Skip to main content
Log in

What is Known About Autism

Genes, Brain, and Behavior

  • Genomics in Health and Disease
  • Published:
American Journal of Pharmacogenomics

Abstract

Autism is a neurodevelopmental disorder of genetic origins, with a heritability of about 90%. Autistic disorder is classed within the broad domain of pervasive developmental disorders (PDD) that also includes Rett syndrome, childhood disintegrative disorder, Asperger syndrome, and PDD not otherwise specified (PDD-NOS). Prevalence estimates suggest a rate of 0.1–0.2% for autism and 0.6% for the range of PDD disorders. There is considerable phenotypic heterogeneity within this class of disorders as well as continued debate regarding their clinical boundaries. Autism is the prototypical PDD, and is characterized by impairments in three core domains: social interaction, language development, and patterns of behavior (restricted and stereotyped). Clinical pattern and severity of impairment vary along these dimensions, and the level of cognitive functioning of individuals with autism spans the entire range, from profound mental retardation to superior intellect.

There is no single biological or clinical marker for autism, nor is it expected that a single gene is responsible for its expression; as many as 15+ genes may be involved. However, environmental influences are also important, as concordance in monozygotic twins is less than 100% and the phenotypic expression of the disorder varies widely, even within monozygotic twins. Multiple susceptibility factors are being explored using varied methodologies, including genome-wide linkage studies, and family- and case-control candidate gene association studies. This paper reviews what is currently known about the genetic and environmental risk factors, neuropathology, and psychopharmacology of autism. Discussion of genetic factors focuses on the findings from linkage and association studies, the results of which have implicated the involvement of nearly every chromosome in the human genome. However, the most consistently replicated linkage findings have been on chromosome 7q, 2q, and 15q. The positive associations from candidate gene studies are largely unreplicated, with the possible exceptions of the GABRB3 and serotonin transporter genes.

No single region of the brain or pathophysiological mechanism has yet been identified as being associated with autism. Postmortem findings, animal models, and neuroimaging studies have focused on the cerebellum, frontal cortex, hippocampus, and especially the amygdala. The cerebello-thalamo-cortical circuit may also be influential in autism. There is evidence that overall brain size is increased in some individuals with autism.

Presently there are no drugs that produce major improvements in the core social or pragmatic language deficits in autism, although several have limited effects on associated behavioral features.

The application of new techniques in autism research is being proposed, including the investigation of abnormal regulation of gene expression, proteomics, and the use of MRI and postmortem analysis of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III

Similar content being viewed by others

Notes

  1. 1The term ‘refrigerator mother’ refers to a theory first posited by developmental psychologist Bruno Bettelheim in the 1950s. He suggested that a lack of parental love and acceptance (cold and unresponsive parenting) was the cause of autism.

  2. 2In a landmark paper published in 1995, Lander and Kruglyak[132] set forth guidelines for determining statistically significant and suggestive evidence for linkage for complex traits under different study design and analytic scenarios. According to these guidelines, a p-value of 2.2 × 10−5 or lower, corresponding to a LOD (logarithm to the base 10 of the odds [or likelihood ratio] in favor of linkage) score of 3.6 or higher, would generally constitute statistically significant evidence for linkage in a sib pair study, while a p-value of 7.4 × 10−4, corresponding to a LOD score of 2.2, would index suggestive linkage — a signal that, although it falls short of statistical significance, still merits continued interest and follow-up.

References

  1. August GJ, Stewart MA, Tsai L. The incidence of cognitive disabilities in the siblings of autistic children. Br J Psychiatry 1981; 138: 416–22

    Article  PubMed  CAS  Google Scholar 

  2. Baird TD, August GJ. Familial heterogeneity in infantile autism. J Autism Dev Disord 1985; 15: 315–21

    Article  PubMed  CAS  Google Scholar 

  3. Bolton P, Macdonald H, Pickles A, et al. A case-control family history study of autism. J Child Psychol Psychiatry 1994; 35: 877–900

    Article  PubMed  CAS  Google Scholar 

  4. Gillberg C, Gillberg IC, Steffenburg S. Siblings and parents of children with autism: a controlled population-based study. Dev Med Child Neurol 1992; 34: 389–98

    Article  PubMed  CAS  Google Scholar 

  5. Ritvo ER, Jorde LB, Mason-Brothers A, et al. The UCLA-University of Utah epidemiologic survey on autism: recurrence risk estimates and genetic counseling. Am J Pyschiatry 1989; 146: 1032–6

    CAS  Google Scholar 

  6. Szatmari P, Jones MB, Tuff L, et al. Lack of cognitive impairment in first-degree relatives of children with pervasive developmental disorders. J Am Acad Child Adolesc Psychiatry 1993; 32: 1264–73

    Article  PubMed  CAS  Google Scholar 

  7. Fombonne E. The epidemiology of autism: a review. Psychol Med 1999; 29(4): 769–86

    Article  PubMed  CAS  Google Scholar 

  8. Bailey A, Le Couteur A, Gottesman I, et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 1995; 25: 63–77

    Article  PubMed  CAS  Google Scholar 

  9. Folstein S, Rutter M. Infantile autism: a genetic study of 21 twin pairs. J Child Psychol Psychiatry 1977; 18: 297–321

    Article  PubMed  CAS  Google Scholar 

  10. Steffenburg S, Gillberg C, Hellgren L, et al. A twin study of autism in Denmark, Finland, Iceland, Norway, and Sweden. J Child Psychol Psychiatry 1989; 30(3): 405–16

    Article  PubMed  CAS  Google Scholar 

  11. Rutter M, Andersen-Wood L, Beckett C, et al. Quasi-autistic patterns following severe early global privation. J Child Psychol Psychiatry 1999; 40(4): 537–49

    Article  PubMed  CAS  Google Scholar 

  12. Pickles A, Bolton P, Macdonald H, et al. Latent-class analysis of recurrence risks for complex phenotypes with selection and measurement error: a twin and family history study of autism. Am J Hum Genet 1995; 57(3): 717–26

    PubMed  CAS  Google Scholar 

  13. Santangelo S, Folstein S. Autism: a genetic perspective, in neurodevelopmental disorders. In: Tager-Flushberg H, editor. Neurodevelopmental disorders: contributions to a new framework from the cognitive neurosciences. Cambridge (MA): MIT Press, 1999: 431–48

    Google Scholar 

  14. Risch N, Spiker D, Lotspeich L, et al. A genomic screen of autism: evidence for a multiocus etiology. Am J Hum Genet 1999; 65: 493–507

    Article  PubMed  CAS  Google Scholar 

  15. Le Couteur A, Bailey A, Goode S, et al. A broader phenotype of autism: the clinical spectrum in twins. J Child Psychol Psychiatry 1996; 37: 785–801

    Article  PubMed  Google Scholar 

  16. International Molecular Genetic Studies of Autism. A full genome screen for autism with evidence for linkage to a region on chromosome 7q. Hum Mol Genet 1998; 7: 571–8

