Skip to main content
Log in

Representing serial action and perception

  • Theoretical and Review Articles
  • Published:
Psychonomic Bulletin & Review Aims and scope Submit manuscript

Abstract

This article presents a review on the representational base of sequence learning in the serial reaction time task. The first part of the article addresses the major questions and challenges that underlie the debate on implicit and explicit learning. In the second part, the informational content that underlies sequence representations is reviewed. The latter issue has produced a rich and equivocal literature. A taxonomy illustrates that substantial support exists for associations between successive stimulus features, between successive response features, and between successive response-to-stimulus compounds. We suggest that sequence learning is not predetermined with respect to one particular type of information but, rather, develops according to an overall principle of activation contingent on task characteristics. Moreover, substantiating such an integrative approach is proposed by a synthesis with the dual-system model (Keele, Ivry, Mayr, Hazeltine, & Heuer, 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahamse, E. L. (2010). Serial action and perception. Unpublished doctoral dissertation, University of Twente. Retrieved from http://doc .utwente.nl/69666/1/thesis_E_Abrahamse.pdf.

  • Abrahamse, E. L., Van der Lubbe, R. H. J., & Verwey, W. B. (2008). Asymmetrical learning between a tactile and visual serial RT task. Quarterly Journal of Experimental Psychology, 61, 210–217. doi:10.1080/17470210701566739

    Article  Google Scholar 

  • Abrahamse, E. L., Van der Lubbe, R. H. J., & Verwey, W. B. (2009). Sensory information in perceptual—motor sequence learning: Visual and/or tactile stimuli. Experimental Brain Research, 197, 175–183. doi:10.1007/s00221-009-1903-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Abrahamse, E. L., & Verwey, W. B. (2008). Context dependent learning in the serial RT task. Psychological Research, 72, 397–404. doi:10.1007/s00426-007-0123-5

    Article  PubMed  Google Scholar 

  • Ackerman, P. (1988). Determinants of individual differences during skill acquisition: Cognitive abilities and information processing. Journal of Experimental Psychology: General, 117, 288–318. doi:10.1037/0096-3445.117.3.288

    Article  Google Scholar 

  • Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Ashby, F. G., & Casale, M. B. (2003). The cognitive neuroscience of implicit category learning. In L. Jiménez (Ed.), Attention and implicit learning (pp. 109–141). Amsterdam: Benjamins.

    Chapter  Google Scholar 

  • Bapi, R. S., Doya, K., & Harner, A. M. (2000). Evidence for effector independent and dependent representations and their differential time course of acquisition during motor sequence learning. Experimental Brain Research, 132, 149–162. doi:10.1007/s002219900332

    Article  PubMed  Google Scholar 

  • Berger, A., Sadeh, M., Tzur, G., Shuper, A., Kornreich, L., Inbar, D., et al. (2005). Motor and non-motor sequence learning in children and adolescents with cerebellar damage. Journal of the International Neuropsychological Society, 11, 482–487. doi:10.1017/ S1355617705050587

    PubMed  Google Scholar 

  • Berner, M. P., & Hoffmann, J. (2008). Effector-related sequence learning in a bimanual-bisequential serial reaction time task. Experimental Brain Research, 72, 138–154. doi:10.1007/s00426-006-0097-8

    Google Scholar 

  • Bischoff-Grethe, A., Goedert, K. M., Willingham, D. B., & Grafton, S. T. (2004). Neural substrates of response-based sequence learning using fMRI. Journal of Cognitive Neuroscience, 16, 127–138. doi:10.1162/089892904322755610

    Article  PubMed  Google Scholar 

  • Chambaron, S., Ginhac, D., Ferrel-Chapus, C., & Perruchet, P. (2006). Implicit learning of a repeated segment in continuous tracking: A reappraisal. Quarterly Journal of Experimental Psychology, 59A, 845–854. doi:10.1080/17470210500198585

    Article  Google Scholar 

  • Christie, M. A., & Dalrymple-Alford, J. C. (2004). A new rat model of the human serial reaction time task: Contrasting effects of caudate and hippocampal lesions. Journal of Neuroscience, 24, 1034–1039. doi:10.1523/JNEUROSCI.3340-03.2004

    Article  PubMed  Google Scholar 

  • Cleeremans, A. (1993). Mechanisms of implicit learning: Connectionist models of sequence processing. Cambridge, MA: MIT Press.

    Google Scholar 

  • Cleeremans, A., Destrebecqz, A., & Boyer, M. (1998). Implicit learning: News from the front. Trends in Cognitive Sciences, 2, 406–416. doi:10.1016/S1364-6613(98)01232-7

    Article  PubMed  Google Scholar 

  • Cleeremans, A., & Dienes, Z. (2008). Computational models of implicit learning. In R. Sun (Ed.), Cambridge handbook of computational psychology (pp. 396–421). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Cleeremans, A., & Jiménez, L. (2002). Implicit learning and consciousness: A graded, dynamic perspective. In R. M. French & A. Cleeremans (Eds.), Implicit learning and consciousness (pp. 1–40). Hove, U.K.: Psychology Press.

