Skip to main content

Advertisement

Log in

Exercise Stress Testing

An Overview of Current Guidelines

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Exercise stress testing (ET) is an inexpensive noninvasive tool that provides valuable cardiopulmonary information in healthy and diseased populations. It is most commonly used for diagnosing coronary artery disease (CAD) and developing appropriate exercise prescriptions (EP). With its widespread use and application, it is imperative that safe and appropriate guidelines and procedures are used, as there are a number of risks associated with testing in a population with or suspected of having CAD. The focus should be on the patient’s safety: personnel must be properly trained and aware of all emergency procedures, contra-indications for ET and indications for test termination must be strictly adhered to.

Three main types of testing are prevalent: submaximal, maximal and maximal utilising gas exchange. The maximal test is most commonly used, and the submaximal is appropriate for hospitalised patients. Gas exchange data is essential when assessing congestive heart failure and timing for heart transplantation.

ET is commonly performed using a treadmill or a bicycle ergometer. The treadmill provides a more familiar exercise modality and has been shown to have greater diagnostic sensitivity than the bicycle ergometer; it is, however, more expensive and requires more space in the testing room. The bicycle ergometer is more appropriate for those individuals who are severely obese or have problems with extended periods of walking.

Regardless of the modality used, an appropriate exercise protocol should be used. In North America, the Bruce protocol is the most common. However, the Bruce protocol, and others that estimate exercise capacity based on equations, tend to overestimate exercise capacity. They may be too demanding for those with limited exercise capacity, and too long for those with high exercise capacity. For these people, an exercise protocol that reaches maximal capacity in 8 to 12 minutes using smaller increments in workload should be considered.

Once completed, the results of ET needs to be correctly interpreted. This includes reviewing the test results while considering the patient’s history, medications and indication for the test. ET can also be used to develop an EP for the participant. An EP should take into account the intensity, modality of exercise, frequency and duration, as well as being realistic for the individual and the goals to be achieved. All the information from the test results and the pre-test examination should be presented in a report that also includes the advised EP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American College of Sports Medicine. Guidelines for exercise testing and prescription. 5th ed. Pennsylvania: Williams and Wilkins, 1995

    Google Scholar 

  2. Gibbons RJ, Balady GJ, Beasley JW, et al. ACC/AHA Guidelines for exercise testing: a report of the American College of Cardiology and the American Heart Association task force on practice guidelines (committee on exercise testing). J Am Coll Card 1995; 30: 260–315

    Google Scholar 

  3. Gibbons RJ, Balady GJ, Beasley JW, et al. ACC/AHA Guidelines for exercise testing: executive summary. A report of the American College of Cardiology and the American Heart Association task force on practice guidelines (committee on exercise testing). ACC/AHA practice guidelines. Circulation 1997; 96: 345–54

    Article  PubMed  CAS  Google Scholar 

  4. ESC Working Group on Exercise Physiology, Physiopathology and electrocardiography: guidelines for cardiac exercise testing. Eur Heart J 1993; 14: 969–88

    Google Scholar 

  5. Cardiac Society of Australia and New Zealand. Clinical exercise stress testing: safety and performance guidelines. Med J Aust 1996; 164: 282–4

    Google Scholar 

  6. Fletcher GF, Balady G, Froelicher VF, et al. Exercise standards: a statement for healthcare professionals from the American Heart Association [AHA medical scientific statement: special report]. Circulation 1995; 91: 580–615

    Article  PubMed  CAS  Google Scholar 

  7. American Association of Cardiovascular and Pulmonary Rehabilitation. Guidelines for cardiac rehabilitation programs. Champaign (IL): Human Kinetics, 1995

    Google Scholar 

  8. Myers J. The physiology behind exercise testing. Prim Care 1994; 21: 415–37

    PubMed  CAS  Google Scholar 

  9. Wasserman K, Hansen JE, Sue DY, et al. Principles of exercise testing and interpretation. Philadelphia (PA): Lea & Febiger, 1987

    Google Scholar 

  10. Milani J, Fernhall B, Manfredi T. Estimating oxygen consumption during treadmill and arm ergometry activity in males with coronary artery disease. J Cardiopulm Rehabil 1996; 16: 394–401

    Article  PubMed  CAS  Google Scholar 

  11. Myers J. Essentials of cardiopulmonary exercise testing. Champaign (IL): Human Kinetics, 1996

    Google Scholar 

  12. Fuster V. Atherosclerosis: A. Pathogenesis, pathology, and presentation of atherosclerosis. In: Giuliani ER, Fuster V, Gersh BJ, et al., editors. Cardiology: fundamentals and practice. 2nd ed. Chicago (IL): Mosby Yearbook, 1991: 1172–210