    Google Scholar 

  17. Collaborative Linkage Study of Autism. An autosomal genomic screen for autism [Erratum in Am J Med Genet 2001 Dec 8; 105 (8): 805; corrected and republished in Am J Med Genet 2001 Dec 8; 105 (8): 609–15]. Am J Med Genet 1999 Dec 15; 88(6): 609–15

    Google Scholar 

  18. Philippe A, Martinez M, Guilloud-Bataille M, et al. Genome-wide scan for autism susceptibility genes, Paris Autism Research International Sibpair Study. Hum Mol Genet 1999; 8(5): 805–12

    Article  PubMed  CAS  Google Scholar 

  19. Auranen M, Nieminen T, Majuri S, et al. Analysis of autism susceptibility gene loci on chromosomes 1p, 4p, 6p, 7q, 15q, 16p, 17q, 19q and 22q in Finnish multiplex families. Mol Psychiatry 2000; 5: 320–2

    Article  PubMed  CAS  Google Scholar 

  20. Liu J, Nyholt D, Magnussen P, et al. A genomewide screen for autism susceptibility loci. Am J Hum Genet 2001; 69: 327–40

    Article  PubMed  CAS  Google Scholar 

  21. International Molecular Genetic Studies of Autism. A genomewide screen for autism: strong evidence for linkage to chromosomes 2q, 7q, and 16p. Am J Hum Genet 2001; 69: 570–81

    Google Scholar 

  22. Buxbaum J, Silverman J, Smith C, et al. Evidence for a susceptibility gene for autism on chromosome 2 and for genetic heterogeneity. Am J Hum Genet 2001; 68: 1514–20

    Article  PubMed  CAS  Google Scholar 

  23. Ashley-Koch A, Wolpert CM, Menold MM, et al. Genetic studies of autistic disorder and chromosome 7. Genomics 1999; 61: 227–36

    Article  PubMed  CAS  Google Scholar 

  24. Bass MP, Menold MM, Wolpert CM, et al. Genetic studies in autistic disorder and chromosome 15. Neurogenetics 1999; 2(4): 219–26

    Article  Google Scholar 

  25. Collaborative Linkage Study of Autism. Incorporating language phenotypes strengthens evidence for linkage to autism [Erratum in Am J Med Genet 2001 Dec 8; 105 (8): 805. Corrected and republished in Am J Med Genet 2001 Dec 8; 105 (8): 536–47]. Am J Med Genet 2001 Aug 8; 105(6): 539–47

    Google Scholar 

  26. Shao Y, Wolpert CM, Raiford KL, et al. Genomic screen and follow-up analysis for autistic disorder. Am J Med Genet 2002; 114(1): 99–105

    Article  PubMed  Google Scholar 

  27. Alarcon M, Cantor RM, Liu J, et al. Evidence for a language quantitative trait locus on chromosome 7q in multiplex autism families. Am J Hum Genet 2002; 71(1): 60–71

    Article  Google Scholar 

  28. Auranen M, Vanhala R, Varilo T, et al. A genomewide screen for autism-spectrum disorders: evidence for a major susceptibility locus on chromosome 3q25-27. Am J Hum Genet 2002 Oct; 71(4): 777–90

    Article  PubMed  Google Scholar 

  29. Yonan AL, Alarcon M, Cheng R, et al. A genomewide screen of 345 families for autism-susceptibility loci. Am J Hum Genet 2003; 73: 886–97

    Article  PubMed  CAS  Google Scholar 

  30. Buxbaum JD, Silverman JM, Keddache M, et al. Linkage analysis for autism in a subset of families with obsessive-compulsive behaviors: evidence for an autism susceptibility gene on chromosome 1 and further support for susceptibility genes on chromosome 6 and 19. Mol Psychiatry 2004; 9: 144–50

    Article  PubMed  CAS  Google Scholar 

  31. Shao Y, Raiford KL, Wolpert CM, et al. Phenotypic homogeneity provides increased support for linkage on chromosome 2 in autistic disorder. Am J Hum Genet 2002; 70(4): 1058–61

    Article  PubMed  CAS  Google Scholar 

  32. Schutz CK, Polley D, Robinson PD, et al. Autism and the X chromosome: no linkage to microsatellite loci detected using the affected sibling pair method. Am J Med Genet 2002; 109(1): 36–41

    Article  PubMed  Google Scholar 

  33. Shao Y, Cuccaro ML, Hauser ER, et al. Fine mapping of autistic disorder to chomosome 15q11-q13 by use of phenotypic subtypes. Am J Hum Genet 2003; 72(3): 539–48

    Article  PubMed  CAS  Google Scholar 

  34. Nurmi EL, Dowd M, Tadevosyan-Leyfer O, et al. Exploratory subsetting of autism families based on savant skills improves evidence of genetic linkage to 15q11-q13. J Acad Child Adolesc Psychiatry 2003; 42(7): 856–63

    Article  Google Scholar 

  35. Ramoz N, Reichert JG, Smith CJ, et al. Linkage and association of the mitochondrial aspartate/glutamate carrier SLC25A12 gene with autism. Am J Pyschiatry 2004; 161: 662–9

    Article  Google Scholar 

  36. Nabi R, Serajee FJ, Chugani DC, et al. Association of tryptophan 2, 3 dioxygenase gene polymorphism with autism. Am J Med Genet 2004; 125B: 63–8

    Article  PubMed  Google Scholar 

  37. Rogers T, Kalaydjieva L, Hallmayer J, et al. Exclusion of linkage to the HLA region in ninety mulitplex sibships with autism. J Autism Dev Disord 1999; 29: 195–201

    Article  PubMed  CAS  Google Scholar 

  38. Torres AR, Maciulis A, Stubbs EG, et al. The transmission disequilibrium test suggests that HLA-DR4 and DR13 are linked to autism spectrum disorder. Hum Immunol 2002; 63(4): 311–6

    Article  PubMed  CAS  Google Scholar 

  39. Jamain S, Betancur C, Quach H, et al. Linkage and association of the glutamate receptor 6 gene with autism. Mol Psychiatry 2002; 7(3): 302–10

    Article  PubMed  CAS  Google Scholar 

  40. Serajee FJ, Zhong H, Nabi R, et al. The metabotropic glutamate receptor 8 gene at 7q31: partial duplication and possible association with autism. J Med Genet 2003; 40(4): e42

    Article  PubMed  CAS  Google Scholar 

  41. Persico AM, D’Agruma L, Maiorano N, et al. Reelin gene alleles and haplotypes as a factor for predisposing to autistic disorder. Mol Psychiatry 2001; 6(2): 150–9

    Article  PubMed  CAS  Google Scholar 

  42. Krebs MO, Betancur C, Leroy S, et al. Absence of association between polymorphic GGC repeat in the 5’-untranslated region of the reelin gene and autism. Mol Psychiatry 2002; 7: 801–4

