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Background
The analysis of time-to-event data in human and animal studies 

presents several statistical challenges. In addition to the familiar 
problem of censored observations, there may be multiple types of 
failure under consideration (the “competing risk problem” [1]); 
clinically relevant outcomes other than failure may be observed during 
follow-up [2], including those that alter the risk of failure or can occur 
more than once [3,4]; and individual susceptibility to failure (i.e., 
frailty) may not be constant over time [5]. While traditional time-to-
event analysis methods like Kaplan-Meier product-limit estimation 
and Cox proportional hazards regression are implemented easily and 
use censored data efficiently when the assumption of uninformative 
censoring holds, analyses involving informative censoring, multiple 
outcomes, or non-constant survival probabilities may be well suited 
for application of Markov processes [6]. A contemporary approach 
to the informative censoring problem in Cox regression involves a 
multivariate survival analysis [7]. 

Markov Processes
A Markov process is a stochastic process that describes the 

movement of an individual through a finite number of defined states, 
one (and only one) of which must contain the individual at any 
particular time. Possible movements among states may be depicted with 
a transition matrix or state diagram [2,3,6]. In order for the process to 
terminate, at least one of the states must be absorbing, i.e., individuals 
have zero probability of leaving the state once it has been entered. 
Death, for example, is an absorbing state used commonly in clinical 
studies, but it is also a well-known competing risk for clinical outcomes 
in studies of older persons [2,4]. Markov processes may be continuous 
or discrete as well as time-homogeneous or time-nonhomogeneous. 
The focus of this editorial will be discrete, time-homogeneous Markov 
processes called Markov chains.

Markov Chains 
Markov chain models allow analysts to calculate the probability and 

rate (or intensity) of movement associated with each transition between 
states within a single observation cycle as well as the approximate 
number of cycles spent in a particular state. When observations are 
made at regular intervals, the number of cycles can be interpreted 
as time in a state. Time spent in all states prior to absorption can be 
summed to estimate the total survival time. Use of Markov chains 
requires two fundamental assumptions: (i) transition probabilities are 

constant over time (time homogeneity); and (ii) the probability of the 
next transition depends only on the current state (the first-order Markov 
property). These models are attractive for time-to-event analysis. They 
accommodate the simultaneous analysis of multiple events of interest 
and inclusion of competing risks through the states defined in the 
model, as well as consideration of individual frailty through subject-
specific random effects [8,9]. 

Censored data, both right and left, are appropriate for Markov 
chains. In a Markov chain model, for example, an individual who never 
reaches an absorbing state (right-censored)—whether because the 
study observation is ongoing or the subject has withdrawn or been lost 
to follow up—can contribute information to the model regarding the 
transitions he or she did make, which is an advantage over traditional 
survival analysis methodology [6]. Because individuals are not required 
to enter the transition matrix in any particular state, left-censored 
data are also accommodated. Interval censoring is not formally 
accommodated in Markov chains, which assume that transitions take 
place only once per observation cycle, either at the beginning or the 
end. In reality, transitions make take place at any time, and multiple 
unobserved transitions may take place between cycle assessments. 
Approaches such as the half-cycle correction, where transitions are 
assumed to occur in the middle of the observation cycle [3], have been 
proposed to mitigate bias resulting from assuming that transitions take 
place only at the cycle’s beginning or end. If the clinical model and data 
structure support the assumption that all transitions are unidirectional 
(i.e., no reverse transitions are possible), a semi-Markov model, which 
is a special case of Markov chain where the time spent in the current 
state depends on both the prior and future adjoining states [10], could 
be considered for interval censored data [4,10].

Finally, unlike traditional time-to-event analysis where only one 
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Abstract
A variety of statistical methods are available to investigators for analysis of time-to-event data, often referred to as 

survival analysis. Kaplan-Meier estimation and Cox proportional hazards regression are commonly employed tools but 
are not appropriate for all studies, particularly in the presence of competing risks and when multiple or recurrent outcomes 
are of interest. Markov chain models can accommodate censored data, competing risks (informative censoring), multiple 
outcomes, recurrent outcomes, frailty, and non-constant survival probabilities. Markov chain models, though often 
overlooked by investigators in time-to-event analysis, have long been used in clinical studies and have widespread 
application in other fields.
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outcome is possible for each individual, Markov chains allow analysts to 
calculate survival times in multiple states. This is particularly attractive 
for studies of chronic diseases with well-defined phases, like cancer 
[11] and autoimmune diseases [12], where remission and recurrence 
are of interest in addition to overall survival, and dementia due to 
neurodegenerative disease, where pre-clinical and mildly symptomatic 
disease states are increasingly of interest to researchers working to 
identify treatments and prevention strategies [2,4]. As with traditional 
time-to-event analysis, survival curves may be estimated from model 
results [13]. Mean survival times may be inferred using matrix solution, 
Markov cohort simulation, or Markov Chain Monte Carlo simulation 
[3]. These calculations are more cumbersome, but still possible, when 
transition probability estimates are derived from covariate-adjusted 
regression models [14]. By contrast, semi-Markov models estimate mean 
survival times directly without the need for additional calculations [4]. 

Verifying Model Assumptions
The time homogeneity assumption can be assessed with a 

likelihood ratio test, and the first-order Markov property assumption 
can be examined with a chi-square test [6,15]. The time homogeneity 
assumption is often difficult to meet, particularly in studies of chronic 
disease where studies are years long, single observation cycles can span 
a year or more, and increasing age generally corresponds to greater 
risk of disease or death. However, this concern can be mitigated by 
data stratification (e.g., by age group or study period) or regression 
modeling, where the effect of covariates is included in the estimation 
of transition probabilities [16]. In regression, covariates may be either 
fixed or time-dependent.

Even when the fundamental model assumptions are met, 
application of the Markov chain model may still be unsuccessful. Data 
density, i.e., the observed frequency of each transition type, may be too 
sparse in some cells to implement the regression model. Sparse cells, 
where few events are observed, may lead to inaccurate estimation or 
prevent model convergence. In addition, there is no widely accepted 
goodness of fit test for the model.

Conclusion
Although Markov models have been used in clinical applications for 

over 60 years [17], incorporation of subject-specific random effects in 
Markov chains to account for individual propensity to make transitions 
is a relatively recent development [7]. However, inclusion of random 
effects makes estimation of the likelihood quite complex, and fitting 
such models can be time consuming. More importantly, their meaning 
must be carefully considered. Models that utilize tunnel states (i.e., 
non-absorbing states from which reverse transitions are not possible) 
[3], for example, complicate the use of random effects. 

In closing, Markov chains are useful tools for survival analysis that 
allow for more nuanced modeling than is available in most standard 
time-to-event methods. While the focus of this editorial has been 
clinical studies, Markov chains have clear applications in diverse fields 
including labor research [18], finance [19], political science [20], 
chemical engineering [21], and demography [22]. However, while many 
journal readers and reviewers may readily comprehend the results 
from Markov models, they may lack familiarity with the underlying 
statistical assumptions, particularly in fields where the use of Markov 
models is not yet widespread. If so, they may neglect to challenge 
investigators to demonstrate that these assumptions are tenable. Given 
that improper use of Markov models may result in biased estimation, 
perhaps some standardization in the reporting of Markov model results 
and assumption verification is needed.
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