Skip to main content
Log in

Fluid and Carbohydrate Replacement During Intermittent Exercise

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Most studies relating to fluid replacement have addressed the problem of drinking during prolonged exercise. Fluid replacement is also very important for intermittent exercise, although it has not been extensively studied. More studies in this area would help coaches and athletes understand the importance of fluid balance and carbohydrate supplementation during intermittent exercise. Based on available data, it can be concluded that: (i) because of high exercise intensity, sweat loss and glycogen depletion during intermittent exercise are at least comparable with those during continuous exercise for a similar period of time. Therefore, the need to ingest a sport drink or replacement beverage during intermittent exercise may be greater than that during continuous exercise in order to maintain a high level of performance and to help prevent the possibility of thermal injury when such activity occurs in a warm environment; (ii) the volume of ingested fluid is critical for both rapid gastric emptying and complete rehydration; and (iii) osmolality (250 to 370 mOsm/kg), carbohydrate concentration (5 to 7%), and carbohydrate type (multiple transportable carbohydrates) should be considered when choosing an effective beverage for rehydration and carbohydrate supplementation during intermittent exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American College of Sports Medicine. Position stand on exercise and fluid replacement. Med Sci Sports Exerc 1996; 28: i–vii

    Article  Google Scholar 

  2. Carter JE, Gisolfi CV. Fluid replacement during and after exercise in the heat. Med Sci Sports Exerc 1989; 21 (5): 532–9

    PubMed  CAS  Google Scholar 

  3. Coyle EF, Hamilton M. Fluid replacement during exercise: effects on physiological homeostasis and performace. In: Gisolfi CV, Lamb DR, editors. Perspectives in exercise science and sports medicine: fluid homeostasis during exercise. Indianapolis: Benchmark Press, 1990: 281–303

    Google Scholar 

  4. Maughan RJ. Fluid and electrolyte loss and replacement in exercise. J Sport Sci 1991; 9: 117–42

    Article  Google Scholar 

  5. Maughan RJ, Noakes TD. Fluid replacement and exercise stress. Sports Med 1991; 12 (1): 16–31

    Article  PubMed  CAS  Google Scholar 

  6. Murray R. Dehydration, hyperthermia, and athletes: science and practice. J Athletic Training 1996; 31 (3): 248–52

    CAS  Google Scholar 

  7. Nadel ER, Mack GW, Nose H. Influence of fluid replacement beverages on body fluid homeostasis during exercise and recovery. In: Gisolfi CV, Lamb DR, editors. Perspectives in exercise science and sports medicine: fluid homeostasis during exercise. Indianapolis: Benchmark Press, 1990: 181–98

    Google Scholar 

  8. Schedl HP, Maughan RJ, Gisolfi CV. Intestinal absorption during rest and exercise: implications for formulating an oral rehydration solution (ORS). Med Sci Sports Exerc 1994; 26 (3): 267–80

    PubMed  CAS  Google Scholar 

  9. Shephard RJ, Leatt P. Carbohydrate and fluid needs of the soccer player. Sports Med 1987; 4: 164–76

    Article  PubMed  CAS  Google Scholar 

  10. Montain SJ, Coyle EF. Fluid ingestion during exercise increases skin blood flow independent of increases in blood volume. J Appl Physiol 1992; 73: 903–10

    PubMed  CAS  Google Scholar 

  11. Ladell WSS. The effects of water and salt intake upon the performance of men working in hot and humid environments. J Physiol 1955; 127: 11–46

    PubMed  CAS  Google Scholar 

  12. Montain SJ, Coyle EF. The influence of the rate of fluid ingestion during exercise on skin blood flow and hyperthermia. J Appl Physiol 1992; 73: 1340–50

    PubMed  CAS  Google Scholar 

  13. Pitts GC, Johnson RE, Consolazio FC. Work in the heat as affected by intake of water, salt and glucose. Am J Physiol 1944; 142: 253–9

    CAS  Google Scholar 

  14. Hubbard RW, Armstrong LE. The heat illnesses: biochemical, ultrastructural, and fluid-electrolyte considerations. In: Pandolf KB, Gonzalez RR, editors. Human performance physiology and environmental medicine at terrestrial extremes. Indianapolis: Benchmark Press, 1988: 305–59

    Google Scholar 

  15. Saris WHM, Goodpaster BH, Jeukendrup AE, et al. Exogenous carbohydrate oxidation from different carbohydrate sources during exercise. J Appl Physiol 1993; 75: 2168–72