    Google Scholar 

  • Clegg, B. A. (2005). Stimulus-specific sequence representation in serial reaction time tasks. Quarterly Journal of Experimental Psychology, 58A, 1087–1101. doi:10.1080/02724980443000485

    Article  Google Scholar 

  • Clegg, B. A., DiGirolamo, G. J., & Keele, S. W. (1998). Sequence learning. Trends in Cognitive Sciences, 2, 275–281. doi:10.1016/S1364-6613(98)01202-9

    Article  PubMed  Google Scholar 

  • Clohessy, A. B., Posner, M. I., & Rothbart, M. K. (2001). Development of the functional visual field. Acta Psychologica, 106, 51–68. doi:10.1016/S0001-6918(00)00026-3

    Article  PubMed  Google Scholar 

  • Cock, J. J., Berry, D. C., & Buchner, A. (2002). Negative priming and sequence learning. European Journal of Cognitive Psychology, 14, 27–48. doi:10.1080/09541440042000151

    Article  Google Scholar 

  • Cock, J. J., & Meier, B. (2007). Incidental task sequence learning: Perceptual rather than conceptual? Psychological Research, 71, 140–151. doi:10.1007/s00426-005-0005-7

    Article  PubMed  Google Scholar 

  • Cohen, A., Ivry, R. I., & Keele, S. W. (1990). Attention and structure in sequence learning. Journal of Experimental Psychology: Learning, Memory, & Cognition, 16, 17–30. doi:10.1037/0278-7393.16.1.17

    Google Scholar 

  • Curran, T. (1998). Implicit sequence learning from a cognitive neuroscience perspective: What, how, and where? In M. A. Stadler & P. A. Frensch (Eds.), Handbook of implicit learning (pp. 365–400). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Curran, T. (2001). Implicit learning revealed by the method of opposition. Trends in Cognitive Sciences, 5, 503–504. doi:10.1016/S1364-6613(00)01791-5

    Article  PubMed  Google Scholar 

  • Dennis, N. A., Howard, J. H., Jr., & Howard, D. V. (2006). Implicit sequence learning without motor sequencing in young and old adults. Experimental Brain Research, 175, 153–164. doi:10.1007/s00221-006-0534-3

    Article  PubMed  Google Scholar 

  • Deroost, N., & Soetens, E. (2006a). Perceptual or motor learning in SRT tasks with complex sequence structures. Psychological Research, 70, 88–102. doi:10.1007/s00426-004-0196-3

    Article  PubMed  Google Scholar 

  • Deroost, N., & Soetens, E. (2006b). The role of response selection in sequence learning. Quarterly Journal of Experimental Psychology, 59, 449–456. doi:10.1080/17470210500462684

    Article  Google Scholar 

  • Deroost, N., & Soetens, E. (2006c). Spatial processing and perceptual sequence learning in SRT tasks. Experimental Psychology, 53, 16–30. doi:10.1027/1618-3169.53.1.16

    Article  PubMed  Google Scholar 

  • Deroost, N., Zeeuws, I., & Soetens, E. (2006). Effector-dependent and response location learning of probabilistic sequences in serial reaction time tasks. Experimental Brain Research, 171, 469–480. doi:10.1007/s00221-005-0294-5

    Article  PubMed  Google Scholar 

  • Deroost, N., Zeischka, P., & Soetens, E. (2008). Negative priming in the SRT task: Learning of irrelevant sequences is enhanced by concurrent learning of relevant sequences. European Journal of Cognitive Psychology, 20, 47–68. doi:10.1080/09541440701282159

    Article  Google Scholar 

  • Destrebecqz, A., & Cleeremans, A. (2001). Can sequence learning be implicit? New evidence with the process dissociation procedure. Psychonomic Bulletin & Review, 8, 343–350.

    Article  Google Scholar 

  • Dienes, Z., & Berry, D. (1997). Implicit learning: Below the subjective threshold. Psychonomic Bulletin & Review, 4, 3–23.

    Article  Google Scholar 

  • Dominey, P. F. (2003). Structure and function in sequence learning: Evidence from experimental, neuropsychological and simulation studies. In L. Jiménez (Ed.), Attention and implicit learning (pp. 143–180). Amsterdam: Benjamins.