    Google Scholar 

  13. Ross R. The pathogenesis of atherosclerosis. In: Braunwals E, editor. Heart disease: a textbook of cardiovascular medicine. 3rd ed. Philadelphia (PA): WB Saunders Company, 1988: 1135–52

    Google Scholar 

  14. Alexander RW. Theodore Cooper Memorial Lecture: hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: a new perspective. Hypertension 1995; 25: 155–61

    Article  PubMed  CAS  Google Scholar 

  15. Hempel A, Maasch C, Heintze U, et al. High glucose concentrations increase endothelial cell permeability via activation of protein kinase C alpha. Circulation Res 1997; 81: 363–71

    Article  PubMed  CAS  Google Scholar 

  16. Guretzki HJ, Gerbitz KD, Olgemoller B, et al. Atherogenic levels of low density lipoprotein alter the permeability and composition of the endothelial barrier. Atherosclerosis 1994; 107: 15–24

    Article  PubMed  CAS  Google Scholar 

  17. Tawakol A, Omland T, Gerhard M, et al. Hyperhomocyst(e)inemia is associated with impaired endothelium-dependent vasodilation in humans. Circulation 1997; 95: 1119–21

    Article  PubMed  CAS  Google Scholar 

  18. Pech-Amsellem MA, Myara I, Storogenko M, et al. Enhanced modifications of low-density lipoproteins (LDL) by endothelial cells from smokers: a possible mechanism of smokingrelated atherosclerosis. Cardiovasc Res 1996; 31: 975–83

    PubMed  CAS  Google Scholar 

  19. Ross R, Glomset J, Kariya B, et al, A platelet-dependent serum factor stimulates the proliferation of arterial smooth muscle cells in vitro. Proc Natl Acad Sci U S A 1974; 71: 1207–10

    Article  PubMed  CAS  Google Scholar 

  20. Stary HC. Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults. Arteriosclerosis 1989; 9: 119–32

    Google Scholar 

  21. Ross R. The pathogenesis of atherosclerosis — an update. N Engl J Med 1986; 314: 488–500

    Article  PubMed  CAS  Google Scholar 

  22. Cheseboro JH, Zoldelyi P, Fuster V. Plaques disruption and thrombosis in unstable angina pectoris. Am J Cardiol 1991; 68: 9c–15c

    Article  Google Scholar 

  23. Gibbons L, Blair SN, Kohl HW, et al. The safety of maximal exercise testing. Circulation 1989; 80: 846–52

    Article  PubMed  CAS  Google Scholar 

  24. Stuart RJ, Ellestad MH. National survey of exercise stress testing facilities. Chest 1980; 77: 94–7

    Article  PubMed  Google Scholar 

  25. Knight JA, Laubach Jr CA, Butcher RJ, et al. Supervision of clinical exercise testing by exercise physiologists. Am J Cardiol 1995; 75: 390–1

    Article  PubMed  CAS  Google Scholar 

  26. Schlant RC, Friesinger II GC, Leonard JJ, et al. Clinical competence in exercise testing: a statement for physicians from the ACP/ACC: AHA Task Force on Clinical Privileges in Cardiology. J Am Coll Cardiol 1990; 16: 1061–5

    Article  PubMed  CAS  Google Scholar 

  27. Froelicher VF, Purdue S, Pewen W, et al. Application of metaanalysis using an electronic spreadsheet to exercise testing in patients after myocardial infarction. Am J Med 1987; 83: 1045–54

    Article  PubMed  CAS  Google Scholar 

  28. Senaratne MPJ, Hsu L, Rossall RE, et al. Exercise testing after myocardial infarction: relative values of the low-level predischarge and the post-discharge exercise test. J Am Coll Cardiol 1988; 12: 141–6

    Article  Google Scholar 

  29. Parameshwar J, Keegan J, Sparrow J, et al. Predictors of prognosis in severe chronic heart failure. Am Heart J 1992; 123: 421–6

    Article  PubMed  CAS  Google Scholar 

  30. Mancini DM, Eisen HM, Kussmaul W, et al. Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation 1991; 83: 778–86

    Article  PubMed  CAS  Google Scholar 

  31. Roberts JM, Sullivan M, Froelicher VF, et al. Predicting oxygen uptake from treadmill testing in normal subjects and coronary artery disease patients. Am Heart J 1984; 108: 1454–60

