Skip to main content
Log in

Biomechanical Risk Factors for Exercise-Related Lower Limb Injuries

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

There is a significant risk of injury when undertaking physical activities. Abnormal biomechanics of the lower limb has been implicated as a causative factor for injury. Although there have been a large number of studies in this field, many lack consistency of definitions and methodology. A large number of these studies have been retrospective, and it is often impossible to identify the baseline population.

The evidence suggests that limitation of range of ankle dorsiflexion, limitation of range of hip eversion, excessive joint laxity, leg length discrepancy, an excessively supinated or pronated foot, excessively high or low arches of the foot and a large Q-angle are risk factors for injury. On the other hand, there is little convincing evidence that an abnormal range of ankle plantar flexion, genu varum or valgum or undue muscle tightness may be potential risk factors.

All of these biomechanical abnormalities need further evaluation as potential risk factors for injury. Any trials undertaken must endeavour to define and describe their methods fully, and ensure that their results are reproducible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cowan DN, Jones BH, Tomlinson JP, et al. The epidemiology of physical training injuries in U.S. army infantry trainees: methodology, population and risk factors. US Army Research Institute of Environmental Medicine Technical Report T4–89: 1988

  2. Jones BH, Knapik JJ, Reynolds KL, et al. Cigarette smoking, physical fitness and injuries in infantry soldiers. Am J Prev Med 1994; 10: 145–50

    PubMed  Google Scholar 

  3. Jones BH, Vogel JA, Manikowski R, et al. Incidence of and risk factors for injury and illness amoung male and female army basic trainees. US Army Research Institute of Environmental Medicine Technical Report T19–88, 1988

  4. Knapik JJ, Jones BH, Reynolds KL, et al. Physical fitness, age and injury incidence in infantry soldiers. J Occup Med 1993; 35: 598–603

    PubMed  CAS  Google Scholar 

  5. Van Mechelen W. Can running injuries be effectively prevented? Sports Med 1995; 19: 161–5

    PubMed  Google Scholar 

  6. Vogel JA, Vanggaard L, Hentze-Eriksen T. Injuries related to physical training. NATO Defence Research Group RSG 17 AC/243 (Panel 8) TR/16, 1994: 121–45

  7. Van Mechelen W. Running injuries – a review of the epidemiological literature. Sports Med 1992; 14: 320–35

    PubMed  Google Scholar 

  8. Macera CA. Lower extremity injuries in runners – advances in prediction. Sports Med 1992; 13: 50–7

    PubMed  CAS  Google Scholar 

  9. Blair SN, Kohl HW, Goodyear NN. Rates and risks for running and exercise injuries: studies in three populations. Res Q Exerc Sport 1987; 58: 221–8

    Google Scholar 

  10. Box CJ. A survey of overuse lower limb injuries in army recruit training – phase 2. Army Personnel Research Establishment Report AP 9/12 405/5/10, 1989

    Google Scholar 

  11. Harwood AG, Box CJ, Freeland WA, et al. A survey of overuse lower limb injuries in army recruits. Army Personnel Research Establishment Report AP 9/12 404/5/10, 1989

    Google Scholar 

  12. Jones BH, Cowan DN, Tomlinson JP, et al. Epidemiology of injuries associated with physical training among young men in the army. Med Sci Sports Exerc 1993; 25: 197–203

    PubMed  CAS  Google Scholar 

  13. Reynolds K, Pollard JA, Cunero J, et al. Frequency of training and past injuries as risk factors for injuries in infantry soldiers. Med Sci Sports Exerc 1996; S40 (29 May): 235

    Google Scholar 

  14. Jones BH, Vogel JA. Running versus marching as a risk factor for injuries in recruit training. NATO Defence Research Group RSG 17 2nd Meeting: 1989

    Google Scholar 

  15. Owen JP. Lower limb survey in army recruits. Farnborough: Defence Research Agency, 1996

    Google Scholar 

  16. Rayson MP, Holliman DE, Mason MJ, et al. The physical demands of basic training in British army recruits: a pilot study. Farnborough: Defence Research Agency PLSD/CHS5/ CR96/019, 1996

    Google Scholar 

  17. Baumhauer JF, Alosa DM, Renstrom PAFH, et al. A prospective study of ankle injury risk factors. Am J Sports Med 1995; 23: 564–70

    PubMed  CAS  Google Scholar 

  18. Gross MT. Lower quarter screening for skeletal malalignment – suggestions for orthotics and shoewear. Foot/Ankle Ther Res 1995; 21: 389–405