    Chapter  Google Scholar 

  • Dominey, P. F., Lelekov, T., Ventre-Dominey, J., & Jeannerod, M. (1998). Dissociable processes for learning the surface structure and abstract structure of sensorimotor sequences. Journal of Cognitive Neuroscience, 10, 734–751. doi:10.1162/089892998563130

    Article  PubMed  Google Scholar 

  • Donders, F. C. (1969). On the speed of mental processes (W. G. Koster, Trans.). Acta Psychologica, 30, 412–431. doi:10.1016/0001-6918(69)90065-1

    Article  PubMed  Google Scholar 

  • Doyon, J. (2008). Motor sequence learning and movement disorders. Current Opinion in Neurology, 21, 478–483. doi:10.1097/WCO.0b013e328304b6a3

    Article  PubMed  Google Scholar 

  • Ergorul, C., & Eichenbaum, H. (2006). Essential role of the hippocampal formation in rapid learning of higher-order sequential associations. Journal of Neuroscience, 26, 4111–4117. doi:10.1523/ JNEUROSCI.0441-06.2006

    Article  PubMed  Google Scholar 

  • Francis, A. P., Schmidt, G. L., Carr, T. H., & Clegg, B. A. (2009). Incidental learning of abstract rules for non-dominant word orders. Psychological Research, 73, 60–74. doi:10.1007/s00426-008-0138-6

    Article  PubMed  Google Scholar 

  • Frensch, P. A. (1998). One concept, multiple meanings: On how to define the concept of implicit learning. In M. A. Stadler & P. A. Frensch (Eds.), Handbook of implicit learning (pp. 47–104). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Frensch, P. A., Haider, H., Rünger, D., Neugebauer, U., Voigt, S., & Werg, J. (2003). Verbal report of incidentally experienced environmental regularity: The route from implicit learning to verbal expression of what has been learned. Advances in Consciousness Research, 48, 335–366.

    Article  Google Scholar 

  • Frensch, P. A., & Rünger, D. (2003). Implicit learning. Current Directions in Psychological Science, 12, 13–18. doi:10.1111/1467-8721.01213

    Article  Google Scholar 

  • Fu, Q., Dienes, Z., & Fu, X. (2010). The distinction between intuition and guessing in the SRT task generation: A reply to Norman and Price. Consciousness & Cognition, 19, 478–480. doi:10.1016/j.concog.2009.12.006

    Article  Google Scholar 

  • Fu, Q., Fu, X., & Dienes, Z. (2008). Implicit sequence learning and conscious awareness. Consciousness & Cognition, 17, 185–202. doi:10.1016/j.concog.2007.01.007

    Article  Google Scholar 

  • Gentner, D. R., Larochelle, S., & Grudin, J. T. (1988). Lexical, sublexical, and peripheral effects in skilled typewriting. Cognitive Psychology, 20, 524–548. doi:10.1016/0010-0285(88)90015-1

    Article  Google Scholar 

  • Gheysen, F., Gevers, W., De Schutter, E., Van Waelvelde, H., & Fias, W. (2009). Disentangling perceptual from motor implicit sequence learning with a serial color-matching task. Experimental Brain Research, 197, 163–174. doi:10.1007/s00221-009-1902-6

    Article  PubMed  Google Scholar 

  • Glover, S. (2004). Separate visual representations in the planning and control of action. Behavioral & Brain Sciences, 27, 3–24. doi:10.1017/ S0140525X04000020

    Google Scholar 

  • Goldstone, R. L. (1998). Perceptual learning. Annual Review of Psychology, 49, 585–612. doi:10.1146/annurev.psych.49.1.585

    Article  PubMed  Google Scholar 

  • Gomez, R. L. (1997). Transfer and complexity in artificial grammar learning. Cognitive Psychology, 33, 154–207. doi:10.1006/cogp.1997.0654

    Article  PubMed  Google Scholar 

  • Gomez, R. L., & Schvaneveldt, R. W. (1994). What is learned from artificial grammars? Transfer tests of simple association. Journal of Experimental Psychology: Learning, Memory, & Cognition, 20, 396–410.

    Google Scholar 

  • Goschke, T. (1998). Implicit learning of perceptual and motor sequences. In M. A. Stadler & P. A. Frensch (Eds.), Handbook of implicit learning (pp. 401–444). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Goschke, T., & Bolte, A. (2007). Implicit learning of semantic category sequences: Response-independent acquisition of abstract sequential regularities. Journal of Experimental Psychology: Learning, Memory, & Cognition, 33, 394–406. doi:10.1037/0278-7393.33.2.394

    Google Scholar 

  • Gotler, A., Meiran, N., & Tzelgov, J. (2003). Nonintentional task set activation: Evidence from implicit task sequence learning. Psychonomic Bulletin & Review, 10, 890–896.

    Article  Google Scholar 

  • Grafton, S. T., Hazeltine, E., & Ivry, R. [B.] (1995). Functional mapping of sequence learning in normal humans. Journal of Cognitive Neuroscience, 7, 497–510. doi:10.1162/jocn.1995.7.4.497

    Article  PubMed  Google Scholar 

  • Grafton, S. T., Hazeltine, E., & Ivry, R. B. (1998). Abstract and effector-specific representations of motor sequences identified with PET. Journal of Neuroscience, 18, 9420–9428.

    PubMed  Google Scholar 

  • Grafton, S. T., Hazeltine, E., & Ivry, R. B. (2002). Motor sequence learning with the nondominant left hand: A PET functional imaging study. Experimental Brain Research, 146, 369–378. doi:10.1007/ s00221-002-1181-y

    Article  PubMed  Google Scholar 

  • Hazeltine, E. (2002). The representational nature of sequence learning: Evidence for goal-based codes. In W. Prinz & B. Hommel (Eds.), Common mechanisms in perception and action: Attention and performance XIX (pp. 675–689). New York: Oxford University Press.

