Skip to main content
Log in

Hypertriglyceridemia

Associated Risks and Effect of Drug Treatment

  • Review Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Accumulating evidence indicates that hypertriglyceridemia (HTG) is a risk factor for cardiovascular disease. This increased risk is probably substantially mediated through the metabolic interrelationships between serum triglyceride (TG) levels and other risk factors, such as the atherogenic lipid profile (low high density lipoprotein-cholesterol levels and elevated small dense low density lipoprotein levels), insulin resistance, a prothrombotic propensity and low grade systemic inflammation. TG-lowering strategy in patients with HTG encompasses dietary modification and pharmacological agents, such as fibric acid derivatives, fish-oil and hydroxymethylglutaryl coenzyme A reductase inhibitors, which have, besides their known effects on the atherogenic lipid profile, beneficial effects on other determinants of cardiovascular disease. However, in spite of data from trials investigating fibric acid derivative-induced reduction in coronary events in patients with distinct types of hyperlipidemia, no specific trials have been performed that investigated this risk reduction in patients with HTG, in whom other cardiovascular risk factors are clustered as well. Small-scale studies on determinants of cardiovascular disease in patients with HTG and post-hoc analyses of the Helsinki Heart, Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial and Bezafibrate Infarction Prevention trials in patients with high serum TG levels suggest a drug-induced reduction in cardiovascular events. However, a specific trial should be conducted to investigate the effects of lipid-lowering therapy on clinical end-points in patients with HTG of defined types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Fig. 1
Fig. 2
Table II
Table III

Similar content being viewed by others

References

  1. Erkelens DW, de Bruin TW, Castro Cazebas M. Tulp syndrome. Lancet 1993; 342: 1536–7

    Article  PubMed  CAS  Google Scholar 

  2. Castelli WP. Epidemiology of triglycerides: a view from Framingham. Am J Cardiol 1992; 70: 3H–9

    Article  PubMed  CAS  Google Scholar 

  3. Assmann G, Schulte H, Funke H, et al. The emergence of triglycerides as a significant independent risk factor in coronary artery disease. Eur Heart J 1998; 19: M8–14

    PubMed  Google Scholar 

  4. Goldbourt U, Behar S, Reicher-Reiss H, et al. Rationale and design of a secondary prevention trial of increasing serum high-density lipoprotein cholesterol and reducing triglycerides in patients with clinically manifest atherosclerotic heart disease (the Bezafibrate Infarction Prevention Trial). Am J Cardiol 1993; 71: 909–15

    Article  PubMed  CAS  Google Scholar 

  5. Rubins HB, Robins SJ, Collins D, et al. Distribution of lipids in 8,500 men with coronary artery disease. Department of Veterans Affairs HDL Intervention Trial Study Group. Am J Cardiol 1995; 75: 1196–201

    Article  PubMed  CAS  Google Scholar 

  6. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of lowdensity lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18: 499–502

    PubMed  CAS  Google Scholar 

  7. Packard CJ, Shepherd J. Lipoprotein heterogeneity and apolipoprotein B metabolism. Arterioscler Thromb Vasc Biol 1997; 17: 3542–56

    Article  PubMed  CAS  Google Scholar 

  8. Syvanne M, Antikainen M, Ehnholm S, et al. Heterozygosity for Asn291→Ser mutation in the lipoprotein lipase gene in two Finnish pedigrees: effect of hyperinsulinemia on the expression of hypertriglyceridemia. J Lipid Res 1996; 37: 727–38

    PubMed  CAS  Google Scholar 

  9. Minnich A, Kessling A, Roy M, et al. Prevalence of alleles encoding defective lipoprotein lipase in hypertriglyceridemic patients of French Canadian descent. J Lipid Res 1995; 36: 117–24

    PubMed  CAS  Google Scholar 

  10. Aalto-Setala K, Kontula K, Sane T, et al. DNA polymorphisms of apolipoprotein A-I/C-III and insulin genes in familial hypertriglyceridemia and coronary heart disease. Atherosclerosis 1987; 66: 145–52

    Article  PubMed  CAS  Google Scholar 

  11. Hoffer MJ, Sijbrands EJ, De Man FH, et al. Increased risk for endogenous hypertriglyceridaemia is associated with an apolipoprotein C3 haplotype specified by the SstI polymorphism. Eur J Clin Invest 1998; 28: 807–12