    Article  PubMed  CAS  Google Scholar 

  43. Zhang H, Liu X, Zhang C, et al. Reelin gene alleles and susceptibility to autism spectrum disorders. Mol Psychiatry 2002; 7(9): 1012–7

    Article  PubMed  CAS  Google Scholar 

  44. Li J, Nguyen L, Gleason C, et al. Lack of evidence for an association between WNT2 and RELN polymorphisms and autism. Am J Med Genet B Neuropsychiatr Genet 2004; 126B: 51–7

    Article  PubMed  Google Scholar 

  45. Newbury DF, Bonora E, Lamb JA, et al. FOXP2 is not a major susceptibility gene for autism or specific language impairment. Am J Hum Genet 2002; 70(5): 1318–27

    Article  PubMed  CAS  Google Scholar 

  46. Wassink TH, Piven J, Vieland VJ, et al. Evaluation of FOXP2 as an autism susceptibility gene. Am J Med Genet 2002; 114(5): 566–9

    Article  PubMed  Google Scholar 

  47. McCoy PA, Shao Y, Wolpert CM, et al. No association between the WNT2 gene and autistic disorder. Am J Med Genet 2002; 114(1): 106–9

    Article  PubMed  Google Scholar 

  48. Zhong H, Serajee FJ, Nabi R, et al. No association between the EN2 gene and autistic disorder. J Med Genet 2003; 40(1): e4

    Article  PubMed  CAS  Google Scholar 

  49. Gharani N, Benayed R, Mancuso V, et al. Association of the homeobox transcription factor, ENGRAILED 2, 3, with autism spectrum disorder. Mol Psychiatry 2004; 9: 474–84

    Article  PubMed  CAS  Google Scholar 

  50. Lauritsen MB, Borglum AD, Betancur C, et al. Investigation of two variants in the DOPA decarboxylase gene in patients with autism. Am J Med Genet 2002; 114(4): 466–70

    Article  PubMed  Google Scholar 

  51. Ingram JL, Stodgell CJ, Hyman SL. Discovery of allelic variants of HOXA1 and HOXB1: genetic susceptibility to autism spectrum disorders. Teratology 2000; 62: 393–405

    Article  PubMed  CAS  Google Scholar 

  52. Li J, Tabor HK, Nguyen L, et al. Lack of association between HoxA1 and HoxB1 gene variants and autism in 110 multiplex families. Am J Med Genet 2002; 114(1): 24–30

    Article  PubMed  Google Scholar 

  53. Devlin B, Bennett P, Cook EH, et al. No evidence for linkage of liability to autism to HOXA1 in a sample from the CPEA network. Am J Med Genet 2002; 114(6): 667–72

    Article  PubMed  Google Scholar 

  54. Talebizadeh Z, Bittel DC, Miles JH, et al. No association between HOXA1 and HOXB1 genes and autism spectrum disorders (ASD). J Med Genet 2002; 39(11): e70

    Article  PubMed  CAS  Google Scholar 

  55. Kim SJ, Cox N, Courchesne R, et al. Transmission disequilibrium mapping at the serotonin transporter gene (SLC6A4) region in autistic disorder. Mol Psychiatry 2002; 7(3): 278–88

    Article  PubMed  CAS  Google Scholar 

  56. Wassink TH, Piven J, Vieland VJ, et al. Examination of AVPR1a as an autism susceptibility gene. Mol Psychiatry 2004; 9(10): 968–72

    Article  PubMed  CAS  Google Scholar 

  57. Veenstra-VanderWeele J, Kim SJ, Lord C, et al. Transmission disequilibrium studies of the serotonin 5-HT2A receptor gene (HTR2A) in autism. Mol Psychiatry 2002; 114(3): 277–83

    Google Scholar 

  58. Cook EH, Courchesne RY, Cox NJ. Linkage-disequalibrium mapping of autistic disorder, with 15q11-13 markers. Am J Med Genet 1998; 62: 1077–83

    CAS  Google Scholar 

  59. Maestrini E, Lai C, Marlow A, et al. Serotonin transporter (5-HTT) and y-aminobutyric acid receptor subunit B3 (GABRB3) gene polymorphisms are not associated with autism in the IMGSA families. Am J Med Genet 1999; 88: 492–6

    Article  PubMed  CAS  Google Scholar 

  60. Salmon B, Hallmayer J, Rogers T, et al. Absence of linkage and linkage disequilibrium to chromosome 15q11-13 markers in 139 multiplex families with autism. Am J Med Genet 1999; 88: 551–6

    Article  PubMed  CAS  Google Scholar 

  61. Martin ER, Menold MM, Wolpert CM, et al. Analysis of linkage disequilibrium in y-aminobutyric acid receptor subunit genes in autistic disorder. Am J Med Genet 2000; 96: 43–8

    Article  PubMed  Google Scholar 

  62. Buxbaum JD, Silverman JM, Smith CJ, et al. Association between a GABRB3 polymorphism and autism. Mol Psychiatry 2002; 7(3): 311–6

    Article  PubMed  CAS  Google Scholar 

  63. Nurmi EL, Bradford Y, Chen Y, et al. Linkage disequilibrium at the Angelman syndrome gene UBE3A in autism families. Genomics 2001 Sep; 77(1–2): 105–13

    Article  PubMed  CAS  Google Scholar 

  64. Kim SJ, Herzing LB, Veenstra-VanderWeele J, et al. Mutation screening and transmission disequilibrium study of ATP10C autism. Am J Med Genet 2002; 114(2): 137–43

    Article  PubMed  Google Scholar 

  65. Nurmi EL, Amin T, Olson LM, et al. Dense linkage disequilibrium mapping in the 15q11-q13 maternal expression domain yields evidence for association in autism. Mol Psychiatry 2003; 8: 624–34

    Article  PubMed  CAS  Google Scholar 

  66. Cook EHJ, Courchesne R, Lord C, et al. Evidence of linkage between the serotonin transporter and autistic disorder. Mol Psychiatry 1997; 2: 247–50

    Article  PubMed  Google Scholar 

  67. Klauck SM, Poustka F, Benner A, et al. Serotonin transporter (5-HTT) gene variants associated with autism? Hum Mol Genet 1997; 6: 2233–8

    Article  PubMed  CAS  Google Scholar 

  68. Zhong N, Ye L, Ju W, et al. 5-HTTLPR variants not associated with autistic spectrum disorders. Neurogenetics 1999; 2: 129–31

    Article  PubMed  CAS  Google Scholar 

  69. Persico AM, Militerni R, Bravaccio C, et al. Lack of association between serotonin transporter gene promoter variants and autistic disorder in two ethnically distinct samples. Am J Med Genet 2000; 96: 123–7

    Article  PubMed  CAS  Google Scholar 

  70. Tordjman S, Gutneckt L, Carlier M, et al. Role of the serotonin transporter in the behavioral expression of autism. Mol Psychiatry 2001; 6: 434–9

