A Comparative Biomechanical Analysis the Vertical Jump between Flatfoot and Normal Foot

Article Preview

Abstract:

Flatfoot has been one of the most common foot deformity, which gives rise to several malfunctions or disoders to the foot and lower extremity. Difference between flatfoot and normal foot mainly present in the middle foot, while few is known about the biomechanical difference under barefoot vertical jump. The objective of this study is to investigate the difference of flatfoot and normal foot while vertical jumping under barefoot condition. Twenty males (ten with flatfoot and ten with normal foot) volunteered to participate in this study. Foot morphology was measured with Easy-Foot-Scan. Foot kinetics and joint kinematics were obtained from EMED force platform and Vicon motion analysis system. Results showed that flatfoot group had a significantly larger peak pressure in the region of hallux and larger contact area of center forefoot than that of normal foot group, and larger contact area in medial midfoot. The flatfoot group presented larger plantarflexion and smaller external rotation to the ankle, and larger flexion and abduction and smaller external rotation to the knee than normal foot group during vertical jump. It can be concluded that people with flat-arched feet may have a poorer ability of self-regulation when facing a movement with rapid impact force like vertical jump, which will increase the risk of injuries. This information will be valuable for future work in structure, function and potential treatment of low arched feet.

You might also be interested in these eBooks

Info:

Pages:

26-35

Citation:

Online since:

July 2016

Export:

Price:

* - Corresponding Author

[1] Tang, S. F. T., Chen, C. H., Wu, C. K., Hong, W. H., Chen, K. J., & Chen, C. K. (2015).

Google Scholar

[2] Williams III, D. S., McClay, I. S., & Hamill, J. (2001). Arch structure and injury patterns in runners. Clinical biomechanics, 16(4), 341-347.

DOI: 10.1016/s0268-0033(01)00005-5

Google Scholar

[3] Burns, J., Crosbie, J., Hunt, A., & Ouvrier, R. (2005). The effect of pes cavus on foot pain and plantar pressure. Clinical Biomechanics, 20(9), 877-882.

DOI: 10.1016/j.clinbiomech.2005.03.006

Google Scholar

[4] Sneyers, C. J. L., Lysens, R., Feys, H., & Andries, R. (1995). Influence of malalignment of feet on the plantar pressure pattern in running. Foot & ankle international, 16(10), 624-632.

DOI: 10.1177/107110079501601008

Google Scholar

[5] Ledoux, W. R., & Hillstrom, H. J. (2002). The distributed plantar vertical force of neutrally aligned and pes planus feet. Gait & posture, 15(1), 1-9.

DOI: 10.1016/s0966-6362(01)00165-5

Google Scholar

[6] Kaufman, K. R., Brodine, S. K., Shaffer, R. A., Johnson, C. W., & Cullison, T. R. (1999). The effect of foot structure and range of motion on musculoskeletal overuse injuries. The American Journal of Sports Medicine, 27(5), 585-593.

DOI: 10.1177/03635465990270050701

Google Scholar

[7] Simkin, A., Leichter, I., Giladi, M., Stein, M., & Milgrom, C. (1989). Combined effect of foot arch structure and an orthotic device on stress fractures. Foot & Ankle International, 10(1), 25-29.

DOI: 10.1177/107110078901000105

Google Scholar

[8] Clarke, T. E., Frederick, E. C., & Hamill, C. L. (1982). The effects of shoe design parameters on rearfoot control in running. Medicine and Science in Sports and Exercise, 15(5), 376-381.

DOI: 10.1249/00005768-198315050-00006

Google Scholar

[9] Frederick, E. C. (1986). Kinematically mediated effects of sport shoe design: A review. Journal of sports sciences, 4(3), 169-184.

DOI: 10.1080/02640418608732116

Google Scholar

[10] Nigg, B. M., & Bahlsen, H. A. (1988). Influence of heel flare and midsole construction on pronation, supination, and impact forces for heel-toe running. International Journal of Sport Biomechanics, 4(3), 205-219.

DOI: 10.1123/ijsb.4.3.205

Google Scholar

[11] Michelson, J. D., Durant, D. M., & McFarland, E. (2002). The injury risk associated with pes planus in athletes. Foot & ankle international, 23(7), 629-633.

DOI: 10.1177/107110070202300708

Google Scholar

[12] Kanatli, U., Yetkin, H., & Yalcin, N. (2003). The relationship between accessory navicular and medial longitudinal arch: evaluation with a plantar pressure distribution measurement system. Foot & ankle international, 24(6), 486-489.

DOI: 10.1177/107110070302400606

Google Scholar

[13] Burns, J., Keenan, A. M., & Redmond, A. (2005). Foot type and overuse injury in triathletes. Journal of the American Podiatric Medical Association, 95(3), 235-241.