    Article  PubMed  CAS  Google Scholar 

  12. Beaumont JL, Carlson LA, Cooper GR, et al. Classification of hyperlipidaemias and hyperlipoproteinaemias. Bull World Health Organ 1970; 43: 891–915

    PubMed  CAS  Google Scholar 

  13. Toskes PP. Hyperlipidemic pancreatitis. Gastroenterol Clin North Am 1990; 19: 783–91

    PubMed  CAS  Google Scholar 

  14. Criqui MH, Heiss G, Cohn R, et al. Plasma triglyceride level and mortality from coronary heart disease. N Engl J Med 1993; 328: 1220–5

    Article  PubMed  CAS  Google Scholar 

  15. Mahley RW, Rall S. Type III hyperlipoproteinemia (dysbetalipoproteinemia): the role of apolipoprotein E in normal and asbnormal lipoprotein metabolism. In: Scriver C, Beaudet A, Sly W, et al. editors. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 1995: 1953–80

    Google Scholar 

  16. Einarsson K, Hellstrom K, Kallner M. Gallbladder disease in hyperlipoproteinaemia. Lancet 1975; 1: 484–7

    Article  PubMed  CAS  Google Scholar 

  17. Ahlberg J, Angelin B, Einarsson K, et al. Prevalence of gallbladder disease in hyperlipoproteinemia. Dig Dis Sci 1979; 24: 459–64

    Article  PubMed  CAS  Google Scholar 

  18. Miller M. Is hypertriglyceridaemia an independent risk factor for coronary heart disease? The epidemiological evidence. Eur Heart J 1998; 19: H18–22

    PubMed  Google Scholar 

  19. Eisenberg S, Gavish D, Oschry Y, et al. Abnormalities in very low, low and high density lipoproteins in hypertriglyceridemia. Reversal toward normal with bezafibrate treatment. J Clin Invest 1984; 74: 470–82

    Article  PubMed  CAS  Google Scholar 

  20. De Man FH, de Beer F, van der Laarse A, et al. The hypolipidemic action of bezafibrate therapy in hypertriglyceridemia is mediated by upregulation of lipoprotein lipase: no effects on VLDL substrate affinity to lipolysis or LDL receptor binding. Atherosclerosis 2000: 153: 363–71

    Article  PubMed  Google Scholar 

  21. Wang CS, McConathy WJ, Kloer HU, et al. Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J Clin Invest 1985; 75: 384–90

    Article  PubMed  CAS  Google Scholar 

  22. de Silva HV, Lauer SJ, Wang J, et al. Overexpression of human apolipoprotein C-III in transgenic mice results in an accumulation of apolipoprotein B48 remnants that is corrected by excess apolipoprotein E. J Biol Chem 1994; 269: 2324–35

    PubMed  Google Scholar 

  23. Rapp JH, Lespine A, Hamilton RL, et al. Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. Arterioscler Thromb 1994; 14: 1767–74

    Article  PubMed  CAS  Google Scholar 

  24. Gianturco SH, Bradley WA, Gotto AM, et al. Hypertriglyceridemic very low density lipoproteins induce triglyceride synthesis and accumulation in mouse peritoneal macrophages. J Clin Invest 1982; 70: 168–78

    Article  PubMed  CAS  Google Scholar 

  25. Mann CJ, Yen FT, Grant AM, et al. Mechanism of plasma cholesteryl ester transfer in hypertriglyceridemia. J Clin Invest 1991; 88: 2059–66

    Article  PubMed  CAS  Google Scholar 

  26. Murakami T, Michelagnoli S, Longhi R, et al. Triglycerides are major determinants of cholesterol esterification/transfer and HDL remodeling in human plasma. Arterioscler Thromb Vasc Biol 1995; 15: 1819–28

    Article  PubMed  CAS  Google Scholar 

  27. Sigurdsson G, Nicoli A, Lewis B. The metabolism of low density lipoprotein in endogenous hypertriglyceridaemia. Eur J Clin Invest 1979; 6: 151–8

    Article  Google Scholar 

  28. Shepherd J, Caslake MJ, Lorimer AR, et al. Fenofibrate reduces low density lipoprotein catabolism in hypertriglyceridemic subjects. Arteriosclerosis 1985; 5: 162–8

    Article  PubMed  CAS  Google Scholar 

  29. Blades B, Vega GL, Grundy SM. Activities of lipoprotein lipase and hepatic triglyceride lipase in postheparin plasma of patients with low concentrations of HDL cholesterol. Arterioscler Thromb 1993; 13: 1227–35