    Article  PubMed  CAS  Google Scholar 

  71. Yirmiya N, Pilowsky T, Nemanov L, et al. Evidence for an association with the serotonin transporter promoter region polymorphism and autism. Am J Med Genet 2001; 105: 381–6

    Article  PubMed  CAS  Google Scholar 

  72. Betancur C, Corbex M, Spielewoy C, et al. Serotonin transporter gene polymorphisms and hyperserotonemia in autistic disorder. Mol Psychiatry 2002; 7(1): 67–71

    Article  PubMed  CAS  Google Scholar 

  73. Coutinho AM, Oliveira G, Morgadinho T, et al. Variants of the serotonin transporter gene (SLC6A4) significantly contribute to hyperserotonemia in autism. Mol Psychiatry 2004; 9: 264–71

    Article  PubMed  CAS  Google Scholar 

  74. Conroy J, Meally E, Kearney G, et al. Serotonin transporter gene and autism: a haplotype analysis in an Irish autistic population. Mol Psychiatry 2004; 9: 587–93

    Article  PubMed  CAS  Google Scholar 

  75. Mbarek O, Marouillat S, Martineau C, et al. Association study of the NF1 gene and autistic disorder. Am J Med Genet 1999; 88: 729–32

    Article  PubMed  CAS  Google Scholar 

  76. Persico AM, Militerni R, Bravaccio C, et al. Adenosine deaminase alleles and autistic disorder: case-control and family-based association studies. Am J Med Genet 2000; 96: 784–90

    Article  PubMed  CAS  Google Scholar 

  77. Yirmiya N, Pilowsky T, Tidhar S, et al. Family-based and population study of functional promoter-region monoamine oxidase A polymorphism in autism: possible association with IQ. Am J Med Genet 2002; 114(3): 284–7

    Article  PubMed  Google Scholar 

  78. Philippe A, Guillourd-Bataille M, Martinez M, et al. Analysis of ten candidate genes in autism by association and linkage. Am J Med Genet 2002; 114(2): 125–8

    Article  PubMed  Google Scholar 

  79. Beyer KS, Klauck SM, Benner A, et al. Association studies of the HOPA dodecamer duplication variant in different subtypes of autism. Am J Med Genet 2002; 114(1): 110–5

    Article  PubMed  Google Scholar 

  80. The diagnostic and statistical manual of mental disorders. 4th ed. Washington, DC: American Psychiatric Association, 1994

  81. Volkmar FR, Klin A, Marans W, et al. Childhood disintegrative disorder. In: Cohen DJ, Volkmar FR, editors. Handbook of autism and pervasive developmental disorders. 2nd ed. New York: J. Wiley, 1997: 47–59

    Google Scholar 

  82. Amir RE, Van der Veyver IB, Wan M, et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999; 23: 185–8

    Article  PubMed  CAS  Google Scholar 

  83. Wan M, Lee SS, Zhang X, et al. Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am J Hum Genet 1999; 65: 1520–9

    Article  PubMed  CAS  Google Scholar 

  84. Bienvenu T, Carrie A, De Roux N, et al. MECP2 mutations account for most cases of typical forms of Rett syndrome. Hum Mol Genet 2000; 9: 1377–84

    Article  PubMed  CAS  Google Scholar 

  85. Cheadle J, Gill H, Fleming N, et al. Long-read sequence analysis of the MECP2 and beyond: phenotype-genotype correlations of disease severity with mutation type and location. Hum Mol Genet 2000; 9: 1119–29

    Article  PubMed  CAS  Google Scholar 

  86. De Bona C, Zappella M, Hayek G, et al. Preserved speech variant is allelic of classic Rett syndrome. Eur J Hum Genet 2000; 8: 325–30

    Article  PubMed  CAS  Google Scholar 

  87. Laccone F, Huppke P, Hanefeld F, et al. Mutation spectrum in patients with Rett syndrome in the German population: evidence of hot spot regions. Hum Mutat 2003; 17: 183–90

    Article  Google Scholar 

  88. Nielsen JB, Henriksen KF, Hansen C, et al. MECP2 mutations in Danish patients with Rett syndrome: high frequency of mutations but no consistent correlations with clinical severity or with the X chromosome inactivation pattern. Eur J Hum Genet 2001; 9: 178–84

    Article  PubMed  CAS  Google Scholar 

  89. Van der Veyver IB, Zoghbi HY. Genetic basis of Rett syndrome. Ment Retard Dev Disabil Res Rev 2002; 8(2): 82–6

    Article  PubMed  Google Scholar 

  90. Christodoulou J, Weaving LS. MECP2 and beyond: phenotype-genotype correlations in Rett syndrome. J Child Neurol 2003; 18(10): 669–74

    Article  PubMed  Google Scholar 

  91. Kerr AM, Ravine D. Review article: breaking new ground with Rett syndrome. J Intellect Disabil Res 2003; 47 (pt 8): 580–7

    Article  PubMed  CAS  Google Scholar 

  92. Renieri A, Meloni I, Longo I, et al. Rett syndrome: the complex nature of a monogenic disease. J Mol Med 2003; 81(6): 346–54

    PubMed  Google Scholar 

  93. Shahbazian MD, Zoghbi HY. Rett syndrome and MeCP2: linking epigenetics and neuronal function. Am J Hum Genet 2002; 71(6): 1259–72

    Article  PubMed  CAS  Google Scholar 

  94. Chakrabarti S, Fombonne E. Pervasive developmental disorders in preschool children. JAMA 2001; 285: 3093–9

    Article  PubMed  CAS  Google Scholar 

  95. Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 1994; 24(5): 659–86

    Article  PubMed  CAS  Google Scholar 

  96. Lord C, Rutter M, DiLavore PC, et al. Autism diagnostic observation schedule. Los Angeles (CA): Western Psychological Services, 2002

    Google Scholar 

  97. Volkmar F, Lord C, Bailey A, et al. Autism and pervasive developmental disorders. J Child Psychol Psychiatry 2004; 45(1): 135–70

    Article  PubMed  Google Scholar 

  98. Kanner L. Autistic disturbances of affective contact. Nerv Child 1943; 2: 217–50

    Google Scholar 

  99. Frith U. Autism and Asperger syndrome. New York: Cambridge University Press, 1991

    Book  Google Scholar 

  100. Wing L. Asperger’s syndrome: a clinical account. Psychol Med 1981; 11(1): 115–30

    Article  PubMed  CAS  Google Scholar 

  101. Bettleheim B. The empty fortress: infantile autism and the birth of the self. New York: Free Press, 1967

    Google Scholar 

  102. Kanner L. Problems of nosology and psychodynamics in early infantile autism. Am J Orthopsychiatry 1949; 19: 416–26

    Article  PubMed  CAS  Google Scholar 

  103. Rutter M. Diagnostic validity in child psychiatry. Adv Biol Psychiatry 1978; 2: 2–22

    Google Scholar 

  104. The diagnostic and statistical manual of mental disorders. 3rd ed. Washington, DC: American Psychiatric Association, 1980

