statistic (CP ) when sample size

is small or prevalence of the binary outcome is low is violation of the normality assumption

for the prognostic index derived form the model. Whereas the non-parametric C-statistics

(CU and CK) do not require such assumption and hence showed better performance. How-

ever, the only advantage of parametric approach is the simplicity of the estimation of the

confidence interval using well known delta method (Reiser, 2000; Faraggi, 2000) over the

non-parametric approaches suggested by DeLong et al. (1988). With respect to compu-

tational aspects, all types of C-statistics, particularly CP , are easier to implement in the

standard statistical software. In addition, several packages and functions are available in the

commonly used statistical software such as R, Stata, and SAS. For example, the packages

lroc, and roctab for non-parametric CU , rocfit for parametric CP are available in Stata;

pAUC, PRROC and ROCit for CU in R; and PROC LOGISTIC for both CU and CP in SAS.

This study restricts the illustration of the methods using only two practical datasets

and a simulation study based on one of these datasets, where simulation scenario were

created considering maximum sample size of 189, which is equal to the sample size of the

original dataset. Further simulation could be possible by creating simulation scenarios of

very large sample size (larger than 189) to check if there is any difference in the results

between different types of C-statistics under study. However, for the scenario with sample

size 189, all the methods under study showed comparable results, suggesting similar results

will be found for the simulation with large sample size. We actually tried here to create some

simulation scenarios that reflect the characteristics of the practical data that we have. This

does not mean that the methods have limited use to other datasets. We therefore discuss

some guidelines, based on the findings of the study and software availability, for practical

users of the C-statistics as follows.

If the sample size is large and distribution of the prognostic index derived from the

model is normal, one can apply one of the C-statistics under study as all they perform

equally for those situations. However, the parametric CP could be a reasonable option as

it easier to implement in most statistical software. For any other conditions, that is, if the

distribution of the prognostic index is skewed or sample size is small or prevalence of outcome

is low or any combination of these conditions exists, one may consider either of the non-

parametric method, CU , or Kernel based method, CK , as both perform equally. Between

these two C-statistics, the CK requires appropriate choice of bandwidth selection and self-

written program for implementation because of limited availability of programs in statistical

software. However, the CU overcomes all of these constraints and hence recommended to use

in practice. Finally, we recommend to check the sample size, the prevalence of the binary

outcome, and the distribution of the prognostic index derived from the risk model before

selecting an appropriate estimator of the C-statistic for assessing the discriminatory power

of the risk model developed in the logistic regression framework.
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