    Article  PubMed  CAS  Google Scholar 

  30. Tato F, Vega GL, Grundy SM. Determinants of plasma HDL-cholesterol in hypertriglyceridemic patients. Role of cholesterol-ester transfer protein and lecithin cholesteryl acyl transferase. Arterioscler Thromb Vasc Biol 1997; 17: 56–63

    Article  PubMed  CAS  Google Scholar 

  31. Marais AD. Therapeutic modulation of low-density lipoprotein size. Curr Opin Lipidol 2000; 11: 597–602

    Article  PubMed  CAS  Google Scholar 

  32. Austin MA, Breslow JL, Hennekens CH, et al. Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 1988; 260: 1917–21

    Article  PubMed  CAS  Google Scholar 

  33. Anber V, Griffin BA, McConnell M, et al. Influence of plasma lipid and LDL-subfraction profile on the interaction between low density lipoprotein with human arterial wall proteoglycans. Atherosclerosis 1996; 124: 261–71

    Article  PubMed  CAS  Google Scholar 

  34. Bjornheden T, Babyi A, Bondjers G, et al. Accumulation of lipoprotein fractions and subfractions in the arterial wall, determined in an in vitro perfusion system. Atherosclerosis 1996; 123: 43–56

    Article  PubMed  CAS  Google Scholar 

  35. De Man FH, Jonkers IJ, Schwedhelm E, et al. Normal oxidative stress and enhanced lipoprotein resistance to in vitro oxidation in hypertriglyceridemia: effects of bezafibrate therapy. Arterioscler Thromb Vasc Biol 2000; 20: 2434–40

    Article  PubMed  Google Scholar 

  36. Grundy SM. Hypertriglyceridemia, atherogenic dyslipidemia, and the metabolic syndrome. Am J Cardiol 1998; 81: 18B–25

    Article  PubMed  CAS  Google Scholar 

  37. Mostaza JM, Vega GL, Snell P, et al. Abnormal metabolism of free fatty acids in hypertriglyceridaemic men: apparent insulin resistance of adipose tissue. J Intern Med 1998; 243: 265–74

    Article  PubMed  CAS  Google Scholar 

  38. Steiner G. Hyperinsulinaemia and hypertriglyceridaemia. J Intern Med 1994; 736 Suppl.: 23–6

    CAS  Google Scholar 

  39. Knudsen P, Eriksson J, Lahdenpera S, et al. Changes of lipolytic enzymes cluster with insulin resistance syndrome. Botnia Study Group. Diabetologia 1995; 38: 344–50

    Article  PubMed  CAS  Google Scholar 

  40. Steiner G. Altering triglyceride concentrations changes insulin-glucose relationships in hypertriglyceridemic patients. Double-blind study with gemfibrozil with implications for atherosclerosis. Diabetes Care 1991; 14: 1077–81

    Article  PubMed  CAS  Google Scholar 

  41. Despres JP, Lamarche B, Mauriege P, et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med 1996; 334: 952–7

    Article  PubMed  CAS  Google Scholar 

  42. Reaven GM, Lithell H, Landsberg L. Hypertension and associated metabolic abnormalities — the role of insulin resistance and the sympathoadrenal system. N Engl J Med 1996; 334: 374–81

    Article  PubMed  CAS  Google Scholar 

  43. Wilson PW, D’Agostino RB, Levy D, et al. Prediction of coronary heart disease using risk factor categories. Circulation 1998; 97: 1837–47

    Article  PubMed  CAS  Google Scholar 

  44. Steinberg HO, Tarshoby M, Monestel R, et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest 1997; 100: 1230–9

    Article  PubMed  CAS  Google Scholar 

  45. Steinberg HO, Chaker H, Learning R, et al. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest 1996; 97: 2601–10

    Article  PubMed  CAS  Google Scholar 

  46. Perticone F, Ceravolo R, Candigliota M, et al. Obesity and body fat distribution induce endothelial dysfunction by oxidative stress: protective effect of vitamin C. Diabetes 2001; 50: 159–65

    Article  PubMed  CAS  Google Scholar 

  47. DeWood MA, Spores J, Notske R, et al. Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med 1980; 303: 897–902

    Article  PubMed  CAS  Google Scholar 

  48. Meade TW, Mellows S, Brozovic M, et al. Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study. Lancet 1986; II: 533–7

    Article  Google Scholar 

  49. Maresca G, Di Blasio A, Marchioli R, et al. Measuring plasma fibrinogen to predict stroke and myocardial infarction: an update. Arterioscler Thromb Vasc Biol 1999; 19: 1368–77

