Skip to main content
Log in

Delayed Muscle Soreness

The Inflammatory Response to Muscle Injury and its Clinical Implications

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Delayed onset muscle soreness (DOMS) is a sensation of discomfort that occurs 1 to 2 days after exercise. The soreness has been reported to be most evident at the muscle/tendon junction initially, and then spreading throughout the muscle. The muscle activity which causes the most soreness and injury to the muscle is eccentric activity. The injury to the muscle has been well described but the mechanism underlying the injury is not fully understood. Some recent studies have focused on the role of the cytoskeleton and its contribution to the sarcomere injury.

Although little has been confirmed regarding the mechanisms involved in the production of delayed muscle soreness, it has been suggested that the soreness may occur as a result of mechanical factors or it may be biochemical in nature. To date, there appears to be no relationship between the development of soreness and the loss of muscle strength, in that the timing of the two events is different. Loss of muscle force has been observed immediately after the exercise. However, by collecting data at more frequent intervals a second loss of force has been reported in mice 1 to 3 days post-exercise. Future studies with humans may find this second loss of force to be related to DOMS.

The role of inflammation during exercise-induced muscle injury has not been clearly defined. It is possible that the inflammatory response may be responsible for initiating, amplifying, and/or resolving skeletal muscle injury. Evidence from the literature of the involvement of cytokines, complement, neutrophils, monocytes and macrophages in the acute phase response are presented in this review.

Clinically, DOMS is a common but self-limiting condition that usually requires no treatment. Most exercise enthusiasts are familiar with its symptoms. However, where a muscle has been immobilised or debilitated, it is not known how that muscle will respond to exercise, especially eccentric activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Armstrong RB. Initial events in exercise-induced muscular injury. Med Sci Sports Exerc 1990; 22(4): 429–35

    PubMed  CAS  Google Scholar 

  2. Ebbeling CB, Clarkson PM. Exercise-induced muscle damage and adaptation. Sports Med 1989; 7: 207–34

    Article  PubMed  CAS  Google Scholar 

  3. Kihlstrom M, Salminen A, Vihko V. Prednisolone decreases exercise-induced acid hydrolase response in mouse skeletal muscle. Eur J Appl Physiol 1984; 53: 53–6

    Article  CAS  Google Scholar 

  4. Gray A, Telford R, Collins M, et al. Granulocyte activation induced by intense interval running. J Leukoc Biol 1993; 53: 591–7

    PubMed  CAS  Google Scholar 

  5. Pyne D. Regulation of Neutrophil function during exercise. Sports Med 1994; 17(4): 245–58

    Article  PubMed  CAS  Google Scholar 

  6. Reid WD. Fatigue and rest of the hamster diaphragm [dissertation]. Vancouver: Univ of British Columbia, 1988

    Google Scholar 

  7. Lieber RL. Skeletal muscle structure and function. Baltimore: Williams and Wilkins, 1992

    Google Scholar 

  8. Carlson BM. Regeneration of entire skeletal muscles. Fed Proceed 1986; 45: 1456–60

    CAS  Google Scholar 

  9. Stauber WT. Eccentric action of muscles: physiology, injury and adaptation. In: Randolph, KB, editor. Exercise and sport science reviews. Baltimore: Williams and Wilkins, 1989: 157–85

    Google Scholar 

  10. McCully KK, Faulkner JA. Injury to skeletal muscle fibers of mice following lengthening contractions. J Appl Physiol 1985; 59(1): 119–26

    PubMed  CAS  Google Scholar 

  11. Faulkner JA, Brooks SV, Opiteck JA. Injury to skeletal muscle fibres during contractions: conditions of occurrence and prevention. Phys Ther 1993; 73(12): 911–21

    PubMed  CAS  Google Scholar 

  12. Fridén J, Sjostrom M, Ekblom B. Myofibrillar damage following intense eccentric exercise in man. Int J Sports Med 1983; 4: 170–6

    Article  PubMed  Google Scholar 

  13. Waterman-Storer CM. The cytoskeleton of skeletal muscle: is it affected by exercise? A brief review. Med Sci Sports Exerc 1991; 23(11): 1240–9

    PubMed  CAS  Google Scholar 

  14. Danowski B, Imanaka-Yoshida K, Sanger J, et al. Costameres are sites of force transmission to the substratum in adult rat cardiomyocytes. J Cell Biol 1992; 118(6): 1411–20

    Article  PubMed  CAS  Google Scholar 

  15. Lieber RL, Friden J. Muscle damage is not a function of muscle force but active muscle strain. J Appl Physiol 1993; 74(2): 520–6