    CAS  Google Scholar 

  19. Hughes LY. Biomechanical analysis of the foot and ankle for predisposition to developing stress fractures. J Orthop Sports Phys Ther 1985; 7: 96–101

    PubMed  CAS  Google Scholar 

  20. Jackson DW, Jarrett H, Bailey D, et al. Injury prediction in the young athlete: a preliminary report. Am J Sports Med 1978; 6: 6–14

    PubMed  CAS  Google Scholar 

  21. Messier SP, Pittala KA. Aetiological factors associated with selected running injuries. Med Sci Sports Exerc 1988; 20: 501–5

    PubMed  CAS  Google Scholar 

  22. Montgomery LC, Nelson FRT, Norton JP, et al. Orthopaedic history and examination in the aetiology of overuse injuries. Med Sci Sports Exerc 1989; 21: 237–43

    PubMed  CAS  Google Scholar 

  23. Gollnick PD, Karpovich PV. Electromagnetic study of locomotion and some athletic movements. Res Q 1964; 35: 357–69

    PubMed  Google Scholar 

  24. Mann RA, Hagy J. Biomechanics of walking, running and sprinting. Am J Sports Med 1980; 8: 345–50

    PubMed  CAS  Google Scholar 

  25. Magee DJ. Orthopaedic physical assessment. Philadelphia (PA): W.B. Saunders Company, 1987: 245–74

    Google Scholar 

  26. Root ML, Orien WP, Weed JH. Normal and abnormal function of the foot. Los Angeles (CA): Clinical Biomechanics Corp., 1977: 127–63

    Google Scholar 

  27. Subotnick SI. Normal biomechanics and clinical biomechanics. In: Subotnick SI, editor. Sports medicine of the lower extremity. New York: Churchill Livingstone, 1989: 129–69

    Google Scholar 

  28. Sinning WE, Forsyth HL. Lower limb actions while running at different velocities. Med Sci Sports Exerc 1970; 2: 28–34

    CAS  Google Scholar 

  29. Cowan DN, Jones BH. Running exposure, training injuries and physical fitness [abstract]. Med Sci Sports Exerc 1996; S40 (29 May): Abstract 236

  30. Moss RI, DeVita P, Dawson ML. A biomechanical analysis of patellofemoral stress syndrome. J Athlet Train 1992; 27: 64–9

    CAS  Google Scholar 

  31. Milgrom C, Finestone A, Eldad A, et al. Patellofemoral pain caused by overactivity – a prospective study of risk factors in infantry recruits. J Bone Joint Surg 1991; 73A: 1041–3

    PubMed  CAS  Google Scholar 

  32. Elveru RA, Rothstein JM, Lamb RL. Goniometric reliability in a clinical setting – subtalar and ankle joint measurements. Phys Ther 1988; 68: 673–7

    Google Scholar 

  33. Brody DM. Running injuries. Clin Symp 1980; 32: 1–36

    PubMed  CAS  Google Scholar 

  34. Crane L. Femoral torsion and its relation to toeing-in and toeingout. J Bone Joint Surg 1959; 41A: 421–8

    PubMed  Google Scholar 

  35. Apley AG, Solomon L. Apley’s system of orthopaedics and fractures. Oxford: Butterworth Heinemann Ltd, 1993: 437

    Google Scholar 

  36. Fairbank JCT, Pynsent PB, Van Poortvliet JA, et al. Mechanical factors in the incidence of knee pain in adolescent and young adults. J Bone Joint Surg 1984; 66: 685–93

    CAS  Google Scholar 

  37. Root ML, Orien WP, Weed JH, et al. Biomechanical examination of the foot. Los Angeles (CA): Clinical Biomechanics Corp., 1971

  38. Giladi M, Milgrom C, Stein M. External rotation of the hip: a predictor of risk for stress fractures. Clin Orthop 1987; 216: 131–4

    PubMed  Google Scholar 

  39. Subotnick SI. Sports specific biomechanics. In: Subotnick SI, editor. Sports medicine of the lower extremity. New York: Churchill Livingstone, 1989: 210–1

    Google Scholar 

  40. Kujala UM, Kvist M, Osterman K, et al. Factors predisposing army conscripts to knee exertion injuries incurred in a physical training program. Clin Orthop 1986; 210: 203–12

    PubMed  Google Scholar 

  41. Sikorski JM, Peters J, Watt I. The importance of femoral rotation in chondromalacia patellae as shown by serial radiography. J Bone Joint Surg 1979; 61B: 435–42