    PubMed  CAS  Google Scholar 

  16. Wagenmakers AJM, Brouns F, Saris WHM, et al. Oxidation rates of orally ingested carbohydrate during prolonged exercise in man. J Appl Physiol 1993; 75: 2774–80

    PubMed  CAS  Google Scholar 

  17. Walsh RM, Noakes TD, Hawley JA, et al. Impaired high-intensity cycling performance time at low levels of dehydration. Int J Sports Med 1994; 15: 392–8

    Article  PubMed  CAS  Google Scholar 

  18. Ekblom B. Applied physiology of soccer. Sports Med 1986; 3: 50–60

    Article  PubMed  CAS  Google Scholar 

  19. Smodlaka VN. Cardiovascular aspects of soccer. Physician Sports Med 1978; 6: 66–70

    Google Scholar 

  20. Reilly T. Football. In: Reilly T, Secher N, Snell P, editors. Physiology of sports. London: E & FN Spon, 1990: 371–426

    Google Scholar 

  21. Kirkendall DT. Effects of nutrition on performance in soccer. Med Sci Sports Exer 1993; 25: 1370–4

    CAS  Google Scholar 

  22. Leatt P. The effect of glucose polymer ingestion on skeletal muscle glycogen depletion during soccer match play and its resynthesis following a match [MSc thesis]. University of Toronto, 1986

    Google Scholar 

  23. Mustafa KY, Mahmoud NEA. Evaporative water loss in African soccer players. J Sports Med Phys Fitness 1979; 19: 181–3

    PubMed  CAS  Google Scholar 

  24. Pohl AP, O’Halloran MW, Pannall PR. Biochemical and physiological changes in football players. Med J Aust 1981; 1: 467–70

    PubMed  CAS  Google Scholar 

  25. Pyke FS, Hahn AG. Body temperature regulation in summer football. Sports Coach 1980; 4: 41–3

    Google Scholar 

  26. Broad EM, Burke LM, Cox GR, et al. Body weight changes and voluntary fluid intakes during training and competition sessions in team sports. Int J Sports Nutr 1996; 6: 307–20

    CAS  Google Scholar 

  27. Magazanik A, Shapiro Y, Meytes D, et al. Enzyme blood levels and water balance during a marathon race. J Appl Physiol 1974; 36: 214–7

    PubMed  CAS  Google Scholar 

  28. Maughan RJ. Thermoregulation and fluid balance in marathon competition at low ambient temperature. Int J Sports Med 1985; 6: 15–9

    Article  PubMed  CAS  Google Scholar 

  29. Noakes TD, Adams BA, Myburgh KH, et al. The danger of an inadequate water intake during prolonged exercise. Eur J Appl Physiol 1988; 57: 210–9

    Article  CAS  Google Scholar 

  30. Saltin B, Costill DL. Fluid and electrolyte balance during prolonged exercise. In: Horton ES, Terjung RL, editors. Exercise, nutrition and metabolism. New York: Macmillan, 1988: 150–8

    Google Scholar 

  31. Robinson S, Robinson AH. Chemical compounds of sweat. Physiol Rev 1954; 34: 202–20

    PubMed  CAS  Google Scholar 

  32. Nose H, Mack GW, Shi X, et al. Effect of saline infusion during exercise on thermal and circulatory regulations. J Appl Physiol 1990; 69 (2): 609–16

    PubMed  CAS  Google Scholar 

  33. Maughan RJ, Leiper JB. Sodium intake and post-exercise rehydration in man. Eur J Appl Physiol 1995; 71: 311–9

    Article  CAS  Google Scholar 

  34. Nose H, Mack GW, Shi X, et al. Role of osmolality and plasma volume during rehydration in humans. J Appl Physiol 1988; 65 (1): 325–31

    PubMed  CAS  Google Scholar 

  35. Bergstrom J, Hermansen L, Hultman E, et al. Diet, muscle glycogen and physical performance. Acta Physiol Scand 1967; 71: 140–50

    Article  PubMed  CAS  Google Scholar 

  36. Coggan R, Coyle EF. Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. J Appl Physiol 1987; 63: 2388–95

    PubMed  CAS  Google Scholar 

  37. Coyle EF, Coggan AR, Hemmert MK, et al. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol 1986; 61 (1): 165–72

    PubMed  CAS  Google Scholar 

  38. Peronnet F, Adopo E, Massicotte D. Exogenous substrate oxidation during exercise: studies using isotopic labeling. Int J Sports Med 1992; 13: S123–5

