Skip to main content
Log in

Time-based event expectations employ relative, not absolute, representations of time

  • Brief Report
  • Published:
Psychonomic Bulletin & Review Aims and scope Submit manuscript

Abstract

When the timing of an event is predictable, humans automatically form implicit time-based event expectations. We investigated whether these expectations rely on absolute (e.g., 800 ms) or relative (e.g., a shorter duration) representations of time. In a choice-response task with two different pre-target intervals, participants implicitly learned that targets were predictable by interval durations. In a test phase, the two intervals were either considerably shortened or lengthened. In both cases, behavioral tendencies transferred from practice to test according to relative, not absolute, interval duration. We conclude that humans employ relative representations of time periods when forming time-based event expectations. These results suggest that learned time-based event expectations (e.g., in communication and human–machine interaction) should transfer to faster or slower environments if the relative temporal distribution of events is preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. λ estimates the Bayesian odds in favor of the null hypotheses, according to Rouder, Speckman, Sun, Morey, and Iverson (2009). Cohen’s d has been standardized by difference scores, because the design is inherently within subjects (Gibbons, Hedeker, & Davis, 1993).

References

  • Bartolo, R., & Merchant, H. (2009). Learning and generalization of time production in humans: Rules of transfer across modalities and interval durations. Experimental Brain Research, 197, 91–100.

    Article  PubMed  Google Scholar 

  • Bush, L. K., Hess, U., & Wolford, G. (1993). Transformations for within-subject designs: A Monte Carlo investigation. Psychological Bulletin, 113, 566–579.

    Article  PubMed  Google Scholar 

  • Church, R. M., & Deluty, M. Z. (1977). Bisection of temporal intervals. Journal of Experimental Psychology: Animal Behavior Processes, 3, 216–228.

    PubMed  Google Scholar 

  • de Carvalho, M. P., & Machado, A. (2012). Relative versus absolute stimulus control in the temporal bisection task. Journal of the Experimental Analysis of Behavior, 98, 23–44.

    Article  Google Scholar 

  • Elithorn, A., & Lawrence, C. (1955). Central inhibition: Some refractory observations. Quarterly Journal of Experimental Psychology, 11, 211–220.

    Google Scholar 

  • Janssen, P., & Shadlen, M. N. (2005). A representation of the hazard rate of elapsed time in macaque area LIP. Nature Neuroscience, 8, 234–241. doi:10.1038/nn1386

    Article  PubMed  Google Scholar 

  • Kunde, W. (2003). Temporal response-effect compatibility. Psychological Research, 67, 153–159.

    Article  PubMed  Google Scholar 

  • Leon, M. I., & Shadlen, M. N. (2003). Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron, 38, 317–327.

    Article  PubMed  Google Scholar 

  • Leuthold, H., Sommer, W., & Ulrich, R. (1996). Partial advance information and response preparation: Inferences from the lateralized readiness potential. Journal of Experimental Psychology: General, 125, 307–323.

    Article  Google Scholar 

  • Los, S. A., & Agter, F. (2005). Reweighting sequential effects across different distributions of foreperiods: Segregating elementary contributions to nonspecific preparation. Perception & Psychophysics, 67, 1161–1170. doi:10.3758/BF03193549

    Article  Google Scholar 

  • Los, S. A., Knol, D. L., & Boers, R. M. (2001). The foreperiod effect revisited: Conditioning as a basis for nonspecific preparation. Acta Psychologica, 106, 121–145.

    Article  PubMed  Google Scholar 

  • Meegan, D. V., Aslin, R. N., & Jacobs, R. A. (2000). Motor timing learned without motor training. Nature Neuroscience, 3, 860–862.

    Article  PubMed  Google Scholar 

  • Mendez, J. C., Prado, L., Mendoza, G., & Merchant, H. (2011). Temporal and spatial categorization in human and non-human primates. Frontiers in Integrative Neuroscience, 5(50).

  • Merchant, H., Harrington, D. L., & Meck, W. H. (2013). Neural basis of the perception and estimation of time. The Annual Review of Neuroscience, 36, 313–336.

    Article  Google Scholar 

  • Molet, M., & Zentall, T. R. (2008). Relative judgments affect assessments of stimulus duration. Psychonomic Bulletin & Review, 15, 431–436.

