Skip to main content
Log in

Optimising the Benefits of Anthelmintic Treatment in Children

  • Review Article
  • Published:
Paediatric Drugs Aims and scope Submit manuscript

Abstract

Optimal use of anthelmintics in children is of major public health importance because the parasites involved probably infect over 2 billion persons, and most are especially common and debilitating in children. Well targeted drug delivery, particularly via community chemotherapy, can substantially decrease aggregate morbidity and mortality and also improve growth rates, physical fitness and activity, cognitive and school performance, and social well-being.

The drugs discussed here include the benzimidazoles (albendazole, levamisole and mebendazole), pyrantel, praziquantel, oxamniquine, ivermectin, diethylcarbamazine and some traditional medicines. The parasitic infections discussed are hookworm, ascariasis, trichuriasis, strongyloidiasis, schistosomiasis and lymphatic filariasis; onchocerciasis and loiasis are also mentioned briefly. Dosage regimens and effectiveness, including combination treatment, are discussed. Mechanisms by which parasites may cause or aggravate malnutrition and retard development are shown, along with examples of nutritional and functional improvement at various ages due to antiparasitic treatment.

Improvement in appetite is likely to be the single most important mechanism through which a variety of physiological improvements occur. We recommend community treatment of girls and women of childbearing age in areas with widespread hookworm and anaemia, because effective treatment can reduce the incidence of low birthweight, mortality in infancy and pregnancy, and stunted growth and morbidity in children and adults. Treatment of moderate-to-severe anaemia improves appetite, growth and cognitive and school performance in children, and also improves work and social capacity and productivity in children and adults. Since treatment for helminth infections may also decrease both the probability of contracting HIV infection and the rate of viral replication in those infected with both types of organisms, large-scale treatment and control of helminths and treatment of individual cases when diagnosed are now truly urgent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV
Table V
Table VI
Table VII
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Crompton DWT. How much human helminthiasis is there in the world? J Parasitol 1999; 85: 397–403

    Article  PubMed  CAS  Google Scholar 

  2. Bentwich Z, Kalinkovich A, Weisman Z. Immune activation is a dominant factor in the pathogenesis of African AIDS. Immunol Today 1995; 16: 187–91

    Article  PubMed  CAS  Google Scholar 

  3. Borkow G, Bentwich Z. Eradication of helminthic infections may be essential for successful vaccination against HIV and tuberculosis. Bull World Health Organ 2000; 78: 1368–9

    PubMed  CAS  Google Scholar 

  4. Gopinath R, Ostrowski M, Justement ST, et al. Filarial infections increase susceptibility to human immunodeficiency virus infection in peripheral blood mononuclear cells in vitro. J Infect Dis 2000; 182: 1804–8

    Article  PubMed  CAS  Google Scholar 

  5. van den Biggelaar A, van Ree R, Rodrigues LC, et al. Decreased atopy in children infected with Schistosoma haematobium: a role for para site-induced interleukin-10. Lancet 2000; 356(9243): 1723–7

    Article  PubMed  Google Scholar 

  6. Michael E, Bundy DA, Hall A, et al. This wormy world: fifty years on: the challenge of controlling common helminthiases of humans today [poster]. Parasitol Today 1997; 13(11): Insert

    Google Scholar 

  7. Stephenson LS, Latham MC, Ottesen EA. Malnutrition and parasitic helminth infections. Parasitology 2000; 121 Suppl.: S23–38

    Article  PubMed  Google Scholar 

  8. World Bank. World development report: investing in health. Oxford: Oxford University Press, 1993

    Google Scholar 

  9. Chan MS. The global burden of intestinal nematode infections: fifty years on. Parasitol Today 1997; 13: 438–43

    Article  PubMed  CAS  Google Scholar 

  10. Bundy DA, Chan MS, Medley GF, et al. Intestinal nematode infections. In: Health priorities and burden of disease analysis: methods and applications from global, national and sub-national studies. Boston (MA): Harvard University Press for the WHO and World Bank. In press

  11. Murray CJL, Lopez AD, editors. Global comparative assessments in the health sector, disease burden, expenditures and intervention packages. Geneva: World Health Organization, 1994

    Google Scholar 

  12. Montresor A, Gyorkos TW, Crompton DWT, et al. Monitoring helminth control programmes: guidelines for monitoring the impact of control programmes aimed at reducing morbidity caused by soil-transmitted helminths and schistosomes, with particular reference to school-age children. Geneva: World Health Organization, 1999. WHO/CDS/CPC/SIP/99.3.