    Article  PubMed  CAS  Google Scholar 

  39. Hargreaves M, Costill DL, Coggan A, et al. Effect of carbohydrate feedings on muscle glycogen utilization and exercise performance. Med Sci Sports Exerc 1984; 16: 219–22

    PubMed  CAS  Google Scholar 

  40. Coyle EF, Hagberg JM, Hurley BF, et al. Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J Appl Physiol 1983; 55 (1): 230–5

    PubMed  CAS  Google Scholar 

  41. Yaspelkis BI, Patterson J, Anderla P, et al. Carbohydrate supplementation spares muscle glycogen during variable intensity exercise. J Appl Physiol 1993; 75: 1477–85

    PubMed  CAS  Google Scholar 

  42. Williams C, Nute MG, Broadbank L, et al. Influence of fluid intake on endurance running performance. Eur J Appl Physiol 1990; 60: 112–9

    Article  CAS  Google Scholar 

  43. Murray R, Eddy DE, Murray RJ, et al. The effect of fluid and carbohydrate feeding during intermittent cycling exercise. Med Sci Sports Exerc 1987; 19 (6): 597–604

    PubMed  CAS  Google Scholar 

  44. Jackson DA, Davis JM, Broadwell MS, et al. Effects of carbohydrate feeding on fatigue during intermittent high-intensity exercise in males and females [abstract]. Med Sci Sports Exerc 1995; 27 (5): S223

    Google Scholar 

  45. Ball TC, Headley SA, Vanderburgh PM, et al. Periodic carbohydrate replacement during 50 min of high-intensity cycling improves subsequent sprint performance. Int J Sport Nutr 1995; 5: 151–8

    PubMed  CAS  Google Scholar 

  46. Wagenmakers AJM, Jeukendrup AE, Brouns F, et al. Carbohhydrate feeding improves 1 h time trial cycling performance [abstract]. Med Sci Sports Exerc 1996; 28 (5): S37

    Google Scholar 

  47. Anantaraman R, Carmines AA, Gaesser GA, et al. Effects of carbohydrate supplementation on performance during 1 hour of high-intensity exercise. Int J Sports Med 1995; 16: 461–5

    Article  PubMed  CAS  Google Scholar 

  48. Nicholas CW, Williams C, Lakomy HKA, et al. Influence of ingesting a carbohydrate-electrolyte solution on endurance capacity during intermittent high-intensity shuttle running. J Sports Sci 1995; 13: 283–90

    Article  PubMed  CAS  Google Scholar 

  49. Lambert CP, Flynn MG, Boone JB Jr, et al. Effects of carbohydrate feeding on multiple-bout resistance exercise. J Appl Sport Sci Res 1991; 5 (4): 192–7

    Google Scholar 

  50. Akermark C, Jacobs I, Rasmusson M, et al. Diet and muscle glycogen concentration in relation to physical performance in Swedish elite ice hockey players. Int J Sport Nutr 1996; 6: 272–84

    PubMed  CAS  Google Scholar 

  51. Vergauwen L, Brouns F, Hespel P. Carbohydrate supplementation improves tennis performance. In: Marconnet P, Gaulard J, Margaritis I, et al., editors. First Annual Congress of the European College of Sports Science: Frontiers in Sport Sciences; 1996 May 28-31: Nice, 700–1

    Google Scholar 

  52. Kirkendall DT, Foster C, Dean JA, et al. Effect of glucose polymer supplementation on performance of soccer payers. In: Reilly T, editor. Science and football. London: Spon, 1988

    Google Scholar 

  53. Armstrong LE, Costill DL, Fink WJ. The influence of diuretic induced dehydration on competitive running performance. Med Sci Sports Exerc 1985; 17: 456–61

    Article  PubMed  CAS  Google Scholar 

  54. Buskirk ER, Lampietro PF, Bass DE. Work performance after dehydration: effects of physical conditioning and heat acclimatization. J Appl Physiol 1958; 12: 189–94

    PubMed  CAS  Google Scholar 

  55. Craig FN, Cummings EG. Dehydration and muscular work. J Appl Physiol 1966; 21: 670–4

    PubMed  CAS  Google Scholar 

  56. Dengel DR, Weyand PG, Black DM, et al. Effects of varying levels of hypohydration on responses during submaximal cycling. Med Sci Sports Exerc 1992; 24: 1096–101