    PubMed  CAS  Google Scholar 

  16. Stauber WT, Clarkson PM, Fritz VK, et al. Extracellular matrix disruption and pain after eccentric muscle action. J Appl Physiol 1990; 69(3): 868–74

    PubMed  CAS  Google Scholar 

  17. Smith L. Acute inflammation: the underlying mechanism in delayed onset muscle soreness? Med Sci Sports Exerc 1991; 23: 542–51

    PubMed  CAS  Google Scholar 

  18. Evans WJ, Cannon JG. The metabolic effects of exercise-induced muscle damage. In: Holloszy JD, editor. Exercise and sports science reviews. Baltimore: Williams and Wilkins, 1991: 99–125

    Google Scholar 

  19. Carlson BM, Faulkner JA. The regeneration of skeletal muscle fibres following injury: a review. Med Sci Sports Exerc 1983; 15: 187–98

    Article  PubMed  CAS  Google Scholar 

  20. Armstrong RB, Ogilvie RW, Schwane JA. Eccentric exercise-induced injury to rat skeletal muscle. J Appl Physiol 1983; 54: 80–93

    PubMed  CAS  Google Scholar 

  21. Evans WJ, Meredith CN, Cannon JG, et al. Metabolic changes following eccentric exercise in trained and untrained men. J Appl Physiol 1986; 61(5): 1864–8

    PubMed  CAS  Google Scholar 

  22. Cannon JG, Fielding RA, Fiatarone MA, et al. Increased interleukin lb in human skeletal muscle after exercise. Am J Physiol 1989; 257: R451–5

    PubMed  CAS  Google Scholar 

  23. Armstrong RB. Mechanisms of exercise-induced delayed onset muscular soreness: a brief review. Med Sci Sports Exerc 1984; 16(6): 529–38

    PubMed  CAS  Google Scholar 

  24. MacIntyre DL. Delayed muscle soreness, muscle function and evidence of leukocytes in human skeletal muscle following eccentric exercise [dissertation]. Vancouver: Univ of British Columbia, 1994

    Google Scholar 

  25. Fritz VK, Stauber WT. Characterization of muscles injured by forced lengthening. II. Proteoglycans. Med Sci Sports Exerc 1988; 20(4): 354–61

    Article  PubMed  CAS  Google Scholar 

  26. Fridén J, Sfakianos PN, Hargens AR, et al. Residual muscular swelling after repetitive eccentric contractions. J Orthop Res 1988; 6: 493–8

    Article  PubMed  Google Scholar 

  27. Jones DA, Newham DJ, Clarkson PM. Skeletal muscle stiffness and pain following eccentric exercise of the elbow flexors. Pain 1987; 30: 233–42

    Article  PubMed  CAS  Google Scholar 

  28. Stauber WT, Fritz VK, Vogelbach DW, et al. Characterization of muscles injured by forced lengthening. I. Cellular infiltrates. Med Sci Sports Exerc 1988; 20(4): 345–53

    Article  PubMed  CAS  Google Scholar 

  29. Kent TH, Hart MN. Injury, Inflammation and Repair. Norwalk, Connecticut: Appleton and Lange, 1993

    Google Scholar 

  30. Walker JA, Cerny FJ, Cotter JR, et al. Attenuation of contraction-induced skeletal muscle injury by bromelain. Med Sci Sports Exerc 1992; 24(1): 20–5

    PubMed  CAS  Google Scholar 

  31. Newham DJ, Mills KR, Quigley BM, et al. Pain and fatigue after concentric and eccentric contractions. Clin Sci 1983; 64: 55–62

    PubMed  CAS  Google Scholar 

  32. Bobbert MF, Hollander AP, Huijing PA. Factors in delayed onset muscular soreness of man. Med Sci Sports Exerc 1986; 18(1): 75–81

    PubMed  CAS  Google Scholar 

  33. Appell HJ, Soares JM, Duarte JAR. Exercise, muscle damage and fatigue. Sports Med 1992; 13(2): 108–15

    Article  PubMed  CAS  Google Scholar 

  34. Gracely RH, Kwilosz DM. The descriptor differential scale: applying psychophysical principles to clinical pain assessment. Pain 1988; 35: 279–88

    Article  PubMed  CAS  Google Scholar 

  35. Finch L, Melzack R. Objective pain measurement: a case for increased usage. Physiother Canada 1981; 34(6) (Nov/Dec): 343–346