    Article  PubMed  CAS  Google Scholar 

  50. Thompson SG, Kienast J, Pyke SD, et al. Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. N Engl J Med 1995; 332: 635–41

    Article  PubMed  CAS  Google Scholar 

  51. Cooper JA, Miller GJ, Bauer KA, et al. Comparison of novel hemostatic factors and conventional risk factors for prediction of coronary heart disease. Circulation 2000; 102: 2816–22

    Article  PubMed  CAS  Google Scholar 

  52. Junker R, Heinrich J, Schulte H, et al. Coagulation factor VII and the risk of coronary heart disease in healthy men. Arterioscler Thromb Vasc Biol 1997; 17: 1539–44

    Article  PubMed  CAS  Google Scholar 

  53. Hamsten A, Wiman B, de Faire U, et al. Increased plasma levels of a rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction. N Engl J Med 1985; 313: 1557–63

    Article  PubMed  CAS  Google Scholar 

  54. Simpson HC, Mann JI, Meade TW, et al. Hypertriglyceridaemia and hypercoagulability. Lancet 1983; 1: 786–90

    Article  PubMed  CAS  Google Scholar 

  55. Avellorne G, Di Garbo V, Cordova R, et al. Fibrinolysis in hypertriglyceridaemic subjects in response to venous occlusion. Blood Coagul Fibrinolysis 1993; 4: 429–33

    Article  Google Scholar 

  56. Minnema MC, Wittekoek ME, Schoonenboom N, et al. Activation of the contact system of coagulation does not contribute to the hemostatic imbalance in hypertriglyceridemia. Arterioscler Thromb Vasc Biol 1999; 19: 2548–53

    Article  PubMed  CAS  Google Scholar 

  57. De Man FH, Nieuwland R, van der Laarse A, et al. Activated platelets in patients with severe hypertriglyceridemia: effects of triglyceride-lowering therapy. Atherosclerosis 2000; 152: 407–14

    Article  PubMed  Google Scholar 

  58. Ross R. Atherosclerosis — an inflammatory disease. N Engl J Med 1999; 340: 115–26

    Article  PubMed  CAS  Google Scholar 

  59. Berk BC, Weintraub WS, Alexander RW. Elevation of C-reactive protein in ‘active’ coronary artery disease. Am J Cardiol 1990; 65: 168–72

    Article  PubMed  CAS  Google Scholar 

  60. Biasucci LM, Vitelli A, Liuzzo G, et al. Elevated levels of interleukin-6 in unstable angina. Circulation 1996; 94: 874–7

    Article  PubMed  CAS  Google Scholar 

  61. Mohrschladt MF, Weverling-Rijnsburger AW, De Man FH, et al. Hyperlipoproteinemia affects cytokine production in whole blood samples ex vivo. The influence of lipid-lowering therapy. Atherosclerosis 2000; 148: 413–9

    Article  PubMed  CAS  Google Scholar 

  62. Abe Y, El-Masri B, Kimball KT, et al. Soluble cell adhesion molecules in hypertriglyceridemia and potential significance on monocyte adhesion. Arterioscler Thromb Vasc Biol 1998; 18: 723–31

    Article  PubMed  CAS  Google Scholar 

  63. Stec JJ, Silbershatz H, Tofler GH, et al. Association of fibrinogen with cardiovascular risk factors and cardiovascular disease in the Framingham Offspring Population. Circulation 2000; 102: 1634–8

    Article  PubMed  CAS  Google Scholar 

  64. Barasch E, Benderly M, Graff E, et al. Plasma fibrinogen levels and their correlates in 6457 coronary heart disease patients. The Bezafibrate Infarction Prevention (BIP) Study. J Clin Epidemiol 1995; 48: 757–65

    Article  PubMed  CAS  Google Scholar 

  65. Sakkinen PA, Wahl P, Cushman M, et al. Clustering of procoagulation, inflammation, and fibrinolysis variables with metabolic factors in insulin resistance syndrome. Am J Epidemiol 2000; 152: 897–907

    Article  PubMed  CAS  Google Scholar 

  66. Roytblat L, Rachinsky M, Fisher A, et al. Raised interleukin-6 levels in obese patients. Obes Res 2000; 8: 673–5

    Article  PubMed  CAS  Google Scholar 

  67. Hotamisligil GS, Arner P, Caro JF, et al. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995; 95: 2409–15

    Article  PubMed  CAS  Google Scholar 

  68. Albrink M, Man E. Serum triglycerides in coronary artery disease. Ann Intern Med 1959; 103: 4–8

    Article  CAS  Google Scholar 

  69. Assmann G, Schulte H, von Eckardstein A. Hypertriglyceridemia and elevated lipoprotein(a) are risk factors for major coronary events in middle-aged men. Am J Cardiol 1996; 77: 1179–84