    PubMed  CAS  Google Scholar 

  57. Nadel ER, Fortney SM, Wenger BC. Effect of hydration state on circulatory and thermal regulations. J Appl Physiol 1980; 49 (4): 715–21

    PubMed  CAS  Google Scholar 

  58. Olsen KO, Saltin B. Diet and fluids in training and competition. Scand J Rehab Med 1976; 3: 31–8

    Google Scholar 

  59. Barr SI, Costill DL, Fink WJ. Fluid replacement during prolonged exercise: effect of water, saline or no fluid. Med Sci Sports Exerc 1991; 23: 811–7

    PubMed  CAS  Google Scholar 

  60. Below PR, Mora-Rodriguez R, Gonzalez-Alonso J, et al. Fluid and carbohydrate ingestion independently improve performance during 1h of intense exercise. Med Sci Sports Exerc 1995; 27 (2): 200–10

    PubMed  CAS  Google Scholar 

  61. Robinson TA, Hawley JA, Palmer GS, et al. Water ingestion does not improve 1-h cycling performance in moderate ambient temperature. Eur J Appl Physiol 1995; 71: 153–60

    Article  CAS  Google Scholar 

  62. Rico-Sanz J, Frontera WR, Rivera MA, et al. Effects of hyperhydration on total body water, temperature regulation and performance of elite young soccer players in a warm climate. Int J Sports Med 1996; 1785–91

    Google Scholar 

  63. Montain SJ, Coyle EF. Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. J Appl Physiol 1992; 73: 1340–50

    PubMed  CAS  Google Scholar 

  64. Shirreffs SM, Taylor AJ, Leiper JB, et al. Post-exercise rehudration in man: effects of volume consumed and drink sodium content. Med Sci Sports Exerc 1996; 28 (10): 1260–71

    Article  PubMed  CAS  Google Scholar 

  65. Hultman E. Muscle glycogen stores and prolonged exercise. In: Shephard RJ, editor. Frontiers of fitness. Springfield (Il): Charles C Thomas, 1971: 37–60

    Google Scholar 

  66. Jacobs I, Westlin N, Ramusson M, et al. Muscle glycogen and diet in elite soccer players. Eur J Appl Physiol 1982; 48: 297–302

    Article  CAS  Google Scholar 

  67. Jacobs I. Lactate, muscle glycogen and exercise performance in man. Acta Physiol Scand Suppl 1981; 495: 1–35

    PubMed  CAS  Google Scholar 

  68. Maughan RJ, Poole DC. The effects of a glycogen regime on the capacity to perform anaerobic exercise. Eur J Appl Physiol 1981; 46: 211–9

    Article  CAS  Google Scholar 

  69. Saltin B. Metabolic fundamentals in exercise. Med Sci Sports Exerc 1973; 5: 137–46

    Article  CAS  Google Scholar 

  70. Karlsson HG. Kolhydratomsattning under en fobollsmatch [Report, Department of Physiology III]. Stockholm: Karolinska Institute, 1969

    Google Scholar 

  71. Montgomery DL. Physiology of ice hockey. Sports Med 1988; 5: 99–126

    Article  PubMed  CAS  Google Scholar 

  72. Sherman WM, Wimer GS. Insufficient dietary carbohydrate during training: does it impair athletic performance? Int J Sport Nutr 1991; 1: 28–44

    PubMed  CAS  Google Scholar 

  73. Leatt PB, Jacobs I. Effect of glucose polymer ingestion on glycogen depletion during a soccer match. Can J Sports Sci 1989; 14: 112–6

    CAS  Google Scholar 

  74. Costill DL, Saltin B. Factors limiting gastric emptying during rest and exercise. J Appl Physiol 1974; 37: 679–83

    PubMed  CAS  Google Scholar 

  75. Fordtran JS, Saltin B. Gastric emptying and intestinal absorption during prolonged severe exercise. J Appl Physiol 1967; 23 (3): 331–5

    PubMed  CAS  Google Scholar 

  76. Rehrer NJ, Beckers E, Brouns F, et al. Exercise and training effects on gastric emptying of carbohydrate beverages. Med Sci Sports Exerc 1989; 21 (5): 540–9

    PubMed  CAS  Google Scholar 

  77. Gisolfi CV, Spranger KJ, Summers RW, et al. Cycle exercise and absorption of water and a carbohydrate-electrolyte solution in man. J Appl Physiol 1991; 71 (6): 2518–27