    Google Scholar 

  13. O’Lorcain P, Holland CV. The public health importance of Ascaris lumbricoides. Parasitology 2000; 121 Suppl.: S51–72

    Article  PubMed  Google Scholar 

  14. ACC/SCN. Fourth report on the world nutrition situation. Geneva: ACC/SCN in collaboration with IFPRI, 2000 Jan

    Google Scholar 

  15. Stephenson LS, Latham MC, Ottesen EA. Global malnutrition. Parasitology 2000; 121 Suppl.: S5–22

    Article  PubMed  Google Scholar 

  16. Scrimshaw NS, Sangiovanni JP. Synergism of nutrition, infection, and immunity: an overview. Am J Clin Nutr 1997; 66 Suppl.: 464–77S

    Google Scholar 

  17. Montresor A, Crompton DWT, Hall A, et al. Guidelines for the evaluation of soil-transmitted helminthiasis and schistosomiasis at community level: a guide for managers of control programmes. Geneva: World Health Organization, 1998. WHO/CTD/SIP/98.1

    Google Scholar 

  18. World Health Organization. Report of the WHO informal consultation on monitoring of drug efficacy in the control of schistosomiasis and intestinal nematodes. Geneva: World Health Organization, 1999. WHO/CDS/CPC SIP/99.1

    Google Scholar 

  19. Ottesen EA, Ismail MM, Horton J. The role of albendazole in programmes to eliminate lymphatic filariasis. Parasitol Today 1999; 15: 382–6

    Article  PubMed  CAS  Google Scholar 

  20. Brown KR, Ricci FM, Ottesen EA. Ivermectin: effectiveness in lymphatic filariasis. Parasitology 2000; 121 Suppl.: S133–46

    Article  PubMed  Google Scholar 

  21. Horton J, Witt C, Ottesen EA, et al. An analysis of the safety of the single dose, two drug regimens used in programmes to eliminate lymphatic filariasis. Parasitology 2000; 121 Suppl.: S147–60

    Article  PubMed  Google Scholar 

  22. Horton J. Albendazole: a review of anthelmintic efficacy and safety in humans. Parasitology 2000; 121 Suppl.: S113–32

    Article  PubMed  Google Scholar 

  23. Ottesen EA, Duke BOL, Karam M, et al. Strategies and tools for the control/elimination of lymphatic filariasis. Bull World Health Organ 1997; 75(6): 491–503

    PubMed  CAS  Google Scholar 

  24. World Health Organization. Prevention and control of intestinal parasitic infections. Geneva: World Health Organization, 1987. Technical report series no. 749.

    Google Scholar 

  25. World Health Organization. Report of the WHO informal consultation on hookworm infection and anaemia in girls and women, Geneva: World Health Organization; 1994 Dec 5–7. WHO/CDS/IPI/95.1

    Google Scholar 

  26. Chodakewitz J. Ivermectin and lymphatic filariasis: a clinical update. Parasitol Today 1995; 11: 233–5

    Article  Google Scholar 

  27. Moulia-Pelat JP, Glaziou P, Weil GJ, et al. Combination ivermectin plus diethylcarbamazine, a new effective tool for control of lymphatic filariasis. Trop Med Parasitol 1995; 46: 9–12

    PubMed  CAS  Google Scholar 

  28. Ottesen EA, Ramachandran CP. Lymphatic filariasis infection and disease: control strategies. Parasitol Today 1995; 11: 129–31

    Article  Google Scholar 

  29. Ismail MM, Jayakody RL, Weil GJ, et al. Efficacy of single dose combinations of albendazole, ivermectin and diethylcarbamazine for the treatment of bancroftian filariasis. Trans R Soc Trop Med Hyg 1998; 92: 94–7