  105. Grigorenko EL, Wood FB, Meyer MS, et al. Susceptibility loci for distinct components of developmental dyslexia on chromosomes 6 and 15. Am J Hum Genet 1997; 60: 27–39

    PubMed  CAS  Google Scholar 

  106. Sutcliffe JS, Nurmi EL, Lombroso PJ. Genetics of childhood disorders: XLVII. Autism, part 6: duplication and inherited susceptibility of chomosome 15q11-q13 genes in autism. J Acad Child Adolesc Psychiatry 2003; 42(2): 253–6

    Article  Google Scholar 

  107. Folstein S, Santangelo S. Does Asperger syndrome aggregate in families? In: Klin A, Volkmar F, Sparrow S, editors. Asperger syndrome. New York: Guilford Press, 2000: 159–71

    Google Scholar 

  108. Piven J, Palmer J, Landa R, et al. Personality and language characteristics in parents from multiple-incidence autism families. Am J Med Genet 1997; 74: 398–411

    Article  PubMed  CAS  Google Scholar 

  109. Szatmari P, Jones MB, Holden J, et al. High phenotypic correlations among siblings with autism and pervasive developmental disorders. Am J Med Genet 1996; 67: 354–60

    Article  PubMed  CAS  Google Scholar 

  110. Dawson G, Webb S, Schellenberg GD, et al. Defining the broader phenotype of autism: Genetic, brain, and behavioral perspectives. Dev Psychopathol 2002; 14(3): 581–611

    Article  PubMed  Google Scholar 

  111. Rutter M, Silberg J, O’Connor T, et al. Genetics and child psychiatry: II empirical research findings. J Child Psychol Psychiatry 1999; 40: 19–55

    Article  PubMed  CAS  Google Scholar 

  112. Bolton PF, Pickles A, Murphy M, et al. Autism, affective and other psychiatric disorders: patterns of familial aggregation. Psychol Med 1998; 28: 385–95

    Article  PubMed  CAS  Google Scholar 

  113. Hollander E, King A, Delaney K, et al. Obsessive-compulsive behaviors in parents of multiplex autism families. Psychiatry Res 2003; 117(1): 11–6

    Article  PubMed  Google Scholar 

  114. Bishop DVM. What’s so special about Asperger syndrome? The need for further exploration of the borderlands of autism. In: Klin A, Volkmar F, Sparrow S, editors. Asperger syndrome. New York: Guilford Press, 2000: 254–77

    Google Scholar 

  115. Szatmari P. Perspectives on the classification of Asperger syndrome. In: Klin A, Volkmar F, Sparrow S, editors. Asperger syndrome. New York: Guilford Press, 2000: 403–17

    Google Scholar 

  116. Towbin KE. Pervasive developmental disorder not otherwise specified. In: Cohen DJ, Volkmar FR. Handbook of autism and pervasive developmental disorders. 2nd ed. New York: J. Wiley, 1997: 123–47

    Google Scholar 

  117. Constantino J, Todd RD. Autistic traits in the general population: a twin study. Arch Gen Psychiatry 2003; 60: 524–30

    Article  PubMed  Google Scholar 

  118. Tadevosyan-Leyfer O, Dowd M, Mankoski R, et al. A principal components analysis of the Autism Diagnostic Interview-Revised. J Am Acad Child Adolesc Psychiatry 2003; 42(7): 864–72

    Article  PubMed  Google Scholar 

  119. Tager-Flusberg H, Josepsh RM. Identifying neurocognitive phenotypes in autism. Philos Trans R Soc Lond B Biol Sci 2003; 358: 303–14

    Article  PubMed  Google Scholar 

  120. Klin A, Jones W, Schultz R, et al. Defining and quantifying the social phenotype in autism. Am J Pyschiatry 2002; 159: 909–16

    Article  Google Scholar 

  121. Klin A, Jones W, Schultz R, et al. Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Arch Gen Psychiatry 2002 Sep; 59: 809–16

    Article  PubMed  Google Scholar 

  122. Grelotti DJ, Gauthier I, Schultz RT. Social interest and the development of cotical face specialization: what autism teaches us about face processing. Dev Psychobiol 2002; 40: 213–25

    Article  PubMed  Google Scholar 

  123. Schultz RT, Gauthier I, Klin A, et al. Abnormal ventral temporal cortical activity during face discrimination among individuals with autism and Asperger syndrome. Arch Gen Psychiatry 2000; 57: 331–40

    Article  PubMed  CAS  Google Scholar 

  124. Gottesman II, Shields J. Schizophrenia and genetics: a twin study vantage point. New York: Academic Press, 1972

    Google Scholar 

  125. Insel TR, Collins FS. Psychiatry in the genomics era. Am J Pyschiatry 2003; 160: 616–20

    Article  Google Scholar 

  126. Veenstra-Vanderweele J, Cook E. Genetics of childhood disorders: XLVI. Autism, Part 5: genetics of autism. J Am Acad Child Adolesc Psychiatry 2003; 42: 116–8

    Article  PubMed  Google Scholar 

  127. McMahon FJ. Molecular genetics: a role in diagnosis and treatment of psychiatric disorders. In: Charney DS, editor. Molecular neurobiology of the clinician. Arlington (VA): American Psychiatric Publishing, 2003: 63–74

    Google Scholar 

  128. Jamain S, Quach H, Betancur C, et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 2003; 34: 27–9

    Article  PubMed  CAS  Google Scholar 

  129. Andres C. Molecular genetics and animal models in autistic disorder. Brain Res 2002; 57(1): 109–19

    CAS  Google Scholar 

  130. Schroer RJ, Phelan MC, Michaelis RC, et al. Autism and maternally derived aberrations of chromosome 15q. Am J Med Genet 1998; 76: 327–36

    Article  PubMed  CAS  Google Scholar 

  131. Veenstra-Vanderweele J, Cook EH. Molecular neurobiology of childhood onset psychiatric disorders. In: Charney DS, editor. Molecular neurobiology of the clinician. Arlington (VA): American Psychiatric Publishing, 2003: 1–61

    Google Scholar 

  132. Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11(3): 241–7

    Article  PubMed  CAS  Google Scholar 

  133. Folstein SE, Rosen-Sheidley B. Genetics of autism: complex aetiology for a heterogeneous disorder. Nat Rev Genet 2001; 2(12): 943–55

    Article  PubMed  CAS  Google Scholar 

  134. Newschaffer CJ, Fallin D, Lee NL. Heritable and nonheritable risk factors for autism spectrum disorders. Epidemiol Rev 2002; 24(2): 137–53

    Article  PubMed  Google Scholar 

  135. Badner JA, Gershon ES. Regional meta-analysis of published data supports linkage of autism with markers on chromosome 7. Mol Psychiatry 2002; 7(1): 56–66

    Article  PubMed  CAS  Google Scholar 

  136. Spielman R, Ewens W. The TDT and other family-based tests for linkage disequilibrium and association. Am J Hum Genet 1996; 59: 983–9