    PubMed  CAS  Google Scholar 

  78. Costill DL. Gastric emptying of fluids during exercise. In: Gisolfi CV, Lamb DR, editors. Perspectives in exercise science and sports medicine: fluid homeostasis during exercise. Indianapolis: Benchmark Press, 1990; 3: 97–127

    Google Scholar 

  79. Murray R. The effects of consuming carbohhydrate-electrolyte beverages on gastric emptying and fluid absorption during and following exercise. Sports Med 1987; 4: 322–51

    Article  PubMed  CAS  Google Scholar 

  80. Noakes TD, Rehrer NJ, Maughan RJ. The importance of volume in regulating gastric emptying. Med Sci Sports Exerc 1991; 23 (3): 307–13

    PubMed  CAS  Google Scholar 

  81. Duchman SM, Bleiler TL, Schedl HP, et al. Upper limit for intestinal absorption of a dilute glucose solution in men at rest. Med Sci Sports Exerc 1997; 29 (4): 482–8

    Article  PubMed  CAS  Google Scholar 

  82. Rehrer NJ, Brouns F, Beckers EJ, et al. Gastric emptying with repeated drinking during running and bicycling. Int J Sports Med 1990; 11 (3): 238–43

    Article  PubMed  CAS  Google Scholar 

  83. Ryan AJ, Bleiler TL, Carter JE, et al. Gastric emptying during prolonged cycling exercise in the heat. Med Sci Sports Exerc 1989; 21 (1): 51–8

    Article  PubMed  CAS  Google Scholar 

  84. Lambert GP, Chang RT, Joensen DJ, et al. Simultaneous determination of gastric emptying and intestinal absorption during cycle exercise in humans. Int J Sports Med 1996; 17 (1): 48–55

    Article  PubMed  CAS  Google Scholar 

  85. Minami H, McCallum RW. The physiology and pathophysiology of gastric emptying in humans. Gastroenterology 1984; 86: 1592–610

    PubMed  CAS  Google Scholar 

  86. Hunt JN, MacDonald I. The influence of volume on gastric emptying. J Physiol 1954; 126: 459–74

    PubMed  CAS  Google Scholar 

  87. Marbaix O. Le passage pylorique. Cellule 1898; 14: 249–332

    Google Scholar 

  88. Brener W, Hendrix RR, McHugh PR. Regulation of gastric emptying of glucose. Gastroenterology 1983; 85: 76–82

    PubMed  CAS  Google Scholar 

  89. Coyle EF, Costill DL, Fink WJ, et al. Gastric emptying rates for selected athletic drinks. Res Q 1978; 49 (2): 119–24

    PubMed  CAS  Google Scholar 

  90. Foster C, Costill DL, Fink WJ. Gastric emptying characteristics of glucose and glucose polymer solutions. Res Q Exerc Sports 1980; 5 (2): 299–305

    Google Scholar 

  91. Mitchell JB, Costill DL, Houmard JA, et al. Gastric emptying: influence of prolonged exercise and carbohydrate concentration. Med Sci Sports Exerc 1989; 21 (3): 269–74

    PubMed  CAS  Google Scholar 

  92. Mitchell JB, Costill DL, Houmard JA, et al. Effects of carbohydrate ingestion on gastric emptying and exercise performance. Med Sci Sports Exerc 1988; 20 (2): 110–5

    Article  PubMed  CAS  Google Scholar 

  93. Neufer PD, Costill DL, Fink WJ, et al. Effects of exercise and carbohydrate composition on gastric emptying. Med Sci Sports Exerc 1986; 18 (6): 658–62

    PubMed  CAS  Google Scholar 

  94. Sole CC, Noakes TD. Faster gastric emptying for glucosepolymer and fructose solutions than for glucose in human. Eur J Appl Physiol 1989; 58: 605–12

    Article  CAS  Google Scholar 

  95. Bartoli WP, Horn MK, Murray R. Delayed gastric emptying during exercise with repeated ingestion of 8% carbohydrate solution [abstract]. Med Sci Sports Exerc 1995; 27 Suppl. 5: S13

    Google Scholar 

  96. Carnot P, Chassevant A. Modifications subies dans l’estomac et le duodenum par les solutions salines suivant leur concentration moleculaire: le reflex regulateur de sphincter pylorue. Compt Rend Soc Biol 1905; 58: 173–6

    Google Scholar 

  97. Hunt JN, Pathak JO. The osmotic effect of some simple molecules and ions on gastgric emptying. J Physiol 1960; 154: 254–69