    Article  PubMed  CAS  Google Scholar 

  32. Sullivan M, Genter F, Savvides M, et al. The reproducibility of hemodynamic, electrocardiographic, and gas exchange data during treadmill exercise in patients with stable angina pectoris. Chest 1984; 86: 375–82

    Article  PubMed  CAS  Google Scholar 

  33. Sullivan M, McKirnan MD. Errors in predicting functional capacity for postmyocardial infarction patients using a modified Bruce Protocol. Am Heart J 1984; 107: 486–91

    Article  PubMed  CAS  Google Scholar 

  34. Wasserman K. Exercise gas exchange in heart disease. 3rd ed. Armenk (NY): Futura Publishing Company Inc., 1996

    Google Scholar 

  35. Pina IL, Balady GJ, Hanson P, et al. Guidelines for clinical exercise testing laboratories: a statement for healthcare professionals from the Committee on Exercise and Cardiac Rehabilitation, American Heart Association. Circulation 1995; 91: 912–21

    Article  PubMed  CAS  Google Scholar 

  36. Milliken JA, Abdollah H, Burggraf GW. False-positive treadmill exercise tests due to computer signal averaging. Am J Cardiol 1990; 65: 946–8

    Article  PubMed  CAS  Google Scholar 

  37. Ribisl PM, Liu J, Mousa I, et al. Comparison of computer ST criteria for diagnosis of severe coronary artery disease. Am J Cardiol 1993; 71: 546–51

    Article  PubMed  CAS  Google Scholar 

  38. Bailey JJ, Berson AS, Garson Jr A, et al. Recommendations for standardization and specifications in automated electrocardiography: bandwidth and digital signal processing. A report for health professionals by an ad hoc writing group of the Committee on Electrocardiography and Cardiac Electrophysiology of the Council of Clinical Cardiology, American Heart Association. Circulation 1990; 81: 730–9

    Article  PubMed  CAS  Google Scholar 

  39. Froelicher VF. Exercise and the heart. 3rd ed. St Louis (MO): CV Mosby Company, 1993

    Google Scholar 

  40. Perloff D, Grim C, Flack J, et al. Human blood pressure determination by sphygmomanometry. Circulation 1993; 88: 2460–70

    Article  PubMed  CAS  Google Scholar 

  41. Myers JN. Perception of chest pain during exercise testing in patients with coronary artery disease. Med Sci Sports Exerc 1994; 26: 1082–6

    PubMed  CAS  Google Scholar 

  42. Hermanson L, Saltin B. Oxygen uptake during maximal treadmill and bicycle exercise. J Appl Physiol 1969; 26: 31–37

    Google Scholar 

  43. Whipp BJ, Davis JA, Tores F, et al. A test to determine parameters of aerobic function during exercise. J Appl Physiol 1981; 50: 217–21

    PubMed  CAS  Google Scholar 

  44. Hambrecht R, Schuler GC, Muth T, et al. Greater diagnostic sensitivity of treadmill versus cycle exercise testing of asymptomatic men with coronary artery disease. Am J Cardiol 1992; 70: 141–6

    Article  PubMed  CAS  Google Scholar 

  45. Von Duvillard SP, Pivirotto JM. The effect of front handrail and nonhandrail support on treadmill exercise in healthy women. J Cardiopulm Rehabil 1991; 11: 164–8

    Article  Google Scholar 

  46. Zeimetz GA, McNeill JF, Hall JR, et al. Quantifiable changes in oxygen uptake, heart rate, and time to target heart rate when hand support is allowed during treadmill exercise. J Cardpulm Rehabil 1985; 5: 525–30

    Google Scholar 

  47. Smith JJ, Kampine JP. Circulatory physiology - the essentials. 3rd ed. In: Satterfield TS, editor. Baltimore (MD): Williams and Wilkins, 1990

    Google Scholar 

  48. Myers J, Buchanan N, Walsh D, et al. Comparison of the ramp versus standard exercise protocols. J Am Coll Cardiol 1991; 17: 1334–42

    Article  PubMed  CAS  Google Scholar 

  49. Haskell W, Savin N, Oldrige R. Factors influencing factors oxygen uptake during exercise testing soon after myocardial infarction. Am J Cardiol 1982; 50: 299–304

    Article  PubMed  CAS  Google Scholar 

  50. Webster MWI, Sharpe DN. Exercise testing in angina pectoris: the importance of protocol design in clinical trials. Am Heart J 1989; 117: 505–8

    Article  PubMed  CAS  Google Scholar 

  51. Tamesis B, Stelken A, Byers S, et al. Comparison of the asymptomatic cardiac ischemia pilot versus Bruce and Cornell exercise protocols. Am J Cardiol 1993; 72: 715–20

