Skip to main content
Log in

Capturing spatial attention with multisensory cues

  • Brief Reports
  • Published:
Psychonomic Bulletin & Review Aims and scope Submit manuscript

Abstract

We assessed the influence of multisensory interactions on the exogenous orienting of spatial attention by comparing the ability of auditory, tactile, and audiotactile exogenous cues to capture visuospatial attention under conditions of no perceptual load versus high perceptual load. In Experiment 1, participants discriminated the elevation of visual targets preceded by either unimodal or bimodal cues under conditions of either a high perceptual load (involving the monitoring of a rapidly presented central stream of visual letters for occasionally presented target digits) or no perceptual load (when the central stream was replaced by a fixation point). All of the cues captured spatial attention in the no-load condition, whereas only the bimodal cues captured visuospatial attention in the highload condition. In Experiment 2, we ruled out the possibility that the presentation of any changing stimulus at fixation (i.e., a passively monitored stream of letters) would eliminate exogenous orienting, which instead appears to be a consequence of high perceptual load conditions (Experiment 1). These results demonstrate that multisensory cues capture spatial attention more effectively than unimodal cues under conditions of concurrent perceptual load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Beauchamp, M. S., Argall, B. D., Bodurka, J., Duyn, J. H., & Martin, A. (2004). Unraveling multisensory integration: Patchy organization within human STS multisensory cortex. Nature Neuroscience, 7, 1190–1192.

    Article  PubMed  Google Scholar 

  • Berger, A., Henik, A., & Rafal, R. (2005). Competition between endogenous and exogenous orienting of visual attention. Journal of Experimental Psychology: General, 134, 207–221.

    Article  Google Scholar 

  • Calvert, G. A., Campbell, R., & Brammer, M. J. (2000). Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Current Biology, 10, 649–657.

    Article  PubMed  Google Scholar 

  • Calvert, G. A., Spence, C., & Stein, B. E. (Eds.) (2004). The handbook of multisensory processes. Cambridge, MA: MIT Press.

    Google Scholar 

  • Dhamala, M., Assisi, C. G., Jirsa, V. K., Steinberg, F. L., & Kelso, J. A. S. (2007). Multisensory integration for timing engages different brain networks. NeuroImage, 34, 764–773.

    Article  PubMed  Google Scholar 

  • Ho, C., Reed, N. J., & Spence, C. (2006). Assessing the effectiveness of “intuitive” vibrotactile warning signals in preventing front-to-rearend collisions in a driving simulator. Accident Analysis & Prevention, 38, 988–996.

    Article  Google Scholar 

  • Ho, C., & Spence, C. (2005). Assessing the effectiveness of various auditory cues in capturing a driver’s visual attention. Journal of Experimental Psychology: Applied, 11, 157–174.

    Article  PubMed  Google Scholar 

  • Holmes, N. P., & Spence, C. (2005). Multisensory integration: Space, time and superadditivity. Current Biology, 15, R762-R764.

    Article  PubMed  Google Scholar 

  • Kellie, F. J., & Shapiro, K. L. (2004). Object file continuity predicts attentional blink magnitude. Perception & Psychophysics, 66, 692–712.

    Article  Google Scholar 

  • Lavie, N. (2005). Distracted and confused? Selective attention under load. Trends in Cognitive Sciences, 9, 76–82.

    Article  Google Scholar 

  • Lovelace, C. T., Stein, B. E., & Wallace, M. T. (2003). An irrelevant light enhances auditory detection in humans: A psychophysical analysis of multisensory integration in stimulus detection. Cognitive Brain Research, 17, 447–453.

    Article  PubMed  Google Scholar 

  • Mazza, V., Turatto, M., Rossi, M., & Umiltá, C. (2007). How automatic are audiovisual links in exogenous spatial attention? Neuropsychologia, 45, 514–522.

    Article  PubMed  Google Scholar 

  • Milliken, B., Lupiáňez, J., Roberts, M., & Stevanovski, B. (2003). Orienting in space and time: Joint contributions to exogenous spatial cuing effects. Psychonomic Bulletin & Review, 10, 877–883.

    Article  Google Scholar 

  • Odgaard, E. C., Arieh, Y., & Marks, L. E. (2003). Cross-modal enhancement of perceived brightness: Sensory interaction versus response bias. Perception & Psychophysics, 65, 123–132.

    Article  Google Scholar 

  • Populin, L. C., & Yin, T. C. T. (2002). Bimodal interactions in the superior colliculus of the behaving cat. Journal of Neuroscience, 22, 2826–2834.

    PubMed  Google Scholar 

  • Santangelo, V., Olivetti Belardinelli, M., & Spence, C. (2007). The suppression of reflexive visual and auditory orienting when attention is otherwise engaged. Journal of Experimental Psychology: Human Perception & Performance, 33, 137–148.