    PubMed  CAS  Google Scholar 

  98. Hunt JN. The osmotic control of gastric emptying. Gastroenterology 1961; 41: 49–51

    PubMed  CAS  Google Scholar 

  99. Lin HC, Elashoff JD, Gu YG, et al. Nutrient feedback inhibition of gastric emptying plays a larger role than osmotically dependent duodenal resistance. Am J Physiol 1993; 265 (28): G672–6

    PubMed  CAS  Google Scholar 

  100. Raybould HE, Tabrizi Y, Meyer JH. Inhibition of gastric emptying by intestinal hexoses is dependent on absorption via sodium-glucose cotransporter (SGLT1) [abstract]. FASEB J 1997; 11 (3): A33

    Google Scholar 

  101. Brouns F, Senden J, Beckers EJ, et al. Osmolality does not affect the gastric emptying rate of oral rehydration solutions. J Parent Enter Nutr 1995; 19: 403–6

    Article  CAS  Google Scholar 

  102. Murray R, Eddy DE, Bartoli WP, et al. Gastric emptying of water and isocaloric carbohydrate solutions consumed at rest. Med Sci Sports Exerc 1994; 26 (6): 725–32

    Article  PubMed  CAS  Google Scholar 

  103. Vist GE, Maughan RJ. The effect of glucose and fructose solutions with and without sodium on gastric emptying and blood glucose concentration in man [abstract]. J Physiol 1994; 481: 52P

    Google Scholar 

  104. Feldman M, Nixon JV. Effect of exercise on postprandial gastric secretion and emptying in humans. J Appl Physiol 1982; 53: 851–4

    Article  PubMed  CAS  Google Scholar 

  105. Marzio L, Formica P, Fabiani F, et al. Influence of physical activity on gastric emptying of liquids in normal human subjects. Am J Gastroenterol 1991; 86 (10): 1433–6

    PubMed  CAS  Google Scholar 

  106. Sun WM, Houghton LA, Read NW, et al. Effect of meal temperature on gastric emptying of liquids in man. Gut 1988; 29: 302–5

    Article  PubMed  CAS  Google Scholar 

  107. Owen MD, Kregel KC, Wall PT, et al. Effects of ingesting carbohydrate beverages during exercise in the heat. Med Sci Sports Exerc 1986; 18 (5): 568–75

    PubMed  CAS  Google Scholar 

  108. Neufer PD, Young AJ, Sawka MN. Gastric emptying during exercise: effects of heat stress and hypohydration. Eur J Appl Physiol 1989; 58: 433–9

    Article  CAS  Google Scholar 

  109. Cunha Ferreira RMC, Elliott EJ, Watson AJM, et al. Dominant role for osmolality in the efficacy of glucose and glycine-containing oral rehydration solutions: studies in a rat model of secretory diarrhoea. Acta Paediatr 1992; 81: 46–50

    Article  PubMed  CAS  Google Scholar 

  110. Hunt JB, Carnaby S, Farthing MJG. Assessment of water and solute absorption from experimental hypotonic and established oral rehydration solutions in secreting rat intestine. Aliment Pharmacol Ther 1991; 5: 273–81

    Article  PubMed  CAS  Google Scholar 

  111. Wapnir RA, Litov RE, Zdanowicz MM, et al. Improved water and sodium absorption from oral rehydration solutions based on rice syrup in a rat model of osmotic diarrhea. J Pediatr 1991; 118 (4): S53–61

    Article  PubMed  CAS  Google Scholar 

  112. Wapnir RA, Lifshitz F. Osmolality and solute concentration: their relationship with an oral hydration solution effectiveness: an experimental assessment. Pediatr Res 1985; 19: 894–8

    Article  PubMed  CAS  Google Scholar 

  113. Hunt JB, Elliott EJ, Fairclough PD, et al. Water and solute absorption from hypotonic glucose-electrolyte solutions in human jejunum. Gut 1992; 33 (4): 479–83

    Article  PubMed  CAS  Google Scholar 

  114. Hunt JB, Thillainayagam AV, Salim AFM, et al. Water and solute absorption from a new hypotonic oral rehydration solution: evaluation in human and animal perfusion models. Gut 1992; 33: 1652–9

    Article  PubMed  CAS  Google Scholar 

  115. Hunt JB, Elliott EJ, Farthing MJG. Efficacy of a standard United Kingdom oral rehydration solution (ORS) and a hypotonic ORS assessed by human intestinal perfusion. Aliment Pharmacol Ther 1989; 3: 565–71