    Google Scholar 

  42. Finestone A, Shiamkovitch N, Eldad A, et al. Risk factors for stress fractures amoung Israeli infantry recruits. Mil Med 1991; 156: 528–30

    PubMed  CAS  Google Scholar 

  43. Iseki J, Fujikawa K. Clinical pictures of the osteoarthritis in the knee joint. J Jpn Orthop Assoc 1980; 54: 563

    CAS  Google Scholar 

  44. Mann RA, Baxter DE, Lutter LE. Running symposium. Foot Ankle 1981; 1: 190–224

    PubMed  CAS  Google Scholar 

  45. Matheson GO, Clement DB, McKenzie DC, et al. Stress fractures in athletes – a study of 320 cases. Am J Sports Med 1987; 15: 46–58

    PubMed  CAS  Google Scholar 

  46. Cooke TDV, Price N, Fisher B, et al. The inwardly pointing knee – an unrecognized problem of external rotational malalignment. Clin Orthop 1990; 260: 56–60

    PubMed  Google Scholar 

  47. Dalton SE. Overuse injuries in adolescent athletes. Sports Med 1992; 13: 58–70

    PubMed  CAS  Google Scholar 

  48. Cowan DN, Jones BH, Frykman PN, et al. Lower limb morphology and risk of overuse injury amoung male infantry trainees. Med Sci Sports Exerc 1996; 28: 945–52

    PubMed  CAS  Google Scholar 

  49. Milgrom C, Stein M, Steinberg R, et al. Stress fractures and tibial bone width – a risk factor. J Bone Joint Surg 1987; 69B: 326–9

    Google Scholar 

  50. Carter C, Sweetnam R. Familial joint laxity and recurrent dislocation of the patella. J Bone Joint Surg 1958; 40B: 664–7

    Google Scholar 

  51. Lysens R, Steverlynck A, Van den Auweele Y, et al. The predictability of sports injuries. Sports Med 1984; 1: 6–10

    Google Scholar 

  52. Nicholas JA. Injuries to knee ligaments. JAMA 1970; 212: 2236–9

    PubMed  CAS  Google Scholar 

  53. Reider B, Marshall JL, Warren RF. Clinical characteristics of patellar disorders in young athletes. Am J Sports Med 1981; 9: 270–4

    PubMed  CAS  Google Scholar 

  54. Rossiter ND, Galbraith KA. The incidence of hypermobility in a military population [abstract]. Meeting of the Combined Services Orthopaedic Society; 1996 Jun 7; Aldershot, UK, 165

  55. Taimela S, Kujala UM, Osterman K. Intrinsic risk factors and athletic injuries. Sports Med 1990; 9: 205–15

    PubMed  CAS  Google Scholar 

  56. Kannus VPA, Nittymaki S. Which factors predict outcome in the nonoperative treatment of patellofemoral pain syndrome? A prospective follow-up study. Med Sci Sports Exerc 1994; 26: 289–96

    PubMed  CAS  Google Scholar 

  57. Ekstrand J, Gillquist J. Soccer injuries and their mechanism: a prospective study. Med Sci Sports Exerc 1983; 15 (3): 267–70

    PubMed  CAS  Google Scholar 

  58. Kirby RL, Simms FC, Symington VD, et al. Flexibility and musculoskeletal syptomatology in female gymnasts and age matured controls. Am J Sports Med 1981; 9 (160): 160–4

    PubMed  CAS  Google Scholar 

  59. Grana W, Moretz JA. Ligamentous laxity in secondary school athletes. JAMA 1978; 240: 1975–6

    PubMed  CAS  Google Scholar 

  60. Sullivan D, Warren R, Pavlov H, et al. Stress fractures in 51 runners. Clin Orthop 1984; 187: 188–92

    PubMed  Google Scholar 

  61. Smith AD, Stroud L, McQueen C. Flexibility and anterior knee pain in adolescent elite figure skaters. J Paediatr Orthop 1991; 11: 77–82

    CAS  Google Scholar 

  62. Cahill BR, Griffith EH. Effect of pre-season conditioning on the incidence and severity of high school football knee injuries. Am J Sports Med 1978; 6: 180–4

    PubMed  CAS  Google Scholar 

  63. Gogia PP, Braatz JH. Validity and reliability of leg length measurements. J Orthop Sports Phys Ther 1986; 8: 185–8

    PubMed  CAS  Google Scholar 

  64. Friberg O, Kvist M. Leg length inequality in athletes. In: Bachl N, Prokop L, Suckert R, editors. Current topics in sports medicine. Vienna: Urban and Schwarzenberg, 1984: 984–92