    Article  PubMed  CAS  Google Scholar 

  70. Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a metaanalysis of population-based prospective studies. J Cardiovasc Risk 1996; 3: 213–9

    Article  PubMed  CAS  Google Scholar 

  71. Abbott RD, Carroll RJ. Interpreting multiple logistic regression coefficients in prospective observational studies. Am J Epidemiol 1984; 119: 830–6

    PubMed  CAS  Google Scholar 

  72. Jeppesen J, Hein HO, Suadicani P, et al. Triglyceride concentration and ischemic heart disease: an eight-year follow-up in the Copenhagen Male Study. Circulation 1998; 97: 1029–36

    Article  PubMed  CAS  Google Scholar 

  73. Chowienczyk PJ, Watts GF, Wierzbicki AS, et al. Preserved endothelial function in patients with severe hypertriglyceridemia and low functional lipoprotein lipase activity. J Am Coll Cardiol 1997; 29: 964–8

    Article  PubMed  CAS  Google Scholar 

  74. Schnell GB, Robertson A, Houston D, et al. Impaired brachial artery endothelial function is not predicted by elevated triglycerides. J Am Coll Cardiol 1999; 33: 2038–43

    Article  PubMed  CAS  Google Scholar 

  75. Lewis TV, Dart AM, Chin-Dusting JP. Endothelium-dependent relaxation by acetylcholine is impaired in hypertriglyceridemic humans with normal levels of plasma LDL cholesterol. J Am Coll Cardiol 1999; 33: 805–12

    Article  PubMed  CAS  Google Scholar 

  76. De Man FH, Weverling-Rijnsburger AW, van der Laarse A, et al. Not acute but chronic hypertriglyceridemia is associated with impaired endotheliumdependent vasodilation: reversal after lipid-lowering therapy by atorvastatin. Arterioscler Thromb Vasc Biol 2000; 20: 744–50

    Article  PubMed  Google Scholar 

  77. Lupattelli G, Lombardini R, Schillaci G, et al. Flow-mediated vasoactivity and circulating adhesion molecules in hypertriglyceridemia: association with small, dense LDL cholesterol particles. Am Heart J 2000; 140: 521–6

    Article  PubMed  CAS  Google Scholar 

  78. National Cholesterol Education Program. Second report of the expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel II). Circulation 1994; 89: 1333–445

    Article  Google Scholar 

  79. Fruchart JC, Brewer HBJ, Leitersdorf E. Consensus for the use of fibrates in the treatment of dyslipoproteinemia and coronary heart disease. Fibrate Consensus Group. Am J Cardiol 1998; 81: 912–7

    Article  PubMed  CAS  Google Scholar 

  80. De Man FH, van der Laarse A, Hopman EG, et al. Dietary counselling effectively improves lipid levels in patients with endogenous hypertriglyceridemia: emphasis on weight reduction and alcohol limitation. Eur J Clin Nutr 1999; 53: 413–8

    Article  PubMed  Google Scholar 

  81. Dallongeville J, Leboeuf N, Biais C, et al. Short-term response to dietary counseling of hyperlipidemic outpatients of a lipid clinic. J Am Diet Assoc 1994; 94: 616–21

    Article  PubMed  CAS  Google Scholar 

  82. Carmena R, Grundy SM. Management of hypertriglyceridemic patients. B. Dietary management of hypertriglyceridemic patients. Am J Cardiol 1991; 68: 35A–7

    Article  PubMed  CAS  Google Scholar 

  83. Staels B, Dallongeville J, Auwerx J, et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998; 98: 2088–93

    Article  PubMed  CAS  Google Scholar 

  84. Chinetti G, Lestavel S, Bocher V, et al. PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Natl Med 2001: 7: 53–8

    Article  CAS  Google Scholar 

  85. Chinetti G, Gbaguidi FG, Griglio S, et al. CLA-1/SR-BI is expressed in atherosclerotic lesion macrophages and regulated by activators of peroxisome proliferatoractivated receptors. Circulation 2000; 101: 2411–7