    Google Scholar 

  • Hazeltine, E., Grafton, S. T., & Ivry, R. (1997). Attention and stimulus characteristics determine the locus of motor sequence encoding: A PET study. Brain, 120, 123–140. doi:10.1093/brain/120.1.123

    Article  PubMed  Google Scholar 

  • Hazeltine, E., & Ivry, R. B. (2003). Neural structures that support implicit sequence learning. In L. Jiménez (Ed.), Attention and implicit learning (pp. 73–107). Philadelphia: Benjamins.

    Google Scholar 

  • Hebb, D. O. (1961). Distinctive features of learning in the higher animal. In J. F. Delafresnaye (Ed.), Brain mechanisms and learning (pp. 37–51). Oxford: Oxford University Press.

    Google Scholar 

  • Herwig, A., & Waszak, F. (2009). Intention and attention in ideomotor learning. Quarterly Journal of Experimental Psychology, 62, 219–227. doi:10.1080/17470210802373290

    Article  Google Scholar 

  • Heuer, H., Schmidtke, V., & Kleinsorge, T. (2001). Implicit learning of sequences of tasks. Journal of Experimental Psychology: Learning, Memory, & Cognition, 27, 967–983. doi:10.1037/0278-7393.27.4.967

    Google Scholar 

  • Hicks, R. E. (1974). Asymmetry of bilateral transfer. American Journal of Psychology, 87, 667–674. doi:10.2307/1421973

    Article  Google Scholar 

  • Hoffmann, J., & Koch, I. (1997). Stimulus—response compatibility and sequential learning in the serial reaction time task. Psychological Research, 60, 87–97. doi:10.1007/BF00419682

    Article  Google Scholar 

  • Hoffmann, J., Martin, C., & Schilling, A. (2003). Unique transitions between stimuli and responses in SRT tasks: Evidence for the primacy of response predictions. Psychological Research, 67, 160–173. doi:10.1007/s00426-002-0117-2

    Article  PubMed  Google Scholar 

  • Hoffmann, J., Sebald, A., & Stöcker, C. (2001). Irrelevant response effects improve serial learning in serial reaction time tasks. Journal of Experimental Psychology: Learning, Memory, & Cognition, 27, 470–482. doi:10.1037/0278-7393.27.2.470

    Google Scholar 

  • Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding: A framework for perception and action planning. Behavorial & Brain Sciences, 24, 849–937.

    Article  Google Scholar 

  • Howard, J. H., Jr., Howard, D. V., Dennis, N. A., Yankovich, H., & Vaidya, C. J. (2004). Implicit spatial contextual learning in healthy aging. Neuropsychology, 18, 124–134. doi:10.1037/0894-4105.18.1.124

    Article  PubMed  PubMed Central  Google Scholar 

  • Howard, J. H., Jr., Mutter, S. A., & Howard, D. V. (1992). Serial pattern learning by event observation. Journal of Experimental Psychology: Learning, Memory, & Cognition, 18, 1029–1039. doi:10.1037/ 0278-7393.18.5.1029

    Google Scholar 

  • Jacoby, L. L. (1991). A process dissociation framework: Separating automatic from intentional uses of memory. Journal of Memory & Language, 30, 513–541. doi:10.1016/0749-596X(91)90025-F

    Article  Google Scholar 

  • Jiménez, L., & Méndez, C. (1999). Which attention is needed for implicit sequence learning? Journal of Experimental Psychology: Learning, Memory, & Cognition, 25, 236–259. doi:10.1037/0278-7393.25.1.236

    Google Scholar 

  • Jiménez, L., Vaquero, J. M. M., & Lupiáñez, J. (2006). Qualitative differences between implicit and explicit sequence learning. Journal of Experimental Psychology: Learning, Memory, & Cognition, 32, 475–490. doi:10.1037/0278-7393.32.3.475

    Google Scholar 

  • Jiménez, L., & Vázquez, G. A. (2005). Sequence learning under dualtask conditions: Alternatives to a resource-based account. Psychological Research, 69, 352–368. doi:10.1007/s00426-004-0210-9

    Article  PubMed  Google Scholar 

  • Jordan, M. I. (1995). The organization of action sequences: Evidence from a relearning task. Journal of Motor Behavior, 27, 179–192.

    Article  PubMed  Google Scholar 

  • Keele, S. W., Ivry, R., Mayr, U., Hazeltine, E., & Heuer, H. (2003). The cognitive and neural architecture of sequence representation. Psychological Review, 110, 316–339. doi:10.1037/0033-295X.110.2.316

    Article  PubMed  Google Scholar 

  • Keele, S. W., Jennings, P., Jones, S., Caulton, D., & Cohen, A. (1995). On the modularity of sequence representation. Journal of Motor Behavior, 27, 17–30.