    Google Scholar 

  65. Beal MC. The short leg problem. J Am Osteopath Assoc 1977; 76: 745–51

    PubMed  CAS  Google Scholar 

  66. Subotnick SI. The short leg syndrome. J Am Podiatr Assoc 1976; 66: 720–3

    CAS  Google Scholar 

  67. Blustein SM, D’Amico JC. Limb length discrepancy: identification, clinical significance and management. J Am Podiatr Med Assoc 1985; 75: 200–6

    PubMed  CAS  Google Scholar 

  68. Giles LGF, Taylor JR. Low back pain associated with leg length inequality. Spine 1981; 6: 510–21

    PubMed  CAS  Google Scholar 

  69. Amstutz HC, Sakai DM. Equalization of leg length. Clin Orthop 1978; 136: 2–5

    PubMed  Google Scholar 

  70. Bloedel PK, Hauger B. The effects of limb length discrepancy on subtalar joint kinematics during running. J Orthop Sports Phys Ther 1995; 22: 60–4

    PubMed  CAS  Google Scholar 

  71. DeMoya RG. A biomechanical comparison of the running shoe and the combat boot. Mil Med 1982; 147: 380–3

    PubMed  CAS  Google Scholar 

  72. Donatelli R. Abnormal biomechanics of the foot and ankle. J Orthop Sports Phys Ther 1987; 9: 11–6

    PubMed  CAS  Google Scholar 

  73. Subotnick SI. The biomechanics of running. Sports Med 1985; 2: 144–53

    PubMed  CAS  Google Scholar 

  74. Winter DA, Bishop PJ. Lower extremity injury: biomechanical factors associated with chronic injury to the lower extremity. Sports Med 1992; 14: 149–56

    PubMed  CAS  Google Scholar 

  75. Scott SH, Winter DA. Talocrural and talocalcaneal joint kinematics during stance phase of gait. Biomechanics 1991; 24: 743–52

    CAS  Google Scholar 

  76. McPoil T, Cornwall MW. Relationship between neutral subtalar joint position and pattern of rearfoot motion during walking. Foot Ankle 1994; 15: 141–5

    PubMed  CAS  Google Scholar 

  77. James SL, Bates BT, Osternig LR. Injuries to runners. Am J Sports Med 1978; 6: 40–50

    PubMed  CAS  Google Scholar 

  78. Donatelli R. Normal biomechanics of the foot and ankle. J Orthop Sports Phys Ther 1985; 7: 91–5

    PubMed  CAS  Google Scholar 

  79. Vitisalo JT, Kvist M. Some biomechanical aspects of the foot and ankle in athletes with and without shin splints. Am J Prev Med 1983; 11: 125–30

    Google Scholar 

  80. Elveru RA, Rothstein JM, Lamb RL, et al. Methods for taking subtalar joint measurements – a clinical report. Phys Ther 1988; 68: 678–82

    PubMed  CAS  Google Scholar 

  81. Franco AH. Pes cavus and pes planus – analyses and treatment. Phys Ther 1987; 67: 688–94

    PubMed  CAS  Google Scholar 

  82. Kannus VPA. Evaluation of abnormal biomechanics of the foot and ankle in athletes. Br J Sports Med 1991; 26: 83–9

    Google Scholar 

  83. Dahle JK, Mueller M, Delitto A. Visual assessment of foot type and relationship of foot type to lower extremity injury. J Orthop Sports Phys Ther 1991; 14: 70–4

    PubMed  CAS  Google Scholar 

  84. Sommer HM, Vallentyne SW. Effect of foot posture on the incidence of medial tibial stress syndrome. Med Sci Sports Exerc 1995; 27: 800–4

    PubMed  CAS  Google Scholar 

  85. Beckett ME, Massie DL, Bowers KD, et al. Incidence of hyperpronation in the ACL injured knee: a clinical perspective. J Athlet Train 1992; 27: 58–62

    CAS  Google Scholar 

  86. DeLacerda FG. A study of anatomical factors involved in shinsplints. J Orthop Sports Phys Ther 1980; 2: 55–9

    PubMed  CAS  Google Scholar 

  87. Gould N. Evaluation of hyperpronation and pes planus in adults. Clin Orthop 1983; 181: 37–45

    PubMed  Google Scholar 

  88. Picciano AM, Rowlands MS, Worrell T. Reliability of open and closed kinetic chain subtalar joint neutral positions and navicular drop test. J Orthop Sports Phys Ther 1993; 18: 553–8