    Google Scholar 

  36. Whitaker OC, Warfield CA. The measurement of pain. Hosp Pract 1988; (Feb): 15

  37. Abraham WM. Factors in delayed muscle soreness. Med Sci Sports 1977; 9: 11–20

    PubMed  CAS  Google Scholar 

  38. Clarkson PM, Nosaka K, Braun B. Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc 1992; 24(5): 512–20

    PubMed  CAS  Google Scholar 

  39. Melzack R. The McGill pain questionnaire: major properties and scoring methods. Pain 1975; 1: 277–99

    Article  PubMed  CAS  Google Scholar 

  40. Melzack R. Concepts of Pain Measurement. In: Melzack R, ed. Pain measurement and assessment. New York: Raven Press, 1983: 71–7

    Google Scholar 

  41. Clarkson PM, Tremblay I. Exercise-induced muscle damage, repair and adaptation in humans. J Appl Physiol 1988; 65: 1–6

    PubMed  CAS  Google Scholar 

  42. Newham DJ, Jones DA, Clarkson PM. Repeated high force eccentric exercise: effects on muscle pain and damage. J Appl Physiol 1987; 63: 1381–6

    PubMed  CAS  Google Scholar 

  43. Fridén J, Segar J, Sjostrom M, et al. Adaptive response in human skeletal muscle subjected to prolonged eccentric training. Int J Sports Med 1983; 4: 177–83

    Article  PubMed  Google Scholar 

  44. Newham DJ, Jones DA, Ghosh G, et al. Muscle fatigue and pain after eccentric contractions at long and short length. Clin Sci 1988; 74: 553–7

    PubMed  CAS  Google Scholar 

  45. Fridén J, Sjöström M, Ekblom B. A morphological study of delayed muscle soreness. Experientia 1981; 37: 506–7

    Article  PubMed  Google Scholar 

  46. Newham DJ, McPhail G, Mills KR, et al. Ultrastructural changes after concentric and eccentric contractions of human muscle. J Neurol Sci 1983; 61: 109–22

    Article  PubMed  CAS  Google Scholar 

  47. Lieber RL, Woodburn TM, Fridén J. Muscle damage induced by eccentric contractions of 25% strain. J Appl Physiol 1991; 70(6): 2498–507

    PubMed  CAS  Google Scholar 

  48. Newham DJ. The consequences of eccentric contractions and their relationship to delayed onset muscle pain. Eur J Appl Physiol 1988; 57: 353–9

    Article  CAS  Google Scholar 

  49. Reid W, Huang J, Bryson S, et al. Diaphragm injury and myofibrillar structure induced by resistive loading. J Appl Physiol 1994; 76(1): 176–84

    PubMed  CAS  Google Scholar 

  50. Green HJ. Neuromuscular aspects of fatigue. Can J Sport Sci 1987; 12(1 Suppl.):7S-19S

    Google Scholar 

  51. Beicastro A. Skeletal muscle calcium-activated neutral protease (calpain) with exercise. J Appl Physiol 1993; 74(3): 1381–6

    Google Scholar 

  52. Gilchrist J, Wang K, Katz S, et al. Calcium-activated neutral protease effects upon skeletal muscle sarcoplasmic reticulum protein structure and calcium release. J Biol Chem 1992; 267: 20857–65

    PubMed  CAS  Google Scholar 

  53. Edwards R, Mills K, Newham D. Measurement of severity and distribution of experimental muscle tenderness. J Physiol (London) 1981; 317: 17

    Google Scholar 

  54. Jones DA, Newham DJ, Torgan C. Mechanical influences on long-lasting human muscle fatigue and delayed-onset pain. J Physiol 1989; 412: 415–27

    PubMed  CAS  Google Scholar 

  55. Davies CTM, White MJ. Muscle weakness following eccentric work in man. Pflugers Archiv 1981; 392: 168–71

    Article  PubMed  CAS  Google Scholar 

  56. Edwards R, Hill D, Jones D. Fatigue of long duration in human skeletal muscle after exercise. J Physiol (London) 1977; 272: 769–78

    CAS  Google Scholar 

  57. Roitt I. Essential immunology. 7th ed. London: Blackwell Scientific Publications, 1991

    Google Scholar 

  58. Gallin JI, Goldstein IM, Snyderman R. Inflammation: basic principles and clinical correlates. New York: Raven Press Ltd, 1992

    Google Scholar 

  59. Northoff H, Berg A. Immunologie mediators as parameters of the reaction to strenuous exercise. Int J Sports Med 1991; 12(1 Suppl.): S9–S15