    Article  Google Scholar 

  • Santangelo, V., Van der Lubbe, R. H. J., Olivetti Belardinelli, M., & Postma, A. (2006). Spatial attention triggered by unimodal, crossmodal, and bimodal exogenous cues: A comparison of reflexive orienting mechanisms. Experimental Brain Research, 173, 40–48.

    Article  Google Scholar 

  • Spence, C. (2001). Crossmodal attentional capture: A controversy resolved? In C. L. Folk & B. S. Gibson (Eds.), Attraction, distraction and action: Multiple perspectives on attentional capture (pp. 231–262). New York: Elsevier.

    Chapter  Google Scholar 

  • Spence, C., & Driver, J. (1997). tAudiovisual links in exogenous covert spatial orienting. Perception & Psychophysics, 59, 1–22.

    Article  Google Scholar 

  • Spence, C., & Driver, J. (1999). A new approach to the design of multimodal warning signals. In D. Harris (Ed.), Engineering psychology and cognitive ergonomics (Vol. 4, pp. 455–461). Aldershot, U.K.: Ashgate.

    Google Scholar 

  • Spence, C., McDonald, J., & Driver, J. (2004). Exogenous spatial cuing studies of human crossmodal attention and multisensory integration. In C. Spence & J. Driver (Eds.), Crossmodal space and crossmodal attention (pp. 277–320). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Spence, C., Nicholls, M. E. R., Gillespie, N., & Driver, J. (1998). Cross-modal links in exogenous covert spatial orienting between touch, audition, and vision. Perception & Psychophysics, 60, 544–557.

    Article  Google Scholar 

  • Stanford, T. R., & Stein, B. E. (2007). Superadditivity in multisensory integration: Putting the computation in context. NeuroReport, 8, 787–792.

    Article  Google Scholar 

  • Stein, B. E., London, N., Wilkinson, L. K., & Price, D. P. (1996). Enhancement of perceived visual intensity by auditory stimuli: A psychophysical analysis. Journal of Cognitive Neuroscience, 8, 497–506.

    Article  PubMed  Google Scholar 

  • Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. Cambridge, MA: MIT Press.

    Google Scholar 

  • Stein, B. E., Meredith, M. A., Huneycutt, W. S., & McDade, L. (1989). Behavioral indices of multisensory integration: Orientation to visual cues is affected by auditory stimuli. Journal of Cognitive Neuroscience, 1, 12–24.

    Article  PubMed  Google Scholar 

  • Stein, B. E., Stanford, T. R., Wallace, M. T., Vaughan, W. J., & Jiang, W. (2004). Crossmodal spatial interactions in subcortical and cortical circuits. In C. Spence & J. Driver (Eds.), Crossmodal space and crossmodal attention (pp. 25–50). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Talsma, D., & Woldorff, M. G. (2005). Attention and multisensory integration: Multiple phases of effects on the evoked brain activity. Journal of Cognitive Neuroscience, 17, 1098–1114.

    Article  PubMed  Google Scholar 

  • Teder-Sälejärvi, W. A., McDonald, J. J., Di Russo, F., & Hillyard, S. A. (2002). An analysis of audio-visual crossmodal integration by means of event-related potential (ERP) recordings. Cognitive Brain Research, 14, 106–114.

    Article  PubMed  Google Scholar 

  • Van der Lubbe, R. H. J., & Postma, A. (2005). Interruption from irrelevant auditory and visual onsets even when attention is in a focused state. Experimental Brain Research, 164, 464–471.

    Article  Google Scholar 

  • Ward, L. M. (1994). Supramodal and modality-specific mechanisms for stimulus-driven shifts of auditory and visual attention. Canadian Journal of Experimental Psychology, 48, 242–259.

    Article  PubMed  Google Scholar 

  • Ward, L. M., McDonald, J. J., & Golestani, N. (1998). Cross-modal control of attention shifts. In R. D. Wright (Ed.), Visual attention (pp. 232–268). New York: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Santangelo.

Additional information

This study was supported by a postdoctoral research grant awarded to V.S. by the Faculty of Psychology, University of Rome “La Sapienza.” This study was also supported in part by a Clarendon Fund Bursary from Oxford University, an Overseas Research Students (ORS) award, and a Somerville Senior Scholarship from Somerville College, Oxford, awarded to C.H.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santangelo, V., Ho, C. & Spence, C. Capturing spatial attention with multisensory cues. Psychonomic Bulletin & Review 15, 398–403 (2008). https://doi.org/10.3758/PBR.15.2.398

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/PBR.15.2.398

Keywords

Navigation