    PubMed  CAS  Google Scholar 

  89. Garbolosa JC, McClure MH, Catlin PA. The frontal plane relationship of the forefoot to the rearfoot in an asymptomatic population. J Orthop Sports Phys Ther 1994; 20: 200–6

    Google Scholar 

  90. Hawes M, Sovak D. Quantitative morphology of the human foot in a North American population. Ergonomics 1994; 37: 1213–26

    PubMed  CAS  Google Scholar 

  91. Hawes M, Sovak D, Nachbauer W, et al. Footprint parameters as a measure of arch height. Foot Ankle 1992; 13: 22–6

    PubMed  CAS  Google Scholar 

  92. Bensel CK. The effects of tropical and leather combat boots on lower extremity disorders amoung US marine corps recruits. United States Army Natick Research and Development Laboratories Report TR 76–49-CEMEL: 1976

    Google Scholar 

  93. Bensel CK, Kish RN. Lower extremity disorders among men and women in army basic training and effects of two types of boots. United States Army Natick Research and Development Laboratories Report TR 83/026: 1983

  94. Hopper D, Elliott B. Lower limb and back injury patterns of elite netball players. Sports Med 1993; 16: 148–62

    PubMed  CAS  Google Scholar 

  95. Subotnick SI. The flat foot. Phys Sports Med 1981; 9: 85–91

    Google Scholar 

  96. Giladi M, Milgrom C, Stein M, et al. The low arch, a protective factor in stress fractures – a prospective study of 295 military recruits. Orthop Rev 1985; 14: 709–12

    Google Scholar 

  97. Jones BH, Cowan DN. Foot morphologic characteristics and the risk of exercise related injury. Arch Fam Med 1993; 2: 773–7

    PubMed  Google Scholar 

  98. Nigg BM, Cole GK, Nachbauer W. Effects of arch height of the foot on angular motion of the lower extremities in running. J Biomech 1993; 26: 909–16

    PubMed  CAS  Google Scholar 

  99. Clement DB, Taunton JE, Smart GW. Achilles tendinitis and peritendinitis: aetiology and treatment. Am J Sports Med 1984; 12: 179–84

    PubMed  CAS  Google Scholar 

  100. Weil LS, Moore JW, Kratzer CD, et al. A biomechanical study of the lateral ankle sprains in basketball. J Am Podiatr Assoc 1979; 69: 687–90

    CAS  Google Scholar 

  101. Insall J, Falvo KA, Wise DA. Chondromalacia patellae. J Bone Joint Surg 1976; 58A: 1–8

    PubMed  CAS  Google Scholar 

  102. Aglietti P, Insall J, Cerulli G. Patellar pain and incongruence: 1. Measurements of incongruence. Clin Orthop 1983; 176: 217–24

    PubMed  Google Scholar 

  103. Horton MG, Hall TL. Quadriceps femoris angle: normal values and relationship with gender and selected skeletal measures. Phys Ther 1989; 69: 897–901

    PubMed  CAS  Google Scholar 

  104. Caylor D, Fites R, Worrell TW. The relationship between quadriceps angle and anterior knee pain syndrome. J Orthop Sports Phys Ther 1993; 17: 11–6

    PubMed  CAS  Google Scholar 

  105. Davidson K. Patellofemoral pain syndrome. Am Fam Phys 1993; 48: 1254–62

    CAS  Google Scholar 

  106. Messier SP, Davis SE, Curl WW, et al. Aetiological factors associated with patellofemoral pain in runners. Med Sci Sports Exerc 1991; 23: 1008–15

    PubMed  CAS  Google Scholar 

  107. Huberti HH, Hayes WC. Patellofemoral contact pressures. J Bone Joint Surg 1984; 66A: 715–24

    PubMed  CAS  Google Scholar 

  108. Yates C, Grana W. Patellofemoral pain: a prospective study. Othopaedics 1986; 9: 663–7

    CAS  Google Scholar 

  109. Lindberg U. The patellofemoral pain syndrome [dissertation]. Linkoping: University of Linkoping, Sweden, 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

© Crown copyright 1998. Published with the permission of the Defence Evaluation and Research Agency on behalf of the Controller of HMSO.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neely, F.G. Biomechanical Risk Factors for Exercise-Related Lower Limb Injuries. Sports Med 26, 395–413 (1998). https://doi.org/10.2165/00007256-199826060-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199826060-00003

Keywords

Navigation