    Article  Google Scholar 

  • Kelly, S. W., & Burton, A. M. (2001). Learning complex sequences: No role for observation? Psychological Research, 65, 15–23. doi:10.1007/s004260000034

    Article  PubMed  Google Scholar 

  • Kinder, A., Rolfs, M., & Kliegl, R. (2008). Sequence learning at optimal stimulus—response mapping: Evidence from a serial reaction time task. Quarterly Journal of Experimental Psychology, 61, 203–209. doi:10.1080/17470210701557555

    Article  Google Scholar 

  • Knee, R., Thomason, S., Ashe, J., & Willingham, D. T. (2007). The representation of explicit motor sequence knowledge. Memory & Cognition, 35, 326–333.

    Article  Google Scholar 

  • Knowlton, B. J., & Squire, L. R. (1996). Artificial grammar learning depends on implicit acquisition of both abstract and exemplar-specific information. Journal of Experimental Psychology: Learning, Memory, & Cognition, 22, 169–181. doi:10.1037/0278-7393.23.1.220

    Google Scholar 

  • Koch, I. (2001). Automatic and intentional activation of task-sets. Journal of Experimental Psychology: Learning, Memory, & Cognition, 27, 1474–1486. doi:10.1037/0278-7393.27.6.1474

    Google Scholar 

  • Koch, I. (2007). Anticipatory response control in motor sequence learning: Evidence from stimulus-response compatibility. Human Movement Sciences, 26, 257–274. doi:10.1016/j.humov.2007.01.004

    Article  Google Scholar 

  • Koch, I., & Hoffmann, J. (2000). The role of stimulus-based and response-based spatial information in sequence learning. Journal of Experimental Psychology: Learning, Memory, & Cognition, 26, 863–882. doi:10.1037/0278-7393.26.4.863

    Google Scholar 

  • Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior: The Hixon symposium (pp. 112–136). New York: Wiley.

    Google Scholar 

  • Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception & Performance, 21, 451–468. doi:10.1037/0096-1523.21.3.451

    Google Scholar 

  • Lavie, N., & Tsal, Y. (1994). Perceptual load as a major determinant of the locus of selection in visual attention. Perception & Psychophysics, 56, 183–197.

    Article  Google Scholar 

  • Liu, T., Lungu, O. V., Waechter, T., Willingham, D. T., & Ashe, J. (2007). Frames of reference during implicit and explicit learning. Experimental Brain Research, 180, 273–280. doi:10.1007/s00221-007-0853-z

    Article  PubMed  Google Scholar 

  • Logan, G. D. (1985). Skill and automaticity: Relations, implications, and future directions. Canadian Journal of Psychology, 39, 367–386. doi:10.1037/h0080066

    Article  Google Scholar 

  • Logan, G. D., Taylor, S. E., & Etherton, J. L. (1996). Attention in the acquisition and expression of automaticity. Journal of Experimental Psychology: Learning, Memory, & Cognition, 22, 620–638. doi:10.1037/0278-7393.22.3.620

    Google Scholar 

  • Mayr, U. (1996). Spatial attention and implicit sequence learning: Evidence for independent learning of spatial and nonspatial sequences. Journal of Experimental Psychology: Learning, Memory, & Cognition, 22, 350–364. doi:10.1037/0278-7393.22.2.350

    Google Scholar 

  • Memelink, J., & Hommel, B. (2006). Tailoring perception and action to the task at hand. European Journal of Cognitive Psychology, 18, 579–592. doi:10.1080/09541440500423228

    Article  Google Scholar 

  • Meulemans, T., Van der Linden, M., & Perruchet, P. (1998). Implicit learning in children. Journal of Experimental Child Psychology, 69, 199–221. doi:10.1006/jecp.1998.2442

    Article  PubMed  Google Scholar 

  • Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-viewed. Neuropsychologia, 46, 774–785. doi:10.1016/j.neuropsychologia.2007.10.005

    Article  PubMed  Google Scholar 

  • Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7, 134–140. doi:10.1016/S1364-6613(03)00028-7

    Article  PubMed  Google Scholar 

  • Nattkemper, D., & Prinz, W. (1997). Stimulus and response anticipation in a serial reaction task. Psychological Research, 60, 98–112. doi:10.1007/BF00419683

    Article  Google Scholar 

  • Newell, A. (1973). You can’t play 20 questions with nature and win: Protective comments on the papers of this symposium. In W. G. Chase (Ed.), Visual information processing (pp. 283–308). New York: Academic Press.