    PubMed  CAS  Google Scholar 

  137. Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993; 52: 506–16

    PubMed  CAS  Google Scholar 

  138. Collins JS, Schroer RJ, Bird J, et al. The HOXA1 A218G polymorphism and autism: lack of association in white and black patients from the South Carolina Autism Project. J Autism Dev Disord 2003; 33(3): 343–8

    Article  PubMed  Google Scholar 

  139. Lai CSL, Fisher SE, Hurst JA, et al. A novel forkhead-domain gene is mutated in a severe speech and language disorder. Nature 2001; 413: 519–23

    Article  PubMed  CAS  Google Scholar 

  140. Insel TR, Young LJ. Neuropeptides and the evolution of social behavior. Curr Opin Neurobiol 2000; 10: 784–9

    Article  PubMed  CAS  Google Scholar 

  141. Just MA, Cherkassky VL, Keller TA, et al. Cotrical activation and synchronization during sentence comprehension in high-functioning autism: evidence of under-connectivity. Brain 2004; 127(8): 1811–21

    Article  PubMed  Google Scholar 

  142. Schultz RT, Romanski L, Tsatsanis K. Neurofunctional models of autistic disorder and Asperger’s syndrome: clues from neuroimaging. In: Klin A, Volkmar F, Sparrow S, editors. Asperger syndrome. New York: Guilford Press, 2000: 179–209

    Google Scholar 

  143. Courchesne E, Saitoh O, Yeung-Courshene R, et al. Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic subgroups with RM imagining. AJR Am J Roentgenol 1994; 162: 123–30

    PubMed  CAS  Google Scholar 

  144. Courchesne E, Yeung-Courshene R, Press GA, et al. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med 1988; 318: 1349–54

    Article  PubMed  CAS  Google Scholar 

  145. Piven J, Nehme E, Simon J, et al. Magnetic resonance imaging in autism: measurement of the cerebellum, pons and fourth ventricle. Biol Psychiatry 1992; 31: 491–504

    Article  PubMed  CAS  Google Scholar 

  146. Ozonoff D. Executive functions in autism. In: Schopler E, Mesibov GB, editors. Learning and cognition in autism. New York: Plenum Press, 1995: 199–219

    Google Scholar 

  147. Zilbovicius M, Garreau B, Samson Y, et al. Delayed maturation of the frontal cortex in childhood autism. Am J Pyschiatry 1995; 152: 248–52

    CAS  Google Scholar 

  148. Bachevalier J, Merjanian P. The contribution of medial temporal lobe structures in infantile autism: a neurobehavioral study in primates. In: Bauman ML, Kemper TL, editors. The neurobiology of autism. Baltimore (MD): Johns Hopkins University Press, 1994: 146–69

    Google Scholar 

  149. Bauman ML, Kemper TL. Histoanatomic observations of the brain in early infantile autism. Neurology 1985; 35: 866–74

    Article  PubMed  CAS  Google Scholar 

  150. Bauman ML, Kemper TL, editors. The neurobiology of autism. Baltimore (MD): Johns Hopkins University Press, 1994: 119–45

    Google Scholar 

  151. Piven J, Bailey J, Ranson BJ, et al. No difference in hippocampus volume detected on magnetic resonance imaging in autistic individuals. J Autism Dev Disord 1998; 28: 105–10

    Article  PubMed  CAS  Google Scholar 

  152. Abell F, Krams M, Ashburner J, et al. The neuroanatomy of autism: a voxel-based whole brain analysis of structural scans. Neuroreport 1999; 10: 1647–51

    Article  PubMed  CAS  Google Scholar 

  153. Aylward EH, Minshew NJ, Goldstein G, et al. MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology 1999; 53: 2145–50

    Article  PubMed  CAS  Google Scholar 

  154. Carper R, Courchesne E. Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain 2000; 123: 836–44

    Article  PubMed  Google Scholar 

  155. Chugani DC, Muzik O, Rothermel R, et al. Altered serotonin synthesis in the dentatothalamocortical pathway in autistic boys. Ann Neurol 1997; 42: 666–9

    Article  PubMed  CAS  Google Scholar 

  156. Hardan AY, Minshew NJ, Harenski K, et al. Posterior fossa magnetic resonance imaging in autism. J Am Acad Child Adolesc Psychiatry 2001; 40: 666–72

    Article  PubMed  CAS  Google Scholar 

  157. Tsatsanis KD, Rourke B, Klin A, et al. Reduced thalamic volume in high-functioning individuals with autism. Biol Psychiatry 2003; 53(2): 121–9

    Article  PubMed  Google Scholar 

  158. Critchley HD, Daly EM, Bullmore ET, et al. The functional neuroanatomy of social behavior: changes in cerebral blood flow when people with autistic disorder process facial expressions. Brain 2000; 123: 2203–12

    Article  PubMed  Google Scholar 

  159. Pierce K, Muller RA, Ambrose J, et al. Face processing occurs outside the fusiform ‘face area’ in autism: evidence from functional MRI. Brain 2001; 124: 2059–73

    Article  PubMed  CAS  Google Scholar 

  160. Aylward E, Minshew NJ, Field K, et al. Effects of age on brain volume and head circumference in autism. Neurology 2002; 59(2): 175–83

    Article  PubMed  CAS  Google Scholar 

  161. Piven J, Arndt S, Bailey A, et al. Regional brain enlargement in autism: a magnetic resonance imaging study. J Acad Child Adolesc Psychiatry 1996; 35(4): 530–6

    Article  CAS  Google Scholar 

  162. Sparks BF, Friedman SD, Shaw DW, et al. Brain structural abnormalities in young children with autism spectrum disorder. Neurology 2002; 59(2): 184–92

    Article  PubMed  CAS  Google Scholar 

  163. Courchesne E, Carper R, Akshoomoff N. Evidence of brain overgrowth in the first year of life in autism. JAMA 2003; 290: 337–44

    Article  PubMed  Google Scholar 

  164. Courchesne E, Karns CM, Davis HR, et al. Unusual brain growth patterns in early life in patients with autistic disorder, an MRI study. Neurology 2001; 57: 245–54

    Article  PubMed  CAS  Google Scholar 

  165. Herbert MR, Ziegler DA, Deutsch CK, et al. Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain 2003; 126: 1182–92

    Article  PubMed  CAS  Google Scholar 

  166. Hernby SE, Sanchez MM, Winslow JT. Functional genomics approaches to a primate model of autistic symptomology. J Autism Dev Disord 2001; 31: 551–5

    Article  Google Scholar 

  167. Ferguson JN, Young LJ, Hearn EF. Social amnesia in mice lacking the oxytocin gene. Nat Genet 2000; 25: 284–8

    Article  PubMed  CAS  Google Scholar 

  168. Young LJ, Nielsen R, Waymire KG, et al. Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature 1999; 400: 766–8

    Article  PubMed  CAS  Google Scholar 

  169. Lijam N, Paylor R, McDonald M. Social interaction and sensorimotor gating abnormalities in mice lacking Dvl1. Cell 1997; 90: 895–905