    Article  PubMed  CAS  Google Scholar 

  86. Schonfeld G. The effects of fibrates on lipoprotein and hemostatic coronary risk factors. Atherosclerosis 1994; 111: 161–74

    Article  PubMed  CAS  Google Scholar 

  87. Jonkers IJ, De Man FH, van der Laarse A, et al. Bezafibrate reduces heart rate and blood pressure in patients with hypertriglyceridemia. J Hypertens 2001; 19: 749–55

    Article  PubMed  CAS  Google Scholar 

  88. ZambranaJL, Velasco F, Castro P, et al. Comparison of bezafibrate versus lovastatin for lowering plasma insulin, fibrinogen, and plasminogen activator inhibitor-1 concentrations in hyperlipemic heart transplant patients. Am J Cardiol 1997; 80: 836–40

    Article  PubMed  CAS  Google Scholar 

  89. Cabrero A, Llaverias G, Roglans N, et al. Uncoupling protein-3 mRNA levels are increased in white adipose tissue and skeletal muscle of bezafibrate-treated rats. Biochem Biophys Res Commun 1999; 260: 547–56

    Article  PubMed  CAS  Google Scholar 

  90. Durrington PN, Mackness MI, Bhatnagar D, et al. Effects of two different fibric acid derivatives on lipoproteins, cholesteryl ester transfer, fibrinogen, plasminogen activator inhibitor and paraoxonase activity in type IIb hyperlipoproteinaemia. Atherosclerosis 1998; 138: 217–25

    Article  PubMed  CAS  Google Scholar 

  91. Behar S. Lowering fibrinogen levels: clinical update. BIP Study Group. Bezafibrate Infarction Prevention. Blood Coagul Fibrinolysis 1999; 10: S41–3

    PubMed  Google Scholar 

  92. Kockx M, de Maat MP, Knipscheer HC, et al. Effects of gemfibrozil and ciprofibrate on plasma levels of tissue-type plasminogen activator, plasminogen activator inhibitor-1 and fibrinogen in hyperlipidaemic patients. Thromb Haemost 1997; 78: 1167–72

    PubMed  CAS  Google Scholar 

  93. Bairaktari ET, Tzallas CS, Tsimihodimos VK, et al. Comparison of the efficacy of atorvastatin and micronized fenofibrate in the treatment of mixed hyperlipidemia. J Cardiovasc Risk 1999; 6: 113–6

    PubMed  CAS  Google Scholar 

  94. Kockx M, Gervois PP, Poulain P, et al. Fibrates suppress fibrinogen gene expression in rodents via activation of the peroxisome proliferator-activated receptor-alpha. Blood 1999; 93: 2991–8

    PubMed  CAS  Google Scholar 

  95. Avellone G, Di Garbo V, Cordova R, et al. Improvement of fibrinolysis and plasma lipoprotein levels induced by gemfibrozil in hypertriglyceridemia. Blood Coagul Fibrinolysis 1995; 6: 543–8

    Article  PubMed  CAS  Google Scholar 

  96. Pazzucconi F, Mannucci L, Mussoni L, et al. Bezafibrate lowers plasma lipids, fibrinogen and platelet aggregability in hypertriglyceridaemia. Eur J Clin Pharmacol 1992; 43: 219–23

    Article  PubMed  CAS  Google Scholar 

  97. Staels B, Koenig W, Habib A, et al. Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators. Nature 1998; 393: 790–3

    Article  PubMed  CAS  Google Scholar 

  98. Madej A, Okopien B, Kowalski J, et al. Effects of fenofibrate on plasma cytokine concentrations in patients with atherosclerosis and hyperlipoproteinemia IIb. Int J Clin Pharmacol Ther 1998; 36: 345–9

    PubMed  CAS  Google Scholar 

  99. Delerive P, De Bosscher K, Besnard S, et al. Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J Biol Chem 1999; 274: 32048–54

    Article  PubMed  CAS  Google Scholar 

  100. Sirtori CR, Calabresi L, Werba JP, et al. Tolerability of fibric acids. Comparative data and biochemical bases. Pharmacol Res 1992; 26: 243–60

    Article  PubMed  CAS  Google Scholar 

  101. Palmer RH. Effects of fibric acid derivatives on biliary lipid composition. Am J Med 1987; 83: 37–43

    Article  PubMed  CAS  Google Scholar 

  102. Bateson MC, Maclean D, Ross PE, et al. Clofibrate therapy and gallstone induction. Am J Dig Dis 1978; 23: 623–8

    Article  PubMed  CAS  Google Scholar 

  103. Gallbladder disease as a side effect of drugs influencing lipid metabolism. Experience in the Coronary Drug Project. N Engl J Med 1977; 296: 1185–90