    Chapter  Google Scholar 

  • Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19, 1–32. doi:10.1016/0010-0285(87)90002-8

    Article  Google Scholar 

  • Nixon, P. D., & Passingham, R. E. (2000). The cerebellum and cognition: Cerebellar lesions impair sequence learning but not conditional visuomotor learning in monkeys. Neuropsychologia, 38, 1054–1072. doi:10.1016/S0028-3932(99)00138-4

    Article  PubMed  Google Scholar 

  • Norman, E., Price, M. C., & Duff, S. C. (2006). Fringe consciousness in sequence learning: The influence of individual differences. Consciousness & Cognition, 15, 723–760. doi:10.1016/j.concog.2005.06.003

    Article  Google Scholar 

  • Norman, E., Price, M. C., Duff, S. C., & Mentzoni, R. A. (2007). Gradations of awareness in a modified sequence learning task. Consciousness & Cognition, 16, 809–837. doi:10.1016/j.concog.2007.02.004

    Article  Google Scholar 

  • Olson, I. R., & Chun, M. M. (2001). Temporal contextual cuing of visual attention. Journal of Experimental Psychology: Learning, Memory, & Cognition, 27, 1299–1313. doi:10.1037/0278-7393.27.5.1299

    Google Scholar 

  • Price, A., & Shin, J. C. (2009). The impact of Parkinson’s disease on sequence learning: Perceptual pattern learning and executive function. Brain & Cognition, 69, 252–261. doi:10.1016/j.bandc.2008.07.013

    Article  Google Scholar 

  • Race, E. A., Shanker, S., & Wagner, A. D. (2009). Neural priming in human frontal cortex: Multiple forms of learning reduce demands on the prefrontal executive system. Journal of Cognitive Neuroscience, 21, 1766–1781. doi:10.1162/jocn.2009.21132

    Article  PubMed  PubMed Central  Google Scholar 

  • Rand, M. K., Hikosaka, O., Miyachi, S., Lu, X., Nakamura, K., Kitaguchi, K., & Shimo, Y. (2000). Characteristics of sequential movements during early learning period in monkeys. Experimental Brain Research, 131, 293–304. doi:10.1007/s002219900283

    Article  PubMed  Google Scholar 

  • Reber, A. S. (1993). Implicit learning and tacit knowledge: An essay on the cognitive unconscious. New York: Oxford University Press.

    Google Scholar 

  • Reber, P. J., & Squire, L. R. (1994). Parallel brain systems for learning with and without awareness. Learning & Memory, 1, 217–229.

    Google Scholar 

  • Redington, M., & Chater, N. (2002). Knowledge representation and transfer in artificial grammar learning. In R. M. French & A. Cleeremans (Eds.), Implicit learning and consciousness: An empirical, philosophical and computational consensus in the making (pp. 121–143). Hove, U.K.: Psychology Press.

    Google Scholar 

  • Remillard, G. (2003). Pure perceptual-based sequence learning. Journal of Experimental Psychology: Learning, Memory, & Cognition, 29, 581–597. doi:10.1037/0278-7393.29.4.581

    Google Scholar 

  • Remillard, G. (2009). Pure perceptual-based sequence learning: A role for visuospatial attention. Journal of Experimental Psychology: Learning, Memory, & Cognition, 35, 528–541. doi:10.1037/a0014646

    Google Scholar 

  • Rhodes, B. J., Bullock, D., Verwey, W. B., Averbeck, B. B., & Page, M. P. A. (2004). Learning and production of movement sequences: Behavioral, neurophysiological, and modeling perspectives. Human Movement Science, 23, 683–730. doi:10.1016/j.humov.2004.10.008

    Article  Google Scholar 

  • Richard, M. V., Clegg, B. A., & Seger, C. A. (2009). Implicit motor sequence learning is not represented purely in response locations. Quarterly Journal of Experimental Psychology, 62, 1516–1522. doi:10.1080/17470210902732130

    Article  Google Scholar 

  • Robertson, E. M. (2007). The serial reaction time task: Implicit motor skill learning? Journal of Neuroscience, 27, 10073–10075. doi:10.1523/JNEUROSCI.2747-07.2007

    Article  PubMed  Google Scholar 

  • Rünger, D., & Frensch, P. A. (2008). How incidental sequence learning creates reportable knowledge: The role of unexpected events. Journal of Experimental Psychology: Learning, Memory, & Cognition, 34, 1011–1026. doi:10.1037/a0012942

    Google Scholar 

  • Rüsseler, J., & Rösler, F. (2000). Implicit and explicit learning of event sequences: Evidence for distinct coding of perceptual and motor representations. Acta Psychologica, 104, 45–67. doi:10.1016/S0001-6918(99)00053-0

    Article  PubMed  Google Scholar 

  • Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical learning of tone sequences by human infants and adults. Cognition, 70, 27–52. doi:10.1016/S0010-0277(98)00075-4

    Article  PubMed  Google Scholar 

  • Sakai, K. (2008). Task set and prefrontal cortex. Annual Review of Neuroscience, 31, 219–245. doi:10.1146/annurev.neuro.31.060407.125642

    Article  PubMed  Google Scholar 

  • Sanders, A. F. (1990). Issues and trends in the debate on discrete vs. continuous processing of information. Acta Psychologica, 74, 123–167. doi:10.1016/0001-6918(90)90004-Y

    Article  Google Scholar 

  • Sanders, A. F. (1998). Elements of human performance: Reaction processes and attention in human skill. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Schendan, H. E., Searl, M. M., Melrose, R. J., & Stern, C. E. (2003). An fMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37, 1013–1025. doi:10.1016/ S0896-6273(03)00123-5

    Article  PubMed  Google Scholar 

  • Schvaneveldt, R. W., & Gomez, R. L. (1998). Attention and probabilistic sequence learning. Psychological Research, 61, 175–190. doi:10.1007/s004260050023

    Article  Google Scholar 

  • Schwarb, H., & Schumacher, E. H. (2009). Neural evidence of a role for spatial response selection in the learning of spatial sequences. Brain Research, 1247, 114–125. doi:10.1016/j.brainres.2008.09.097

    Article  PubMed  Google Scholar 

  • Schwarb, H., & Schumacher, E. H. (2010). Implicit sequence learning is represented by stimulus—response rules. Memory & Cognition, 38, 677–688.