    Article  PubMed  CAS  Google Scholar 

  52. Panza J, Quyyumi AA, Diodati JG, et al. Prediction of the frequency and duration of ambulatory myocardial ischemia in patients with stable coronary artery disease by determination of the ischemia threshold from exercise testing: importance of the exercise protocol. J Am Coll Cardiol 1991; 17: 657–63

    Article  PubMed  CAS  Google Scholar 

  53. Redwood DR, Rosing DR, Goldstein RE, et al. Importance of the design of an exercise protocol in the evaluation of patients with angina pectoris. Circulation 1971; 43: 618–28

    Article  PubMed  CAS  Google Scholar 

  54. Myers J, Froelicher VF. Optimizing the exercise test for pharmacological investigations. Circulation 1990; 82: 1839–46

    Article  PubMed  CAS  Google Scholar 

  55. Buchfuhrer MJ, Hansen JE, Robinson TE, et al. Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol 1983; 55: 1558–64

    PubMed  CAS  Google Scholar 

  56. Myers J, Buchanan N, Smith D, et al. Individualized ramp treadmill: observations on a new protocol. Chest 1992; 101: 2305–415

    Google Scholar 

  57. Ho SWC, McComish MJ, Taylor RR. Effect of beta-adrenergic blockade on the results of exercise testing related to the extent of coronary artery disease. Am J Cardiol 1985; 55: 258–62

    Article  PubMed  CAS  Google Scholar 

  58. American College of Sports Medicine. Resource manual for exercise testing and prescription. 2nd ed. Pennsylvania: Williams & Wilkins, 1993

    Google Scholar 

  59. Pina IL, Chahine RA. Lead systems: sensitivity and specificity. Cardiol Clin 1984; 2: 329–35

    PubMed  CAS  Google Scholar 

  60. Lachterman B, Lehmann KG, Abrahamson D, et al. ’Recovery only’ ST segment depression and the predictive accuracy of the exercise test. Ann Intern Med 1990; 112: 11–6

    PubMed  CAS  Google Scholar 

  61. Philbrick JT, Horowitz RI, Feinstein AR. Methodological problems of exercise testing for coronary artery disease: groups, analysis and bias. Am J Cardiol 1980; 46: 807–12

    Article  PubMed  CAS  Google Scholar 

  62. Miranda CP, Liu J, Kadar A, et al. Usefulness of exercise-induced ST-segment depression in the inferior leads during exercise testing as a marker for coronary artery disease. Am J Cardiol 1992; 69: 303–7

    Article  PubMed  CAS  Google Scholar 

  63. Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med 1979; 300: 1350–8

    Article  PubMed  CAS  Google Scholar 

  64. Allison T, Bardsley W, Behrenbeck T, et al. Cardiovascular stress testing: a description of the various types of stress tests and indications for their use. Mayo Clin Proc 1996; 75: 390–1

    Google Scholar 

  65. Fleg JL, Gerstenblith G, Zonderman AB, et al. Prevalence and prognostic significance of exercise-induced silent myocardial ischemia detected by thallium scintigraphy and electrocardiography in asymptomatic volunteers. Circulation 1990; 81: 428–36

    Article  PubMed  CAS  Google Scholar 

  66. Kotler TS, Diamond GA. Exercise thallium 201 scintigraphy in the diagnosis and prognosis of coronary artery disease. Ann Intern Med 1990; 113: 684–702

    PubMed  CAS  Google Scholar 

  67. Kahn JK, McGhie I, Akers MS, et al. Quantitative rotational tomography with 209Ti and 99mTc 2-methoxy-isobutyl-isonitrile: a direct comparison in normal individuals and patients with coronary artery disease. Circulation 1989; 79: 1282–93

    Article  PubMed  CAS  Google Scholar 

  68. Kiat H, Maddahi J, Roy LT, et al. Comparison of technetium-99m methoxy isobutyl isonitrile and thallium 201 for evaluation of coronary artery disease by planar and tomographic methods. Am Heart J 1989; 117: 1–11

    Article  PubMed  CAS  Google Scholar 

  69. Taillefer R, DePuey EG, Udelson JE, et al. Comparative diagnostic accuracy of Ti-201 and Tc-99m sestamibi SPECT imaging (perfusion and ECG-gated SPECT) in detecting coronary artery disease in women. J Am Coll Cardiol 1997; 29: 69–77

    Article  PubMed  CAS  Google Scholar 

  70. Armstrong WF. Treadmill exercise echocardiography: methodology and clinical role. Eur Heart J 1997; 18 Suppl. D: D2–8