    Article  PubMed  CAS  Google Scholar 

  30. Beach MJ, Streit TG, Addiss DG, et al. Assessment of combined ivermectin and albendazole treatment of intestinal helminth and Wuchereria bancrofti infections in Haitian school children. Am J Trop Med Hyg 1999; 60: 479–86

    PubMed  CAS  Google Scholar 

  31. Ismail MM, Jayakody RL. Efficacy of albendazole and its combinations with ivermectin or diethylcarbamazine (DEC) in the treatment of Trichuris trichiura infections in Sri Lanka. Ann Trop Med Parasitol 1999; 93: 501–4

    Article  PubMed  CAS  Google Scholar 

  32. Savioli L, Renganathan E, Montresor A, et al. Control of schistosomiasis: a global picture. Parasitol Today 1997; 13(11): 444–8

    Article  PubMed  CAS  Google Scholar 

  33. Xiao SH, Booth M, Tanner M. The prophylactic effects of artemether against Schistosoma japonicum infections. Parasitol Today 2000; 16(3): 122–6

    Article  PubMed  CAS  Google Scholar 

  34. Stephenson LS, Holland CV, Cooper ES. The public health significance of Trichuris trichiura. Parasitology 2000; 121 Suppl.: S73–96

    Article  PubMed  Google Scholar 

  35. Stephenson LS, Latham MC, Kurz KM. Treatment with a single dose of albendazole improves growth of Kenyan school children with hookworm, Trichuris trichiura, and Ascaris lumbricoides infections. Am J Trop Med Hyg 1989; 41: 78–87

    PubMed  CAS  Google Scholar 

  36. Stephenson LS, Latham MC, Kurz KM, et al. Single metrifonate or praziquantel treatment in Kenyan children, II: effects on growth in relation to S. haematobium and hookworm egg counts. Am J Trop Med Hyg 1989; 41: 453–61

    Google Scholar 

  37. Simeon DT, Grantham-Mcgregor SM, Callendar JE, et al. Treatment of Trichuris trichiura infections improves growth, spelling scores and school attendance in some children. J Nutr 1995; 125: 1875–83

    PubMed  CAS  Google Scholar 

  38. Stephenson LS, editor. Schistosomiasis and malnutrition. Cornell International Nutrition Monograph Series. Ithaca (NY): Cornell University, 1986

    Google Scholar 

  39. Stoltzfus RJ, Chwaya HM, Montresor A, et al. Malaria, hookworms and recent fever are related to anemia and iron status indicators in 0- to 5-y old Zanzibari children and these relationships change with age. J Nutr 2000; 130: 1724–33

    PubMed  CAS  Google Scholar 

  40. Greenberg BL, Gilman RH, Shapiro H, et al. Single dose piperazine therapy for Ascaris lumbricoides: an unsuccessful method of promoting growth. Am J Clin Nutr 1981; 34: 2508–16

    PubMed  CAS  Google Scholar 

  41. Latham MC, Stephenson LS, Kurz KM. Metrifonate or praziquantel treatment improves physical fitness and appetite of Kenyan schoolboys with Schistosoma haematobium and hookworm infections. Am J Trop Med Hyg 1990; 43: 170–9

    PubMed  CAS  Google Scholar 

  42. Kvalsvig JD, Becker PJ. Selective exposure of active and sociable children to schistosomiasis. Ann Trop Med Parasitol 1988; 82: 471–4

    PubMed  CAS  Google Scholar 

  43. Mahendra Raj S. Intestinal geohelminthiasis and growth in preadolescent primary school children in Northeastern Peninsular Malaysia. Southeast Asian J Trop Med Pub Health 1998; 29: 112–7

    CAS  Google Scholar 

  44. Parraga IM, Assis AM, Prado MS, et al. Gender differences in growth of school-aged children with schistosomiasis and geohelminth infection. Am J Trop Med Hyg 1996; 55: 150–6