DOI: 10.7547/0950235

Google Scholar

[14] Jones, B. H., Thacker, S. B., Gilchrist, J., Kimsey, C. D., & Sosin, D. M. (2002). Prevention of lower extremity stress fractures in athletes and soldiers: a systematic review. Epidemiologic reviews, 24(2), 228-247.

DOI: 10.1093/epirev/mxf011

Google Scholar

[15] Vint, P. F., & Hinrichs, R. N. (1996). Differences between one-foot and two-foot vertical jump performances. Journal of Applied biomechanics, 12, 338-358.

DOI: 10.1123/jab.12.3.338

Google Scholar

[16] Sargent, D. A. (1921). The physical test of a man. American physical education review, 26(4), 188-194.

DOI: 10.1080/23267224.1921.10650486

Google Scholar

[17] Chuckpaiwong, B., Nunley, J. A., Mall, N. A., & Queen, R. M. (2008). The effect of foot type on in-shoe plantar pressure during walking and running. Gait & posture, 28(3), 405-411.

DOI: 10.1016/j.gaitpost.2008.01.012

Google Scholar

[18] Murray, M. P., Drought, A. B., & Kory, R. C. (1964). Walking patterns of normal men. J Bone Joint Surg Am, 46(2), 335-360.

DOI: 10.2106/00004623-196446020-00009

Google Scholar

[19] McPoil, T. G., & Knecht, H. G. (1985). Biomechanics of the foot in walking: a function approach. Journal of Orthopaedic & Sports Physical Therapy, 7(2), 69-72.

DOI: 10.2519/jospt.1985.7.2.69

Google Scholar

[20] Cavanagh, P. R., & Rodgers, M. M. (1987). The arch index: a useful measure from footprints. Journal of biomechanics, 20(5), 547-551.

DOI: 10.1016/0021-9290(87)90255-7

Google Scholar

[21] Nawoczenski, D. A., Saltzman, C. L., & Cook, T. M. (1998). The effect of foot structure on the three-dimensional kinematic coupling behavior of the leg and rear foot. Physical therapy, 78(4), 404-416.

DOI: 10.1093/ptj/78.4.404

Google Scholar

[22] Fiolkowski, P., Brunt, D., Bishop, M., Woo, R., & Horodyski, M. (2003). Intrinsic pedal musculature support of the medial longitudinal arch: an electromyography study. The Journal of foot and ankle surgery, 42(6), 327-333.

DOI: 10.1053/j.jfas.2003.10.003

Google Scholar

[23] Franco, A. H. (1987). Pes cavus and pes planus analyses and treatment. Physical Therapy, 67(5), 688-694.

DOI: 10.1093/ptj/67.5.688

Google Scholar

[24] Olson, T. R., & Seidel, M. R. (1983). The evolutionary basis of some clinical disorders of the human foot: a comparative survey of the living primates. Foot & Ankle International, 3(6), 322-341.

DOI: 10.1177/107110078300300603

Google Scholar

[25] Gray, E. G., & Basmajian, J. V. (1968). Electromyography and cinematography of leg and foot (normal, and flat) during walking. The anatomical record, 161(1), 1-15.

DOI: 10.1002/ar.1091610101

Google Scholar

[26] Ferris, L., Sharkey, N. A., Smith, T. S., & Matthews, D. K. (1995). Influence of extrinsic plantar flexors on forefoot loading during heel rise. Foot & Ankle International, 16(8), 464-473.

DOI: 10.1177/107110079501600802

Google Scholar

[27] Kaye, R. A., & Jahss, M. H. (1991). Foot fellows review: tibialis posterior: a review of anatomy and biomechanics in relation to support of the medial longitudinal arch. Foot & Ankle International, 11(4), 244-247.

DOI: 10.1177/107110079101100414

Google Scholar

[28] Williams, D. S., McClay, I. S., Hamill, J., & Buchanan, T. S. (2001). Lower extremity kinematic and kinetic differences in runners with high and low arches. Journal of Applied Biomechanics, 17(2), 153-163.

DOI: 10.1123/jab.17.2.153

Google Scholar

[29] Lundberg, A., Svensson, O. K., Bylund, C., & Selvik, G. (1989). Kinematics of the ankle/foot complex-part 3: influence of leg rotation. Foot & Ankle International, 9(6), 304-309.

DOI: 10.1177/107110078900900609

Google Scholar

[30] Koh, T. J., Grabiner, M. D., & De Swart, R. J. (1992). In vivo tracking of the human patella. Journal of biomechanics, 25(6), 637-643.

DOI: 10.1016/0021-9290(92)90105-a

Google Scholar