    Article  PubMed  CAS  Google Scholar 

  116. Farthing MJG. Disease related animal models for optimising oral rehydration solution composition. Acta Paediatr Scand 1989; 364 Suppl.: 23–30

    Article  CAS  Google Scholar 

  117. Lifshitz F, Wapnir RA. Oral hydration solutions: experimental optimization of water and sodium absorption. J Pediatr 1985; 106: 383–9

    Article  PubMed  CAS  Google Scholar 

  118. Leiper JB, Maughan RJ. Absorption of water and electrolytes from hypotonic, isotonic and hypertonic solutions. J Physiol 1986; 373: 90P

    Google Scholar 

  119. Gisolfi CV, Summers RW, Schedl HP, et al. Human intestinal water absorption: direct vs indirect measurements. Am J Physiol 1990; 258: G216–22

    PubMed  CAS  Google Scholar 

  120. Shi X, Summers RW, Schedl HP, et al. Effects of solution osmolality on absorption of select fluid replacement solutions in human duodenojejunum. J Appl Physiol 1994; 77 (3): 1178–84

    PubMed  CAS  Google Scholar 

  121. Gisolfi CV, Summers RW, Lambert GP, et al. Effect of beverage osmolality on intestinal fluid absorption during exercise. J Appl Physiol. In press

  122. Cunha Ferreira RMC, Elliott EJ, Brennan EA, et al. Oral rehydration therapy: a solution to the problem [abstract]. Ped Res 1987; 22: 100

    Article  Google Scholar 

  123. Rolston DDK, Borodo MM, Kelly MJ, et al. Efficacy of oral rehydration solutions in a rat model of secretory diarrhea. J Pediatr Gastroenterol Nutr 1987; 6: 624–30

    Article  PubMed  CAS  Google Scholar 

  124. Gisolfi CV, Summers RW, Schedl HP, et al. Intestinal water absorption from select carbohydrate solutions in humans. J Appl Physiol 1992; 73 (5): 2142–50

    PubMed  CAS  Google Scholar 

  125. Palmer DL, Koster FT, Islam AFMR, et al. Comparison of sucrose and glucose in the oral electrolyte therapy of cholera and other severe diarrheas. N Engl J Med 1977; 297: 1107–10

    Article  PubMed  CAS  Google Scholar 

  126. Sack DA, Islam S, Brown KH, et al. Oral therapy in children with cholera: a comparison of sucrose and glucose electrolyte solutions. J Pediatr 1980; 96: 20–5

    Article  PubMed  CAS  Google Scholar 

  127. Nalin NR, Levine MM, Mata L, et al. Comparison of sucrose with glucose in oral therapy in infant diarrhoea. Lancet 1978; II: 277–9

    Article  Google Scholar 

  128. Sack DA, Chowdhury AMAK, Eusof A, et al. Oral rehydration of rotavirus diarrhoea: a double blind comparison of sucrose with glucose electrolyte solution. Lancet 1978; II: 280–3

    Article  Google Scholar 

  129. Daum F, Cohen MI, McNamara H, et al. Intestinal osmolality and carbohydrate absorption in rats treated with polymerized glucose. Pediat Res 1978; 12: 24–6

    Article  PubMed  CAS  Google Scholar 

  130. Cunha Ferreira RMC, Elliott EJ, Walker-Smith JA, et al. Glycine and glucose polymer in oral rehydration solution (ORS): efficacy in an animal model of secretory diarrhoea. Gut 1986; A1244–5

    Google Scholar 

  131. Saunders DR, Sillery JK. Absorption of carbohydrate-electrolyte solutions in rat duodenojejunum. Implications for the composition of oral electrolyte solutions in man. Dig Dis Sci 1985; 30: 154–60

    Article  PubMed  CAS  Google Scholar 

  132. Jones BJM, Brown BE, Loran JS, et al. Glucose absorption from starch hydrolysates in the human jejunum. Gut 1983; 24: 1152–60

    Article  PubMed  CAS  Google Scholar 

  133. Jones BJM, Brown BE, Silk DBA. Intestinal absorption of maltotriose and a maltopentose-hexose mixture in man [abstract]. Gut 1981; 22: A868

    Google Scholar 

  134. Shi X, Flanagan S, Summers RW, et al. Effects of carbohydrate type and concentration and solution osmolality on water absorption. Med Sci Sports Exerc 1995; 27 (12): 1607–15