    Article  PubMed  CAS  Google Scholar 

  170. Bauman ML, Kemper TL. Neuroanatomic observations of the brain in autism. In: Bauman ML, Kemper TL, editors. The neurobiology of autism. Baltimore (MD): Johns Hopkins University Press, 1994: 119–45

    Google Scholar 

  171. Blatt GJ, Fitzgerald CM, Gutptill JT, et al. Density and distribution of hippocampal neurotransmitter receptors in autism: a radiographic study. J Autism Dev Disord 2001; 31: 537–43

    Article  PubMed  CAS  Google Scholar 

  172. Lee M, Martin-Ruiz C, Graham A, et al. Nicotinic receptor abnormalities in the cerebellar cortex in autism. Brain 2002; 125(7): 1483–95

    Article  PubMed  CAS  Google Scholar 

  173. Purcell AE, Jeon OH, Zimmerman AW, et al. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology 2001; 57: 1618–28

    Article  PubMed  CAS  Google Scholar 

  174. Fatemi SH, Halt AR, Stary JM. Reduction in anti-apoptic protein Bcl-2 in autistic cerebellum. Neuroreport 2001; 12: 929–33

    Article  PubMed  CAS  Google Scholar 

  175. Chugani DC, Muzik O, Behen M. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 1999; 45: 287–95

    Article  PubMed  CAS  Google Scholar 

  176. Andersen GM, Hoshino Y. Neurochemical studies of autism. In: Cohen DJ, Volkmar FR, editors. Handbook of autism and pervasive developmental disorders. 2nd ed. New York: J. Wiley 1997: 325–43

    Google Scholar 

  177. Cook EHJ, Leventhal B. The serotonin system in autism. Curr Opin Pediatr 1996; 8: 348–54

    Article  PubMed  CAS  Google Scholar 

  178. Andersen G. Genetics of childhood disorders: XLV. autism, Part 4: Serotonin in autism. J Am Acad Child Adolesc Psychiatry 2002; 41: 1513–6

    Article  Google Scholar 

  179. Posey DJ, McDougle CJ. The pharmacotherapy of target symptoms associated with autistic disorder and other pervasive developmental disorders. Harv Rev Psychiatry 2000; 8: 45–63

    PubMed  CAS  Google Scholar 

  180. Towbin KE. Strategies for pharmacologic treatment of high functioning autism and Asperger syndrome. Child Adolesc Psychiatr Clin N Am 2003; 12(1): 23–45

    Article  PubMed  Google Scholar 

  181. McBride PA, Andersen GM, Hertzig ME. Serotonergic responsivity in male young adults with autistic disorder. Arch Gen Psychiatry 1989; 46: 205–12

    Article  Google Scholar 

  182. McDougle CJ, Naylor S, Cohen D. Effects of trytophan depletion in drug-free adults with autistic disorder. Arch Gen Psychiatry 1996; 53: 993–1000

    Article  PubMed  CAS  Google Scholar 

  183. Green L, Fein D, Modahl C, et al. Oxytocin and autistic disorder: alterations in peptide forms. Biol Psychiatry 2001; 50(8): 609–13

    Article  PubMed  CAS  Google Scholar 

  184. Hollander E, Novotny S, Hanratty M, et al. Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger’s disorders. Neuropsychopharmacology 2003; 28(1): 193–8

    Article  PubMed  CAS  Google Scholar 

  185. Insel TR, O’Brien DJ, Leckman J. Oxytocin, vasopressin, and autism: is there a connection? Biol Psychiatry 1999; 45(2): 145–57

    Article  PubMed  CAS  Google Scholar 

  186. Pickett J. Current investigations in autism brain tissue research. J Autism Dev Disord 2001; 31: 521–7

    Article  PubMed  CAS  Google Scholar 

  187. Rutter M, Plomin R. Opportunities for psychiatry from genetic findings. Br J Psychiatry 1997; 171: 209–19

    Article  PubMed  CAS  Google Scholar 

  188. McDougle CJ, Posey D. Genetics of childhood disorders: XLIV. autism, part 3: psychopharmacology of autism. J Acad Child Adolesc Psychiatry 2002; 41(11): 1380–3

    Article  Google Scholar 

  189. Arnold LE, Aman MG, Martin A, et al. Assessment in multisite randomized clinical trials of patients with autistic disorder: the Autism RUPP Network. J Autism Dev Disord 2000; 30(2): 99–111

    Article  PubMed  CAS  Google Scholar 

  190. Handen BL, Johnson CR, Lubetsky M. Efficacy of methylphenidate among children with autism and symptoms of attention-deficit hyperactivity disorder. J Autism Dev Disord 2000; 30: 245–55

    Article  PubMed  CAS  Google Scholar 

  191. Aman MG, Buican B, Arnold LE. Methylphenidate treatment in children with borderline IQ and mental retardation: analysis of three aggregate studies. J Child Adolesc Psychopharmacol 2003; 13: 29–40

    Article  PubMed  Google Scholar 

  192. McDougle CJ, Scahill L, McCracken JT, et al. Research Units on Pediatric Psychopharmacology (RUPP) Autism Network. Background rationale for an initial controlled study of risperidone. Child Adolesc Psychiatr Clin N Am 2000; 9: 201–24

    PubMed  CAS  Google Scholar 

  193. Malone R, Maislin G, Choudhury M, et al. Risperidone treatment in children and adolescents with autism: short- and long-term safety and effectiveness. J Am Acad Child Adolesc Psychiatry 2002; 41(2): 140–7

    Article  PubMed  Google Scholar 

  194. McCracken JT, McGough J, Shah B, et al. Risperidone in children with autism and serious behavioral problems. N Engl J Med 2002; 347(5): 314–21

    Article  PubMed  CAS  Google Scholar 

  195. Martin A, Scahill L, Kiln A, et al. Higher-functioning pervasive developmental disorders: rates and patterns of psychotropic drug use. J Am Acad Child Adolesc Psychiatry 1999; 38: 923–31

    Article  PubMed  CAS  Google Scholar 

  196. McDougle CJ, Kresch LE, Posey D. Repetitive thoughts and behavior in pervasive developmental disorders: treatment with serotonin reuptake inhibitors. J Autism Dev Disord 2000; 30(5): 427–35

    Article  PubMed  CAS  Google Scholar 

  197. Martin A, Koenig K, Anderson GM, et al. Low-dose fluvoxamine treatment of children and adolescents with pervasive developmental disorders: a prospective, open-label study. J Autism Dev Disord 2003; 33: 77–85

    Article  PubMed  Google Scholar 

  198. Brodkin ES, McDougle CJ, Naylor ST, et al. Clomipramine in adults with pervasive developmental disorders: a prospective open-label investigation. J Child Adolesc Psychopharmacol 1997; 7: 109–21