    PubMed  CAS  Google Scholar 

  45. Crompton DWT. The public health importance of hookworm disease. Parasitology 2000; 121 Suppl.: S39–50

    Article  PubMed  Google Scholar 

  46. Stephenson LS, Holland CV. The impact of helminth infections on human nutrition. London: Taylor & Francis, 1987

    Google Scholar 

  47. ACC/SCN. Second report on the world nutrition situation. Vol. 1. Global and regional results. Geneva: ACC/SCN, 1992

    Google Scholar 

  48. Stephenson LS, Latham MC, Adams EJ, et al. Physical fitness, growth and appetite of Kenyan school boys with hookworm, Trichuris trichiura and Ascaris lumbricoides infections are improved four months after a single dose of albendazole. J Nutr 1993; 123: 1036–46

    PubMed  CAS  Google Scholar 

  49. Hadju V, Stephenson LS, Abadi K, et al. Improvements in appetite and growth in helminth-infected schoolboys three and seven weeks after a single dose of pyrantel pamoate. Parasitology 1996; 113: 497–504

    Article  PubMed  Google Scholar 

  50. Stephenson LS. The impact of schistosomiasis on human nutrition. Parasitology 1993; 107 Suppl.: S107–23

    Article  PubMed  Google Scholar 

  51. Stephenson LS, Latham MC, Adams EJ, et al. Weight gain of Kenyan school children infected with hookworm, Trichuris trichiura and Ascaris lumbricoides is improved following once- or twice-yearly treatment with albendazole. J Nutr 1993; 123: 656–65

    PubMed  CAS  Google Scholar 

  52. Stephenson LS, Latham MC, Kurz KM, et al. Relationships of Schistosoma haematobium, hookworm and malarial infections and metrifonate treatment to growth of Kenyan school children. Am J Trop Med Hyg 1985; 34: 1109–18

    PubMed  CAS  Google Scholar 

  53. Pollitt E. Malnutrition and infection in the classroom. Paris: UNESCO, 1990

    Google Scholar 

  54. Connolly KJ, Kvalsvig JD. Infection, nutrition and cognitive performance in children. Parasitology 1993; 107 Suppl.: S187–200

    Article  PubMed  Google Scholar 

  55. Nokes C, Bundy DA. Does helminth infection affect mental processing and educational achievement? Parasitol Today 1994; 10: 14–8

    Article  PubMed  CAS  Google Scholar 

  56. Watkins WE, Pollitt E. ‘Stupidity or worms’: do intestinal worms impair mental performance? Psychol Bull 1997; 121: 171–91

    Article  PubMed  CAS  Google Scholar 

  57. Guyatt H. Do intestinal nematodes affect productivity in adulthood? Parasitol Today 2000; 16: 153–8

    Article  PubMed  CAS  Google Scholar 

  58. Nokes C, Grantham-Mcgregor SM, Sawyer AW, et al. Moderate to heavy infections of Trichuris trichiura affect cognitive function in Jamaican school children. Parasitology 1992; 104: 539–47

    Article  PubMed  Google Scholar 

  59. Rose W. The Rockefeller Foundation International Health Board sixth annual report (1919 Jan 1–Dec 31). New York (NY): The Rockefeller Foundation, 1920

    Google Scholar 

  60. Mendez MA, Adair LS. Severity and timing of stunting in the first two years of life affect performance on cognitive tests in late childhood. J Nutr 1999; 129: 1555–62

    PubMed  CAS  Google Scholar 

  61. Partnership For Child Development. Short stature and the age of enrolment in primary school: studies in two African countries. Soc Sci Med 1999; 48: 675–82

    Article  Google Scholar 

  62. Chandra RK. Nutrition and the immune system: an introduction. Am J Clin Nutr 1997; 66 Suppl.: 460–3S

    Google Scholar 

Download references

Acknowledgements

The author thanks Dr E.A. Ottesen, Filariasis Elimination, Division of Communicable Diseases (CEE/FIL), World Health Organization, Geneva for reviewing the medical content of the manuscript and providing important suggestions; B. Seely and C. Hunt for excellent technical support; and the Division of Nutritional Sciences, Cornell University and its graduate students for institutional support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lani S. Stephenson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephenson, L.S. Optimising the Benefits of Anthelmintic Treatment in Children. Paediatr Drugs 3, 495–508 (2001). https://doi.org/10.2165/00128072-200103070-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00128072-200103070-00002

Keywords

Navigation