Skip to main content
Log in

Stroop proactive control and task conflict are modulated by concurrent working memory load

  • Brief Report
  • Published:
Psychonomic Bulletin & Review Aims and scope Submit manuscript

Abstract

Performance on the Stroop task reflects two types of conflict—informational (between the incongruent word and font color) and task (between the contextually relevant color-naming task and the irrelevant, but automatic, word-reading task). According to the dual mechanisms of control theory (DMC; Braver, 2012), variability in Stroop performance can result from variability in the deployment of a proactive task-demand control mechanism. Previous research has shown that when proactive control (PC) is diminished, both increased Stroop interference and a reversed Stroop facilitation (RF) are observed. Although the current DMC model accounts for the former effect, it does not predict the observed RF, which is considered to be behavioral evidence for task conflict in the Stroop task. Here we expanded the DMC model to account for Stroop RF. Assuming that a concurrent working memory (WM) task reduces PC, we predicted both increased interference and an RF. Nineteen participants performed a standard Stroop task combined with a concurrent n-back task, which was aimed at reducing available WM resources, and thus overloading PC. Although the results indicated common Stroop interference and facilitation in the low-load condition (zero-back), in the high-load condition (two-back), both increased Stroop interference and RF were observed, consistent with the model’s prediction. These findings indicate that PC is modulated by concurrent WM load and serves as a common control mechanism for both informational and task Stroop conflicts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Following Botvinick et al. (2001), we computed task conflict as the multiplication of the activation (in the 0–1 interval) of the task units.

  2. When neutral noncolor words (e.g., window, building) are used, task conflict occurs in all three congruency conditions, and therefore no effects emerge (e.g., Goldfarb & Henik, 2007; Kalanthroff, Goldfarb, & Henik, 2013).

References

  • Aarts, E., Roelofs, A., & van Turennout, M. (2009). Attentional control of task and response in lateral and medial frontal cortex: Brain activity and reaction time distributions. Neuropsychologia, 47, 2089–2099. doi:10.1016/j.neuropsychologia.2009.03.019

    Article  PubMed  Google Scholar 

  • Bench, C. J., Frith, C. D., Grasby, P. M., Friston, K. J., Paulesu, E., Frackowiak, R. S., & Dolan, R. J. (1993). Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia, 32, 907–922.

    Article  Google Scholar 

  • Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652. doi:10.1037/0033-295X.108.3.624

    Article  PubMed  Google Scholar 

  • Botvinick, M. M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402, 179–181. doi:10.1038/46035

    Article  PubMed  Google Scholar 

  • Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16, 106–113. doi:10.1016/j.tics.2011.12.010

    Article  PubMed Central  PubMed  Google Scholar 

  • Bugg, J. M., McDaniel, M. A., Scullin, M. K., & Braver, T. S. (2011). Revealing list-level control in the Stroop task by uncovering its benefits and a cost. Journal of Experimental Psychology: Human Perception and Performance, 37, 1595–1606.

    PubMed Central  PubMed  Google Scholar 

  • Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280, 747–749. doi:10.1126/science.280.5364.747

    Article  PubMed  Google Scholar 

  • Carter, C. S., Mintun, M., & Cohen, J. D. (1995). Interference and facilitation effects during selective attention: An H2 15O PET study of Stroop task performance. NeuroImage, 2, 264–272. doi:10.1006/nimg.1995.1034

    Article  PubMed  Google Scholar 

  • Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect. Psychological Review, 97, 332–361. doi:10.1037/0033-295X.97.3.332

    Article  PubMed  Google Scholar 

  • Cohen, J. D., & Servan-Schreiber, D. (1992). Context, cortex and dopamine: A connectionist approach to behavior and biology in schizophrenia. Psychological Review, 99, 45–77. doi:10.1037/0033-295X.99.1.45

    Article  PubMed  Google Scholar 

  • Cousineau, D. (2005). Confidence intervals in within-subjects designs: A simpler solution to Loftus and Masson’s method. Tutorial in Quantitative Methods for Psychology, 1, 42–45.

    Google Scholar 

  • David, I. A., Volchan, E., Vila, J., Keil, A., de Oliveira, L., Faria-Júnior, A. J. P., & Machado-Pinheiro, W. (2011). Stroop matching task: Role of feature selection and temporal modulation. Experimental Brain Research, 208, 595–605. doi:10.1007/s00221-010-2507-9

    Article  PubMed  Google Scholar 

  • de Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. (2001). The role of working memory in visual selective attention. Science, 291, 1803–1806. doi:10.1126/science.1056496

    Article  PubMed  Google Scholar 

  • De Pisapia, N., & Braver, T. S. (2006). A model of dual control mechanisms through anterior cingulate and prefrontal cortex interactions. Neurocomputing, 69, 1322–1326.

    Article  Google Scholar 

  • Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.