    Article  PubMed  Google Scholar 

  71. Blair SN. 1993 CH McCloy Research Lecture: physical activity, physical fitness, and health. Res Q Exerc Sport 1993; 64: 365–76

    PubMed  CAS  Google Scholar 

  72. Paffenbarger Jr RS, Hyde RT, Wing AL, et al. The association of changes in physical activity level and other lifestyle characteristics with mortality among men. N Engl J Med 1993; 328: 538–45

    Article  PubMed  Google Scholar 

  73. Hambrecht R, Niebauer J, Marburger C, et al. Various intensities of leisure time physical activity in patients with coronary artery disease: effects on cardiorespiratory fitness and progression of coronary athersclerotic lesions. J Am Coll Cardiol 1993; 22: 468–77

    Article  PubMed  CAS  Google Scholar 

  74. King AC, Taylor CB, Haskell WL, et al. Influence of regular aerobic exercise on psychological health: a randomized controlled trial of healthy middle-aged adults. Health Psychol 1989; 8: 305–24

    Article  PubMed  CAS  Google Scholar 

  75. Stern MJ, Cleary P. The national exercise and heart disease project: psychosocial changes observed during a low-level exercise program. Arch Intern Med 1981; 141: 1463–7

    Article  PubMed  CAS  Google Scholar 

  76. Rejeski WJ, Brawley LR, Schumaker SA. Physical activity and health related quality of life. Exerc Sport Sci Rev 1996; 24: 71–108

    Article  PubMed  CAS  Google Scholar 

  77. Jones NL. Clinical exercise testing. Philadelphia (PA): WB Saunders Company, 1988

    Google Scholar 

  78. Tran ZV, Weltman A, Glass GV, et al. The effects of exercise on blood lipids and lipoproteins: a meta-analysis of studies. Med Sci Sports Exerc 1983; 15: 393–402

    PubMed  CAS  Google Scholar 

  79. Bjorntorp, P. Effects of exercise on plasma insulin. Int J Sports Med 1981; 2: 125–9

    Article  PubMed  CAS  Google Scholar 

  80. Exercise and NIDDM. Diabetes 1991; 40 Suppl.: 52–6

  81. Hagberg JM, Seals DR. Exercise training and hypertension. Acta Med Scand 1986; 711: 131–6

    CAS  Google Scholar 

  82. Ponjee GA, Janssen EM, Hermans J, et al. Effects of long-term exercise of moderate intensity on anthropometric values and serum lipids and lipoproteins. Eur J Clin Chem Clin Biochem 1995; 33: 121–6

    PubMed  CAS  Google Scholar 

  83. Elwood PC, Yarnell JW, Pickering J, et al. Exercise, fibrinogen, and other risk factors for ischaemic heart disease. Caerphilly Prospective Heart Disease Study. Br Heart J 1993; 69: 183–7

    Article  PubMed  CAS  Google Scholar 

  84. Myers JN, Froelicher VF. Exercise testing and prescription. Phys Med Rehabil Clin North Am 1995; 1: 117–51

    Google Scholar 

  85. Pollock ML, Gaesser GA, Butcher JD, et al. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc 1998; 30: 975–91

    Article  Google Scholar 

  86. Cobb LA, Weaver WD. Exercise: a risk for sudden death in patients with coronary heart disease. J Am Coll Cardiol 1986; 7: 215–9

    Article  PubMed  CAS  Google Scholar 

  87. Pate RR, Pratt M, Blair SN, et al. Physical activity and public health: a recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA 1995; 273: 402–7

    Article  PubMed  CAS  Google Scholar 

  88. Martin JE, Dubbert PM. Exercise applications and promotion in behavioral medicine. J Consult Clin Psychol 1982; 50: 1004–17

    Article  PubMed  CAS  Google Scholar 

  89. Hammond K, Froelicher VF. Normal and abnormal heart rate responses to exercise. Prog Cardiovasc Dis 1985; 27: 271–96

    Article  PubMed  CAS  Google Scholar 

  90. Froelicher VF. EXTRA: an exercise test interpretation system. St Louis (MO): CV Mosby, 1995

    Google Scholar 

  91. Morris CK, Myers J, Froelicher VF, et al. Nomogram based on metabolic equivalents and age for assessing aerobic exercise capacity in men. J Am Coll Cardiol 1993; 22: 175–82

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Ignaszewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lear, S.A., Brozic, A., Myers, J.N. et al. Exercise Stress Testing. Sports Med 27, 285–312 (1999). https://doi.org/10.2165/00007256-199927050-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199927050-00002

Keywords

Navigation