    PubMed  CAS  Google Scholar 

  135. Fordtran JS. Stimulation of active and passive sodium absorption by sugars in the human jejunum. J Clin Invest 1975; 55: 728–37

    Article  PubMed  CAS  Google Scholar 

  136. Rolston DDK, Mathan VI. Jejunal and ileal glucose-stimulated water and sodium absorption in tropical enteropathy: implications for oral rehydration therapy. Digestion 1990; 46: 55–60

    Article  PubMed  CAS  Google Scholar 

  137. Hopfer U, Groseclose R. The mechanism of Na+-dependent D-glucose transport. J Biol Chem 1979; 255 (10): 4453–62

    Google Scholar 

  138. Hopfer U, Nelson K, Perotto J, et al. Glucose transport in isolated brush border membrane from the rat small intestine. J Biol Chem 1973; 248: 25–32

    PubMed  CAS  Google Scholar 

  139. Semenza G, Kessler M, Hosang M, et al. Biochemistry of the Na+, D-glucose co-transporter of the small intestinal brushborder membrane. Biochem Biophys Acta 1984; 779: 343–79

    Article  PubMed  CAS  Google Scholar 

  140. Burant CF, Takeda J, Brot-Laroche E, et al. Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem 1992; 2647 (21): 14523–6

    Google Scholar 

  141. Davidson NO, Hausman AML, Ifkovits CA, et al. Human intestinal glucose transporter expression and localization of GLUT5. Am J Physiol 1992; 262 (31): C795–800

    PubMed  CAS  Google Scholar 

  142. Fujisawa T, J. Riby, Kretchmer N. Intestinal absorption of fructose in the rat. Gastroenterol 1991; 101: 360–7

    CAS  Google Scholar 

  143. Ugolev A, Zaripov B, Iezuitova N, et al. A revision of current data and views on membrane hydrolysis and transport in the mammalian small intestine based on a comparison of techniques of chronic and acute experiments: experimental re-investigation and critical review. Comp Biochem Physiol 1986; 85A: 593–612

    Article  CAS  Google Scholar 

  144. Madara JL, Pappenheimer JR. Structural basis for physiological regulation of paracellular pathways in intestinal epithelia. J Membrane Biol 1987; 100: 149–64

    Article  CAS  Google Scholar 

  145. O’Rourke M, Shi X, Gisolfi CV, et al. Effect of absorption of D-glucose and water on paracellular transport in rat duodenumjejunum. Am J Med Sci 1995; 309 (3): 146–51

    Article  PubMed  Google Scholar 

  146. Pappenheimer JR. Paracellular intestinal absorption of glucose, creatinine, and mannitol in normal animals: relation to body size. Am J Physiol 1990; 259: G290–9

    PubMed  CAS  Google Scholar 

  147. Pappenheimer JR. Physiological regulation of transepithelial impedance in the intestinal mucosa of rats and hamsters. J Membrane Biol 1987; 100: 137–48

    Article  CAS  Google Scholar 

  148. Pappenheimer JR, Reiss KZ. Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J Membrane Biol 1987; 100: 123–36

    Article  CAS  Google Scholar 

  149. House CR. Water transport in cells and tissues. Monogr Physiol Soc 1974; 24

    Google Scholar 

  150. Fordtran JS, Levitan R, Bikerman V, et al. The kinetics of water absorption in the human intestine. Trans Assoc Am Phys 1961; 74: 195–206

    PubMed  CAS  Google Scholar 

  151. Malawer SJ. Interrelationship between jejunal absorption of sodium, glucose and water in man. J Clin Invest 1965; 44: 1072–3

    Article  Google Scholar 

  152. Shi, X. Mechanisms of fructose transport and their role in intestinal water absorption [thesis]. University of Iowa, 1994

    Google Scholar 

  153. Diamond JM. Wet transport proteins. Nature 1996; 384 (19/26): 611–2

    Article  PubMed  CAS  Google Scholar 

  154. Loo DD, Zeuthen T, Chandy G, et al. Cotransport of water by the Na+/glucose contransporter. Proc Natl Acad Sci USA 1996; 93 (23): 13367–70

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, X., Gisolfi, C.V. Fluid and Carbohydrate Replacement During Intermittent Exercise. Sports Med. 25, 157–172 (1998). https://doi.org/10.2165/00007256-199825030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199825030-00003

Keywords

Navigation