    Article  Google Scholar 

  104. Cooper J, Geizerova H, Oliver MF. Clofibrate and gallstones. Lancet 1975; 1: 1083

    Article  PubMed  CAS  Google Scholar 

  105. Dierkes J, Westphal S, Luley C. Serum homocysteine increases after therapy with fenofibrate or bezafibrate. Lancet 1999; 354: 219–20

    Article  PubMed  CAS  Google Scholar 

  106. Jonkers IJ, De Man FH, Onkenhout W, et al. Implication of fibrate therapy for homocysteine. Lancet 1999; 354: 1208

    Article  PubMed  CAS  Google Scholar 

  107. Nestel PJ. Fish oil and cardiovascular disease: lipids and arterial function. Am J Clin Nutr 2000; 71: 228S–31

    PubMed  CAS  Google Scholar 

  108. Dallongeville J, Bauge E, Tailleux A, et al. Peroxisome proliferator activated receptor alpha is not rate limiting for the lipoprotein lowering action of fish oil. J Biol Chem 2000; 276: 4634–9

    Article  PubMed  Google Scholar 

  109. Malie E, Sattler W, Premier E, et al. Effects of dietary fish oil supplementation on platelet aggregability and platelet membrane fluidity in normolipemic subjects with and without high plasma Lp(a) concentrations. Atherosclerosis 1991; 88: 193–201

    Article  Google Scholar 

  110. Radack K, Deck C, Huster G. Dietary supplementation with low-dose fish oils lowers fibrinogen levels: a randomized, double-blind controlled study. Ann Intern Med 1989; 111: 757–8

    PubMed  CAS  Google Scholar 

  111. Endres S, Ghorbani R, Kelley VE, et al. The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med 1989; 320: 265–71

    Article  PubMed  CAS  Google Scholar 

  112. Knapp HR, FitzGerald GA. The antihypertensive effects of fish oil. A controlled study of polyunsaturated fatty acid supplements in essential hypertension. N Engl J Med 1989; 320: 1037–43

    Article  PubMed  CAS  Google Scholar 

  113. Bonaa KH, Bjerve KS, Straume B, et al. Effect of eicosapentaenoic and docosahexaenoic acids on blood pressure in hypertension. A population-based intervention trial from the Tromso study. N Engl J Med 1990; 322: 795–801

    Article  PubMed  CAS  Google Scholar 

  114. Goodfellow J, Bellamy MF, Ramsey MW, et al. Dietary supplementation with marine omega-3 fatty acids improve systemic large artery endothelial function in subjects with hypercholesterolemia. J Am Coll Cardiol 2000; 35: 265–70

    Article  PubMed  CAS  Google Scholar 

  115. Sirtori CR, Paoletti R, Mancini M, et al. N-3 fatty acids do not lead to an increased diabetic risk in patients with hyperlipidemia and abnormal glucose tolerance. Italian Fish Oil Multicenter Study. Am J Clin Nutr 1997; 65: 1874–81

    PubMed  CAS  Google Scholar 

  116. Borkman M, Chisholm DJ, Furler SM, et al. Effects of fish oil supplementation on glucose and lipid metabolism in NIDDM. Diabetes 1989; 38: 1314–9

    Article  PubMed  CAS  Google Scholar 

  117. Higdon JV, Du SH, Lee YS, et al. Supplementation of postmenopausal women with fish oil does not increase overall oxidation of LDL ex vivo compared to dietary oils rich in oleate and linoleate. J Lipid Res 2001; 42: 407–18

    PubMed  CAS  Google Scholar 

  118. Hau MF, Smelt AH, Bindeis AJ, et al. Effects of fish oil on oxidation resistance of VLDL in hypertriglyceridemic patients. Arterioscler Thromb Vasc Biol 1996; 16: 1197–202

    Article  PubMed  CAS  Google Scholar 

  119. Eritsland J. Safety considerations of polyunsaturated fatty acids. Am J Clin Nutr 2000; 71: 197S–201

    PubMed  CAS  Google Scholar 

  120. Stein EA, Lane M, Laskarzewski P. Comparison of statins in hypertriglyceridemia. Am J Cardiol 1998; 81: 66B–9

    Article  PubMed  CAS  Google Scholar 

  121. Ginsberg HN. Effects of statins on triglyceride metabolism. Am J Cardiol 1998; 81: 32B–5

    Article  PubMed  CAS  Google Scholar 

  122. Rosenson RS, Tangney CC, Schaefer EJ. Comparative study of HMG-CoA reductase inhibitors on fibrinogen. Atherosclerosis 2001; 155: 463–6