    Article  Google Scholar 

  • Nagarajan, S. S., Blake, D. T., Wright, B. A., Byl, N., & Merzenich, M. M. (1998). Practice-related improvements in somatosensory interval discrimination are temporally specific but generalize across skin location, hemisphere, and modality. Journal of Neuroscience, 18, 1559–1570.

    PubMed  Google Scholar 

  • Posner, M. I. (1980). Orienting of Attention. Quarterly Journal of Experimental Psychology, 32, 3–25. doi:10.1080/00335558008248231

    Article  PubMed  Google Scholar 

  • Rieth, C. A., & Huber, D. E. (2013). Implicit learning of spatiotemporal contingencies in spatial cueing. Journal of Experimental Psychology: Human Perception and Performance, 39, 1165–1180.

    PubMed  Google Scholar 

  • Roberts, F., & Francis, A. L. (2013). Identifying a temporal threshold of tolerance for silent gaps after requests. Journal of the Acoustical Society of America, 133, EL471–EL477. doi:10.1121/1.4802900

    Article  PubMed  Google Scholar 

  • Roberts, F., Margutti, P., & Takano, S. (2011). Judgments Concerning the Valence of Inter-Turn Silence Across Speakers of American English, Italian, and Japanese. Discourse Processes, 48, 331–354. doi:10.1080/0163853x.2011.558002

    Article  Google Scholar 

  • Rolke, B. (2008). Temporal preparation facilitates perceptual identification of letters. Perception & Psychophysics, 70, 1305–1313. doi:10.3758/pp. 70.7.1305

    Article  Google Scholar 

  • Rosenbaum, D. A. (1980). Human movement initiation: Specification of arm, direction, and extent. Journal of Experimental Psychology: General, 109, 444–474.

    Article  Google Scholar 

  • Schröter, H., Birngruber, T., Bratzke, D., Miller, J., & Ulrich, R. (2014). Task predictability influences the variable foreperiod effect: Evidence of task-specific temporal preparation. Psychological Research. doi:10.1007/s00426-014-0550-z

    Google Scholar 

  • Seibold, V. C., Fiedler, A., & Rolke, B. (2011). Temporal attention shortens perceptual latency: A temporal prior entry effect. Psychophysiology, 48, 708–717. doi:10.1111/j.1469-8986.2010.01135.x

    Article  PubMed  Google Scholar 

  • Seow, S. C. (2008). Designing and engineering time: The psychology of time perception in software. Upper Saddle River: Addison Wesley.

    Google Scholar 

  • Shahar, N., Meyer, J., Hildebrandt, M., & Rafaely, V. (2012). Detecting system failures from durations and binary cues. International Journal of Human-Computer Studies, 70, 552–560.

    Article  Google Scholar 

  • Simen, P., Balci, F., deSouza, L., Cohen, J. D., & Holmes, P. (2011). A model of interval timing by neural integration. The Journal of Neuroscience, 31, 9238–9253.

    Article  PubMed Central  PubMed  Google Scholar 

  • Spínola, I., Machado, A., de Carvalho, M. P., & Tonneau, F. (2013). What do humans learn in a double, temporal bisection task: Absolute or relative stimulus durations? Behavioural Processes, 95, 40–49. doi:10.1016/j.beproc.2013.01.003

    Article  PubMed  Google Scholar 

  • Steinborn, M. B., Rolke, B., Bratzke, D., & Ulrich, R. (2008). Sequential effects within a short foreperiod context: Evidence for the conditioning account of temporal preparation. Acta Psychologica, 129, 297–307.

    Article  PubMed  Google Scholar 

  • Szameitat, A. J., Rummel, J., Szameitat, D. P., & Sterr, A. (2009). Behavioral and emotional consequences of brief delays in human-computer interaction. International Journal of Human-Computer Studies, 67, 561–570.