    Article  PubMed  CAS  Google Scholar 

  199. Garber HJ, McGonigle JJ, Slomka GT, et al. Clomipramine treatment of stereotypic behaviors and self-injury in patients with developmental disabilities. J Am Acad Child Adolesc Psychiatry 1992; 31: 1157–60

    Article  PubMed  CAS  Google Scholar 

  200. Gordon CT, Rapoport JL, Hamburger SD, et al. Differential response of seven subjects with autistic disorder to clomipramine and desipramine. Am J Pyschiatry 1992; 149: 363–6

    CAS  Google Scholar 

  201. Gordon CT, State RC, Nelson JE, et al. A double-blind comparison of clomipramine, desipramine, and placebo in the treatment of autistic disorder. Arch Gen Psychiatry 1993; 50: 441–7

    Article  PubMed  CAS  Google Scholar 

  202. McDougle CJ, Price LH, Volkmar FR, et al. Clomipramine in autism: preliminary evidence of efficacy. J Am Acad Child Adolesc Psychiatry 1992; 31: 746–50

    Article  PubMed  CAS  Google Scholar 

  203. Krystal JH, D’Souza DC, Petrakis IL. NMDA agonists and antagonists as probes of glutamatergic dysfunction and pharmacotherapies in neuropsychiatric disorder. Harv Rev Psychiatry 1999; 7: 125–43

    PubMed  CAS  Google Scholar 

  204. Campbell M, Anderson LT, Small AM, et al. Naltrexone in autistic children: behavioral symptoms and attentional learning. J Am Acad Child Adolesc Psychiatry 1993; 32: 1283–91

    Article  PubMed  CAS  Google Scholar 

  205. Campbell M, Overall JE, Small AM, et al. Naltrexone in autistic children: an acute open dose range tolerance trial. J Am Acad Child Adolesc Psychiatry 1989; 28: 200–6

    Article  PubMed  CAS  Google Scholar 

  206. Kolmen BK, Feldman HM, Handen BL, et al. Naltrexone in young autistic children: replication study and learning measures. J Am Acad Child Adolesc Psychiatry 1997; 36: 1570–8

    PubMed  CAS  Google Scholar 

  207. Panksepp J, Lensing P. Brief report: a synopsis of an open-trial of naltrexone treatment of autism with four children. J Autism Dev Disord 1991; 21: 243–9

    Article  PubMed  CAS  Google Scholar 

  208. Horvath K, Stefanatos G, Sokolski KN, et al. Improved social and language skills after secretin administrations in patients with autistic spectrum disorders. J Assoc Acad Minor Phys 1998; 9: 9–15

    PubMed  CAS  Google Scholar 

  209. Dunn-Geier J, Ho HH, Auersperg E, et al. Effect of secretin on children with autism: a randomized controlled trail. Dev Med Child Neurol 2000; 42: 796–802

    PubMed  CAS  Google Scholar 

  210. Owley T, McMahon W, Cook EH, et al. Multisite, double-blind, placebo-controlled trial of porcine secretin in autism. J Am Acad Child Adolesc Psychiatry 2001; 40: 1293–9

    Article  PubMed  CAS  Google Scholar 

  211. Sandler AD, Sutton KA, DeWeese J, et al. Lack of benefit of a single dose of synthetic human secretin in the treatment of autism and pervasive developmental disorder. N Engl J Med 1999; 341: 1801–6

    Article  PubMed  CAS  Google Scholar 

  212. Unis AS, Munson JA, Rogers SJ, et al. A randomized, double-blind, placebo controlled trial of porcine versus synthetic secretin for reducing symptoms of autism. J Am Acad Child Adolesc Psychiatry 2002; 41: 1315–21

    Article  PubMed  Google Scholar 

  213. Pickar D. Pharmacogenomics of psychiatric drug treatment. Psychiatr Clin North Am 2003; 26: 303–21

    Article  PubMed  Google Scholar 

  214. Staddon S, Arranz MJ, Mancama D, et al. Clinical applications of pharmacogenetics in psychiatry. Psychopharmacology 2002; 162: 18–23

    Article  PubMed  CAS  Google Scholar 

  215. Bolton P, Murphy M, Macdonald H, et al. Obstetric complications in autism: consequences or causes of the condition? J Am Acad Child Adolesc Psychiatry 1997; 36(2): 272–81

    Article  PubMed  CAS  Google Scholar 

  216. Pickles A, Starr E, Kazak S, et al. Variable expression of the autism broader phenotype: findings from extended pedigrees. J Child Psychol Psychiatry 2000; 41(4): 491–502

    Article  PubMed  CAS  Google Scholar 

  217. Zwaigenbaum L, Szatmari P, Jones MB, et al. Pregnancy and birth complications in autism and liability to the broader autism phenotype. J Am Acad Child Adolesc Psychiatry 2002; 41(5): 572–9

    Article  PubMed  Google Scholar 

  218. Dales L, Hammer S, Smith N. Time trends in autism and in MMR immunization coverage in California. JAMA 2001; 285(9): 1183–5

    Article  PubMed  CAS  Google Scholar 

  219. Madsen KM, Hviid A, Vestergaard M, et al. A population-based study of measles, mumps, and rubella vaccination and autism. N Engl J Med 2002; 347(19): 1477–82

    Article  PubMed  Google Scholar 

  220. Taylor B, Miller E, Lingam R, et al. Measles, mumps, and rubella vaccination and bowel problems or developmental regression in children with autism: population study. BMJ 2002; 324(7334): 393–6

    Article  PubMed  Google Scholar 

  221. Sapolsky RM. Gene therapy for psychiatric disorders. Am J Pyschiatry 2003; 160: 208–20

    Article  Google Scholar 

  222. Simonoff E. Genetic counseling in autism and pervasive developmental disorders. J Autism Dev Disord 1998; 28: 447–56

    Article  PubMed  CAS  Google Scholar 

  223. Purcell AE, Jeon OH, Pevsner J. The abnormal regulation of gene expression in autistic brain tissue. J Autism Dev Disord 2001; 31: 545–9

    Article  PubMed  CAS  Google Scholar 

  224. Junaid MA, Pullarkat RK. Proteomic approach for the elucidation of biological defects in autism. J Autism Dev Disord 2001; 31: 557–60

    Article  PubMed  CAS  Google Scholar 

  225. Schumann CM, Buonocore HM, Amaral DG. Magnetic resonance imaging of the post-mortem autistic brain. J Autism Dev Disord 2001; 31: 561–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Stephen Haddad, Christine Huang, and Christine Foley for their assistance with literature searches and manuscript preparation. Dr Santangelo would also like to acknowledge past grant support for autism research from The March of Dimes Family Foundation, The Medical Foundation, and The Nancy Lurie Marks Foundation.

The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan L. Santangelo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santangelo, S.L., Tsatsanis, K. What is Known About Autism. Am J Pharmacogenomics 5, 71–92 (2005). https://doi.org/10.2165/00129785-200505020-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200505020-00001

Keywords

Navigation