    Article  PubMed  CAS  Google Scholar 

  123. Dujovne CA, Harris WS, Altman R, et al. Effect of atorvastatin on hemorheologichemostatic parameters and serum fibrinogen levels in hyperlipidemic patients. Am J Cardiol 2000; 85: 350–3

    Article  PubMed  CAS  Google Scholar 

  124. Vigna GB, Donega P, Passaro A, et al. Post-prandial effects of gemfibrozil vs simvastatin in hypercholesterolemic subjects with borderline hypertriglyceridemia. Nutr Metab Cardiovasc Dis 1999; 9: 234–43

    PubMed  CAS  Google Scholar 

  125. Ridker PM, Rifai N, Lowenthal SP. Rapid reduction in C-reactive protein with cerivastatin among 785 patients with primary hypercholesterolemia. Circulation 2001; 103: 1191–3

    Article  PubMed  CAS  Google Scholar 

  126. Ridker PM, Rifai N, Pfeffer MA, et al. Long-term effects of pravastatin on plasma concentration of C-reactive protein. The Cholesterol and Recurrent Events (CARE) Investigators. Circulation 1999; 100: 230–5

    Article  PubMed  CAS  Google Scholar 

  127. Rosenson RS, Tangney CC, Casey LC. Inhibition of proinflammatory cytokine production by pravastatin. Lancet 1999; 353: 983–4

    Article  PubMed  CAS  Google Scholar 

  128. Raiteri M, Arnaboldi L, McGeady P, et al. Pharmacological control of the mevalonate pathway: effect on arterial smooth muscle cell proliferation. J Pharmacol Exp Ther 1997; 281: 1144–53

    PubMed  CAS  Google Scholar 

  129. Kempen HJ, Vermeer M, de Wit E, et al. Vastatins inhibit cholesterol ester accumulation in human monocyte-derived macrophages. Arterioscler Thromb 1991; 11: 146–53

    Article  PubMed  CAS  Google Scholar 

  130. Bellosta S, Via D, Canavesi M, et al. HMG-CoA reductase inhibitors reduce MMP-9 secretion by macrophages. Arterioscler Thromb Vasc Biol 1998; 18: 1671–8

    Article  PubMed  CAS  Google Scholar 

  131. Crisby M, Nordin-Fredriksson G, Shah PK, et al. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation 2001; 103: 926–33

    Article  PubMed  CAS  Google Scholar 

  132. Bottorff M, Hansten P. Long-term safety of hepatic hydroxymethyl glutaryl coenzyme A reductase inhibitors: the role of metabolism-monograph for physicians. Arch Intern Med 2000; 160: 2273–80

    Article  PubMed  CAS  Google Scholar 

  133. Frick MH, Elo O, Haapa K, et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 1987; 317: 1237–45

    Article  PubMed  CAS  Google Scholar 

  134. Manninen V, Elo MO, Frick MH, et al. Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study. JAMA 1988; 260: 641–51

    Article  PubMed  CAS  Google Scholar 

  135. Tenkanen L, Manttari M, Manninen V Some coronary risk factors related to the insulin resistance syndrome and treatment with gemfibrozil. Experience from the Helsinki Heart Study. Circulation 1995; 92: 1779–85

    Article  PubMed  CAS  Google Scholar 

  136. Rubins HB, Robins SJ, Collins D, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans affairs high-density lipoprotein cholesterol intervention trial study group. N Engl J Med 1999; 341: 410–8

    Article  PubMed  CAS  Google Scholar 

  137. Robins SJ, Collins D, Wittes JT, et al. Relation of gemfibrozil treatment and lipid levels with major coronary events: VA-HIT: a randomized controlled trial. JAMA 2001; 285: 1585–91

    Article  PubMed  CAS  Google Scholar 

  138. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease: the Bezafibrate Infarction Prevention (BIP) study. Circulation 2000; 102: 21-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris J. A. M. Jonkers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonkers, I.J.A.M., Smelt, A.H.M. & van der Laarse, A. Hypertriglyceridemia. Am J Cordiovosc Drugs 1, 455–466 (2001). https://doi.org/10.2165/00129784-200101060-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129784-200101060-00005

Keywords

Navigation