    Article  Google Scholar 

  • Seger, C. A. (1994). Implicit learning. Psychological Bulletin, 115, 163–196. doi:10.1037/0033-2909.115.2.163

    Article  PubMed  Google Scholar 

  • Seger, C. A. (1997). Two forms of sequential implicit learning. Consciousness & Cognition, 6, 108–131. doi:10.1006/ccog.1996.0285

    Article  Google Scholar 

  • Shanks, D. R. (2005). Implicit learning. In K. Lamberts & R. Goldstone (Eds.), Handbook of cognition (pp. 202–220). London: Sage.

    Google Scholar 

  • Shanks, D. R., & St. John, M. F. (1994). Characteristics of dissociable human learning systems. Behavioral & Brain Sciences, 17, 367–447. doi:10.1017/S0140525X00035032

    Article  Google Scholar 

  • Siegert, R. J., Taylor, K. D., Weatherall, M., & Abernethy, D. A. (2006). Is implicit sequence learning impaired in Parkinson’s disease? A meta-analysis. Neuropsychology, 20, 490–495. doi:10.1037/0894-4105.20.4.490

    Article  PubMed  Google Scholar 

  • Smyth, A. C., & Shanks, D. R. (2008). Awareness in contextual cuing with extended and concurrent explicit tests. Memory & Cognition, 36, 403–415. doi:10.3758/MC.36.2.403

    Article  Google Scholar 

  • Song, S., Howard, J. H., Jr., & Howard, D. V. (2008). Perceptual sequence learning in a serial reaction time task. Experimental Brain Research, 189, 145–158. doi:10.1007/s00221-008-1411-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Squire, L. R. (1992). Declarative and nondeclarative memory: Multiple brain systems supporting learning and memory. Journal of Cognitive Neuroscience, 4, 232–243. doi:10.1162/jocn.1992.4.3.232

    Article  PubMed  Google Scholar 

  • Stadler, M. A. (1989). On learning complex procedural knowledge. Journal of Experimental Psychology: Learning, Memory, & Cognition, 15, 1069. doi:10.1037/0278-7393.15.6.1061

    Google Scholar 

  • Badler, M. A., & Roediger, H. L., III (1998). The question of awareness in research on implicit learning. In M. A. Stadler & P. A. Frensch (Eds.), Handbook of implicit learning (pp. 105–132). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Stefaniak, N., Willems, S., Adam, S., & Meulemans, T. (2008). What is the impact of the explicit knowledge of sequence regularities on both deterministic and probabilistic serial reaction time task performance? Memory & Cognition, 36, 1283–1298. doi:10.3758/ MC.36.7.1283

    Article  Google Scholar 

  • Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30, 276–315. doi:10.1016/0001-6918(69)90055-9

    Article  Google Scholar 

  • Stöcker, C., Sebald, A., & Hoffmann, J. (2003). The influence of response—effect compatibility in a serial reaction time task. Quarterly Journal of Experimental Psychology, 56A, 586–703. doi:10.1080/02724980244000585

    Google Scholar 

  • Sun, R., Slusarz, P., & Terry, C. (2005). The interaction of the explicit and the implicit in skill learning: A dual-process approach. Psychological Review, 112, 159–192. doi:10.1037/0033-295X.112.1.159

    Article  PubMed  Google Scholar 

  • Turk-Browne, N. B., Isola, P. J., Scholl, B. J., & Treat, T. A. (2008). Multidimensional visual statistical learning. Journal of Experimental Psychology: Learning, Memory, & Cognition, 34, 399–407. doi:10.1037/0278-7393.34.2.399

    Google Scholar 

  • Tzelgov, J., Henik, A., & Berger, J. (1992). Controlling Stroop effects by manipulating expectations for color words. Memory & Cognition, 20, 727–735.

    Article  Google Scholar 

  • Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge, MA: MIT Press.