    Article  Google Scholar 

  • Tandonnet, C., Garry, M. I., & Summers, J. J. (2010). Cortical activation during temporal preparation assessed by transcranial magnetic stimulation. Biological Psychology, 85, 481–486. doi:10.1016/j.biopsycho.2010.08.016

    Article  PubMed  Google Scholar 

  • Thomaschke, R., & Dreisbach, G. (2013). Temporal predictability facilitates action, not perception. Psychological Science, 24, 1335–1340. doi:10.1177/0956797612469411

    Article  PubMed  Google Scholar 

  • Thomaschke, R., & Dreisbach, G. (2014). The time-event correlation effect is due to temporal expectancy, not to partial repetition costs. Manuscript under revision

  • Thomaschke, R., & Haering, C. (2014). Predictivity of system delays shortens human response time. International Journal of Human-Computer Studies, 72, 358–365. doi:10.1016/j.ijhcs.2013.12.004

    Article  Google Scholar 

  • Thomaschke, R., Hopkins, B., & Miall, R. C. (2012a). The Planning and Control Model (PCM) of motorvisual priming: Reconciling motorvisual impairment and facilitation effects. Psychological Review, 119, 388–407.

    Article  PubMed Central  PubMed  Google Scholar 

  • Thomaschke, R., Hopkins, B., & Miall, R. C. (2012b). The role of cue-response mapping in motorvisual impairment and facilitation: Evidence for different roles of action planning and action control in motorvisual dual-task priming. Journal of Experimental Psychology: Human Perception and Performance, 38, 336–349. doi:10.1037/a0024794

    PubMed  Google Scholar 

  • Thomaschke, R., Kiesel, A., & Hoffmann, J. (2011a). Response specific temporal expectancy: Evidence from a variable foreperiod paradigm. Attention, Perception, & Psychophysics, 73, 2309–2322. doi:10.3758/s13414-011-0179-6

    Article  Google Scholar 

  • Thomaschke, R., Wagener, A., Kiesel, A., & Hoffmann, J. (2011b). The scope and precision of specific temporal expectancy: Evidence from a variable foreperiod paradigm. Attention, Perception, & Psychophysics, 73, 953–964. doi:10.3758/s13414-010-0079-1

    Article  Google Scholar 

  • Thomaschke, R., Wagener, A., Kiesel, A., & Hoffmann, J. (2011c). The specificity of temporal expectancy: Evidence from a variable foreperiod paradigm. The Quarterly Journal of Experimental Psychology, 64, 2289–2300. doi:10.1080/17470218.2011.616212

    Article  PubMed  Google Scholar 

  • Wagener, A., & Hoffmann, J. (2010a). Behavioural adaptations to redundant frequency distributions in time. In J. Coull & K. Nobre (Eds.), Attention and Time (pp. 217–226). Oxford: University Press.

    Chapter  Google Scholar 

  • Wagener, A., & Hoffmann, J. (2010b). Temporal cueing of target-identity and target-location. Experimental Psychology, 57, 436–445. doi:10.1027/1618-3169/a000054

    Article  PubMed  Google Scholar 

  • Watanabe, M., Hirose, K., Den, Y., & Minematsu, N. (2008). Filled pauses as cues to the complexity of upcoming phrases for native and non-native listeners. Speech Communication, 50, 81–94.

    Article  Google Scholar 

  • Wendt, M., & Kiesel, A. (2011). Conflict adaptation in time: Foreperiods as contextual cues for attentional adjustment. Psychological Bulletin and Review, 18, 910–916.

    Article  Google Scholar 

  • Wittmann, M. (2013). The inner sense of time: How the brain creates a representation of duration. Nature Reviews Neuroscience, 14, 217–223.

    Article  PubMed  Google Scholar 

  • Woodrow, H. (1914). The measurement of attention. Psychological Monographs, 17.

  • Wright, B. A., Buonomano, D. V., Mahncke, H. W., & Merzenich, M. M. (1997). Learning and generalization of auditory temporal-interval discrimination in humans. The Journal of Neuroscience, 17, 3956–3963.

    PubMed  Google Scholar 

  • Zentall, T. R. (2007). Temporal discrimination learning by pigeons. Behavioural Processes, 74, 286–292.

    Article  PubMed  Google Scholar 

  • Zentall, T. R., Weaver, J., & Clement, T. (2004). Pigeons group time intervals according to their relative duraction. Psychonomic Bulletin & Review, 11, 113–117.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Thomaschke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomaschke, R., Kunchulia, M. & Dreisbach, G. Time-based event expectations employ relative, not absolute, representations of time. Psychon Bull Rev 22, 890–895 (2015). https://doi.org/10.3758/s13423-014-0710-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13423-014-0710-6

Keywords

Navigation