Skip to main content
Log in

Correlations Among Maximum Likelihood and Weighted/Unweighted Least Squares Estimators in Factor Analysis

  • Published:
Behaviormetrika Aims and scope Submit manuscript

Abstract

The asymptotic correlations among maximum likelihood (ML) and various least squares (LS) estimators in factor analysis are derived. The LS estimators include the unweighted (ULS) and weighted estimators for unstandardized variables and the ULS estimators for standardized variables. The derived formulas cover the cases with restrictions on parameters. Numerical examples with simulations are provided to confirm the accuracy of the formulas and the influence of scales on the asymptotic correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, T. W. (1987). Multivariate linear relations. In T. Pukkila & S. Puntanen (Eds.), Proceedings of the Second International Tampere Conference in Statistics (pp. 9–36). Tampere, Finland: Department of Mathematical Sciences, University of Tampere.

    Google Scholar 

  • Anderson, T. W. (1989). Linear latent variable models and covariance structures. Journal of Econometrics, 41, 91–119.

    Article  MathSciNet  Google Scholar 

  • Anderson, T. W. & Amemiya, Y. (1988). The asymptotic normal distribution of estimators in factor analysis under general conditions. The Annals of Statistics, 16, 759–771.

    Article  MathSciNet  Google Scholar 

  • Anderson, T. W. & Rubin, H. (1956). Statistical inference in factor analysis. In J. Neyman, (Ed.) Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Vol. V (pp. 111–150). Berkeley: University of California Press.

    Google Scholar 

  • Arbucle, J. L. & Wothke, W. (1999). Amos 4-0 user’s guide. Chicago: SPSS Inc.

    Google Scholar 

  • Bentler, P. M. (1989). EQS: A structural equations program. Los Angeles: BMDP Statistical Software.

    Google Scholar 

  • Browne, M. W. (1974). Generalized least squares estimators in the analysis of covariance structures. South African Statistical Journal, 8, 1–24. Reprinted in D. J. Aigner & A. S. Goldberger (Eds.), Latent variables in socioeconomic models (pp. 205-226). Amsterdam: North Holland, 1977.

    MathSciNet  MATH  Google Scholar 

  • Browne, M. W. (1982). Covariance structures. In D. M. Hawkins (Ed.) Topics in applied multivariate analysis (pp. 72–141). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 62–83.

    Article  MathSciNet  Google Scholar 

  • Browne, M. W. (1987). Robustness of statistical inference in factor analysis and related models. Biometrika, 74, 375–384.

    Article  MathSciNet  Google Scholar 

  • Browne, M. W. & Mels, G. (2000). Path analysis (RAMONA). In SPSS Inc. SYS TAT 10 statistics II, Chapter 7, (pp. 11233–291). Chicago: Author.

    Google Scholar 

  • Browne, M. W. & Shapiro, A. (1988). Robustness of normal theory methods in the analysis of linear latent variable models. British Journal of Mathematical and Statistical Psychology, 41, 193–208.

    Article  MathSciNet  Google Scholar 

  • Cox, D. R. & Hinkley, D. V. (1978). Problems and solutions in theoretical statistics. London: Chapman & Hall.

    Book  Google Scholar 

  • Fuller, W. A. (1987). Measurement error models. New York: Wiley.

    Book  Google Scholar 

  • Girshick, M. A. (1939). On the sampling theory of roots of determinantal equations. Annals of Mathematical Statistics, 10, 203–224.

    Article  MathSciNet  Google Scholar 

  • Harman, H. H. (1976). Modern factor analysis 3rd ed.). Chicago: University of Chicago Press.

    MATH  Google Scholar 

  • Harman, H. H. & Jones, W. H. (1966). Factor analysis by minimizing residuals (minres). Psychometrika, 31, 351–368.

    Article  MathSciNet  Google Scholar 

  • Jöreskog, K. G. & Sörbom, D. (1996). LISREL 8: User’s reference guide (2nd ed.). Chicago: Scientific Software International.

    Google Scholar 

  • Jöreskog, K. G. & Goldberger, A. S. (1972). Factor analysis by generalized least suares. Psychometrika, 37, 243–260.

    Article  MathSciNet  Google Scholar 

  • Jöreskog, K. G. & Sörbom, D, du Toit& du Toit (1999). LISREL 8: New statistical features. Chicago: Scientific Software International.

    Google Scholar 

  • Krane, W., R. & McDonald, R. R. (1978). Scale invariance and the factor analysis of correlation matrices. British Journal of Mathematical and Statistical Psychology, 31, 218–228.

    Article  MathSciNet  Google Scholar 

  • Lee, S. Y. & Bentler, R. M. (1980). Some asymptotic properties of constrained generalized least squares estimation in covariance structure models. South African Statistical Journal, 14, 121–136.

    MathSciNet  MATH  Google Scholar 

  • Lee, S. Y. & Jennrich, R. I. (1979). A study of algorithms for covariance structure analysis with specific comparisons using factor analysis. Psychometrika, 44, 99–113.

    Article  MathSciNet  Google Scholar 

  • Magnus, J. R. & Neudecker, H. (1988). Matrix differential calculus with applications in statistics and econometrics. New York: Wiley.

    MATH  Google Scholar 

  • Mooijaart, A. & Bentler, R. M. (1991). Robustness of normal theory statistics in structural equation models. Statistica Neerlandica, 45, 159–171.

    Article  MathSciNet  Google Scholar 

  • Ogasawara, H. (2000). On the standard errors of rotated factor loadings with weights for observed variables. Behaviormetrika, 27, 1–14.

    Article  Google Scholar 

  • Ogasawara, H. (2001). Least squares estimation of item response theory linking coefficients. Applied Psychological Measurement, 25, 373–383.

    Article  MathSciNet  Google Scholar 

  • Satorra, A. (1990). Robustness issues in structural equation modeling: A review of recent developments. Quality & Quantity, 24, 367–386.

    Article  Google Scholar 

  • Satorra, A. & Bentler, R. M. (1990). Model conditions for asymptotic robustness in the analysis of linear relations. Computational Statistics and Data Analysis, 10, 235–249.

    Article  MathSciNet  Google Scholar 

  • Silvey, S. D. (1975). Statistical inference. London: Chapman & Hall.

    MATH  Google Scholar 

  • Steiger, J. H. & Hakstian, A. R. (1982). The asymptotic distribution of elements of a correlation matrix: Theory and application. British Journal of Mathematical and Statistical Psychology, 35, 208–215.

    Article  MathSciNet  Google Scholar 

  • Stuart, A., Ord, J. K. & Arnold, S. (1999). Kendall’s advanced theory of statistics: Classical inference and the linear model (6th ed., Vol.2A). London: Arnold.

    Google Scholar 

  • Yuan, K.-H. & Bentler, R (2000). On equivalence and invariance of standard errors in three exploratory factor models. Psychometrika, 65, 121–133.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruhiko Ogasawara.

About this article

Cite this article

Ogasawara, H. Correlations Among Maximum Likelihood and Weighted/Unweighted Least Squares Estimators in Factor Analysis. Behaviormetrika 30, 63–86 (2003). https://doi.org/10.2333/bhmk.30.63

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2333/bhmk.30.63

Key Words and Phrases

Navigation