    Google Scholar 

  • Goldfarb, L., & Henik, A. (2007). Evidence for task conflict in the Stroop effect. Journal of Experimental Psychology: Human Perception and Performance, 33, 1170–1176. doi:10.1037/0096-1523.33.5.1170

    PubMed  Google Scholar 

  • Gratton, G., Coles, M. G. H., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121, 480–506. doi:10.1037/0096-3445.121.4.480

    Article  Google Scholar 

  • Kalanthroff, E., Anholt, G. E., & Henik, A. (2014). Always on guard: Test of high vs. low control conditions in obsessive-compulsive disorder patients. Psychiatry Research, 219, 322–328. doi:10.1016/j.psychres.2014.05.050

    Article  PubMed  Google Scholar 

  • Kalanthroff, E., Goldfarb, L., Usher, M., & Henik, A. (2013a). Stop interfering: Stroop task conflict independence from informational conflict and interference. Quarterly Journal of Experimental Psychology, 66, 1356–1367. doi:10.1080/17470218.2012.741606

    Article  Google Scholar 

  • Kalanthroff, E., Goldfarb, L., & Henik, A. (2013b). Evidence for interaction between the stop signal and the Stroop task conflict. Journal of Experimental Psychology: Human Perception and Performance, 39, 579–592. doi:10.1037/a0027429

    PubMed  Google Scholar 

  • Kalanthroff, E., & Henik, A. (2013). Individual but not fragile: Individual differences in task control predict Stroop facilitation. Consciousness and Cognition, 22, 413–419. doi:10.1016/j.concog.2013.01.010

    Article  PubMed  Google Scholar 

  • Kalanthroff, E., & Henik, A. (2014). Preparation time modulates pro-active control and enhances task conflict in task switching. Psychological Research, 78, 276–288. doi:10.1007/s00426-013-0495-7

    Article  PubMed  Google Scholar 

  • Kane, M. J., & Engle, R. W. (2003). Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology: General, 132, 47–70. doi:10.1037/0096-3445.132.1.47

    Article  Google Scholar 

  • La Heij, W., Boelens, H., & Kuipers, J. R. (2010). Object interference in children’s colour and position naming: Lexical interference or task-set competition? Language &Cognitive Processes, 25, 568–588.

    Article  Google Scholar 

  • MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109, 163–203. doi:10.1037/0033-2909.109.2.163

    Article  PubMed  Google Scholar 

  • MacLeod, C. M., & MacDonald, P. A. (2000). Interdimensional interference in the Stroop effect: Uncovering the cognitive and neural anatomy of attention. Trends in Cognitive Sciences, 10, 383–391. doi:10.1016/S1364-6613(00)01530-8

    Article  Google Scholar 

  • Makris, S., Hadar, A. A., & Yarrow, K. (2011). Viewing objects and planning actions: On the potentiation of grasping behaviors by visual objects. Brain and Cognition, 77, 257–264.

    Article  PubMed  Google Scholar 

  • Meier, M. E., & Kane, M. J. (2012). Working memory capacity and Stroop interference: Global versus local indices of executive control. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 748–759.

    PubMed  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202. doi:10.1146/annurev.neuro.24.1.167

    Article  PubMed  Google Scholar 

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100. doi:10.1006/cogp.1999.0734

    Article  PubMed  Google Scholar 

  • Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25, 46–59. doi:10.1002/hbm.20131

    Article  PubMed  Google Scholar 

  • Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231. doi:10.1037/0096-3445.124.2.207

    Article  Google Scholar 

  • Soutschek, A., Strobach, T., & Schubert, T. (2013). Working memory demands modulate cognitive control in the Stroop paradigm. Psychological Research, 77, 333–347. doi:10.1007/s00426-012-0429-9

    Article  PubMed  Google Scholar 

  • Steinhauser, M., & Hübner, R. (2009). Distinguishing response conflict and task conflict in the Stroop task: Evidence from ex-Gaussian distribution analysis. Journal of Experimental Psychology: Human Perception and Performance, 35, 1398–1412.

    PubMed  Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662. doi:10.1037/0096-3445.121.1.15

    Article  Google Scholar 

  • Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28, 127–154. doi:10.1016/0749-596X(89)90040-5

    Article  Google Scholar 

  • Tzelgov, J., Henik, A., & Berger, J. (1992). Controlling Stroop effects by manipulating expectations for color words. Memory & Cognition, 20, 727–735. doi:10.3758/BF03202722

    Article  Google Scholar 

  • Zhao, Y., Tang, D., Hu, L., Zhang, L., Hitchman, G., Wang, L., & Chen, A. (2014). Concurrent working memory task decreases the Stroop interference effect as indexed by the decreased theta oscillations. Neuroscience, 262, 92–106. doi:10.1016/j.neuroscience.2013.12.052

    Article  PubMed  Google Scholar 

Download references

Author note

The first two authors contributed equally to this research. We thank Desiree Meloul for critical reading of the manuscript, and Alexander Soutschek for allowing us access to his data. M.U. is supported by the Israeli Science Foundation (Grant No. 743/12) and the German–Israel Foundation (Grant No. 158/2011) and by a Visiting Professorship at the University of Oxford from the Leverhulme Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyal Kalanthroff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalanthroff, E., Avnit, A., Henik, A. et al. Stroop proactive control and task conflict are modulated by concurrent working memory load. Psychon Bull Rev 22, 869–875 (2015). https://doi.org/10.3758/s13423-014-0735-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13423-014-0735-x

Keywords

Navigation