    Google Scholar 

  • Vakil, E., Kahan, S., Huberman, M., & Osimani, A. (2000). Motor and non-motor sequence learning in patients with basal ganglia lesions: The case of serial reaction time. Neuropsychologia, 38, 1–10. doi:10.1016/S0028-3932(99)00058-5

    Article  PubMed  Google Scholar 

  • Vandenberghe, M., Schmidt, N., Fery, P., & Cleeremans, A. (2006). Can amnesic patients learn without awareness? New evidence comparing deterministic and probabilistic sequence learning. Neuropsychologia, 44, 1629–1641. doi:10.1016/j.neuropsychologia.2006.03.022

    Article  PubMed  Google Scholar 

  • Verwey, W. B. (2003). Processing modes and parallel processors in producing familiar keying sequences. Psychological Research, 67, 106–122. doi:10.1007/s00426-002-0120-7

    PubMed  Google Scholar 

  • Verwey, W. B., Abrahamse, E. L., & Jiménez, L. (2009). Segmentation of short keying sequences does not spontaneously transfer to other sequences. Human Movement Science, 28, 348–361. doi:10.1016/ j.humov.2008.10.004

    Article  PubMed  Google Scholar 

  • Verwey, W. B., & Clegg, B. A. (2005). Effector dependent sequence learning in the serial RT task. Psychological Research, 69, 242–251. doi:10.1007/s00426-004-0181-x

    Article  PubMed  Google Scholar 

  • Verwey, W. B., & Wright, D. L. (2004). Effector-independent and effector-dependent learning in the discrete sequence production task. Psychological Research, 68, 64–70. doi:10.1007/s00426-003-0144-7

    Article  PubMed  Google Scholar 

  • Wilkinson, L., & Shanks, D. R. (2004). Intentional control and implicit sequence learning. Journal of Experimental Psychology: Learning, Memory, & Cognition, 30, 354–369. doi:10.1037/0278-7393.30.2.354

    Google Scholar 

  • Willingham, D. B. (1997). Implicit and explicit memory do not differ in flexibility: Comment on Dienes and Berry (1997). Psychonomic Bulletin & Review, 4, 587–591.

    Article  Google Scholar 

  • Willingham, D. B. (1998). A neuropsychological theory of motor skill learning. Psychological Review, 105, 558–584. doi:10.1037/0033-295X.105.3.558

    Article  PubMed  Google Scholar 

  • Willingham, D. B. (1999). Implicit motor sequence learning is not purely perceptual. Memory & Cognition, 27, 561–572.

    Article  Google Scholar 

  • Willingham, D. B., & Goedert-Eschmann, K. (1999). The relation between implicit and explicit learning: Evidence for parallel development. Psychological Science, 10, 531–534. doi:10.1111/1467-9280.00201

    Article  Google Scholar 

  • Willingham, D. B., & Koroshetz, W. J. (1993). Evidence for dissociable motor skills in Huntington’s disease patients. Psychobiology, 21, 173–182.

    Google Scholar 

  • Willingham, D. B., Nissen, M. J., & Bullemer, P. (1989). On the development of procedural knowledge. Journal of Experimental Psychology: Learning, Memory, & Cognition, 15, 1047–1060. doi:10.1037/0278-7393.15.6.1047

    Google Scholar 

  • Willingham, D. B., Wells, L. A., Farrell, J. M., & Stemwedel, M. E. (2000). Implicit motor sequence learning is represented in response locations. Memory & Cognition, 28, 366–375.

    Article  Google Scholar 

  • Wilson, P. H., Maruff, P., & Lum, J. (2003). Procedural learning in children with developmental coordination disorder. Human Movement Science, 22, 515–526. doi:10.1016/j.humov.2003.09.007

    Article  PubMed  Google Scholar 

  • Witt, J. K., Ashe, J. & Willingham, D. T. (2008). An egocentric frame of reference for implicit motor skill learning. Psychological Research, 72, 542–552. doi:10.1007/s00426-007-0129-z

    Article  PubMed  Google Scholar 

  • Witt, J. K., & Willingham, D. T. (2006). Evidence for separate representations for action and location in implicit motor sequencing. Psychonomic Bulletin & Review, 13, 902–907.

    Article  Google Scholar 

  • Ziessler, M. (1994). The impact of motor responses on serialpattern learning. Psychological Research, 57, 30–41. doi:10.1007/ BF00452993

    Article  PubMed  Google Scholar 

  • Ziessler, M. (1998). Response—effect learning as a major component of implicit serial learning. Journal of Experimental Psychology: Learning, Memory, & Cognition, 24, 962–978. doi:10.1037/0278-7393.24.4.962

    Google Scholar 

  • Ziessler, M., & Nattkemper, D. (2001). Learning of event sequences is based on response—effect learning: Further evidence from a serial reaction task. Journal of Experimental Psychology: Learning, Memory, & Cognition, 27, 595–613. doi:10.1037/0278-7393.27.3.595

    Google Scholar 

  • Zirngibl, C., & Koch, I. (2002). The impact of response mode on implicit and explicit sequence learning. Experimental Psychology, 49, 153–162. doi:10.1027/1618-3169.49.2.153

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elger L. Abrahamse.

Additional information

E.L.A. was supported by a scholarship for Ph.D. students from the Fulbright Center.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abrahamse, E.L., Jiménez, L., Verwey, W.B. et al. Representing serial action and perception. Psychonomic Bulletin & Review 17, 603–623 (2010). https://doi.org/10.3758/PBR.17.5.603

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/PBR.17.5.603

Keywords

Navigation