    Article  PubMed  Google Scholar 

  60. Dufaux B, Order U. Plasma elastase- 1-antitrypsin, neopterin, tumor necrosis factor and soluble interleukin-2 receptor after prolonged exercise. Int J Sports Med 1989; 10: 1–5

    Article  Google Scholar 

  61. Cannon JG, Kluger MG. Endogenous pyrogen activity in human plasma after exercise. Science 1983; 220: 617–9

    Article  PubMed  CAS  Google Scholar 

  62. Lewicki RH, Tchorzewski E, Majewska E et al. Effect of maximal physical exercise on T-lymphocyte subpopulations and on interleukin-1 (IL-1) and interleukin (IL-2) production in vitro. Int J Sports Med 1988; 9: 114–7

    Article  PubMed  CAS  Google Scholar 

  63. Mahan MP, Young MR. Immune parameters of untrained and exercise trained rats after exhaustive exercise. J Appl Physiol 1989; 66: 282–7

    PubMed  CAS  Google Scholar 

  64. Cannon JG, Nerad JL, Poutsiaka DD, et al. Measuring circulating cytokines. J Appl Physiol 1993; 75: 1897–902

    PubMed  CAS  Google Scholar 

  65. Dufaux B, Order U, Liesen H. Effect of a short maximal physical exercise on coagulation, fibrinolysis and complement system. Int J Sports Med 1991; 12(1 Suppl.): S38–S42

    Article  PubMed  Google Scholar 

  66. Dufaux B, Order U. Complement activation after prolonged exercise. Clin Chem Acta 1989; 179: 45–50

    Article  CAS  Google Scholar 

  67. Cannon JG, Fiatarone MA, Fielding RA, et al. Aging and stress-induced changes in complement activation and neutrophil mobilization. J Appl Physiol 1994; 76(6): 2616–20

    PubMed  CAS  Google Scholar 

  68. Peeze Binkhorst FM, Kuipers H, Heymans J, et al. Exercise-induced focal skeletal muscle fiber degeneration and capillary morphology. J Appl Physiol 1989; 66(6): 2857–65

    Google Scholar 

  69. Hogg JC. Neutrophil kinetics and lung injury. Physiol Rev 1987; 67(4): 1249–95

    PubMed  CAS  Google Scholar 

  70. Foster NK, Martyn JB, Rangno RE, et al. Leukocytosis of exercise: role of cardiac output and catecholamines. J Appl Physiol 1986; 61(6): 2218–23

    PubMed  CAS  Google Scholar 

  71. Smith LL, McCammon M, Smith S, et al. White blood cell response to uphill walking and downhill jogging at similar metabolic loads. Eur J Appl Physiol 1989; 58: 833–7

    Article  CAS  Google Scholar 

  72. Camus G, Pincemail J, Ledent M et al. Plasma levels of polymorphonuclear elastase and myeloperoxidase after uphill walking and downhill running at similar energy cost. Int J Sport Med 1992; 13:443–6

    Article  CAS  Google Scholar 

  73. Smith JA, Telford RD, Mason IB et al. Exercise, training and neutrophil microbicidal activity. Int J Sport Med 1990; 11: 179–87

    Article  CAS  Google Scholar 

  74. Hikida RS, Staron RS, Hagerman FC et al. Muscle fiber necrosis associated with human marathon runners. J Neuro Sci 1983; 59: 185–203

    Article  CAS  Google Scholar 

  75. Kuipers H, Drukker J, Frederik PM, et al. Muscle degeneration after exercise in rats. Int J Sport Med 1983; 4: 49–55

    Article  Google Scholar 

  76. Salminen A. Lysosomal changes in skeletal muscles during the repair of exercise injuries in muscle fibers. Acta Physiol Scand 1985; 124 Suppl. 539: 1–31

    Google Scholar 

  77. Jones DA, Jackson MJ, Round JM, et al. Experimental human muscle damage: morphological changes in relation to other indices of damage. J Physiol 1986; 375: 435–48

    PubMed  CAS  Google Scholar 

  78. Round JM, Jones DA, Cambridge G. Cellular infiltrates in human skeletal muscle; exercise induced damage as a model for inflammotry muscle disease? J Neurol Sci 1987; 82: 1–11

    Article  PubMed  CAS  Google Scholar 

  79. Tullson PC, Armstrong RB. Muscle hexose monophosphate shunt activity following exercise. Experientia 1981; 37: 1311–2

    Article  PubMed  CAS  Google Scholar 

  80. van Furth R. Development and distribution of mononuclear phagocytes. In: Gallin JI, Goldstein IM, Snyderman R, editors. Inflammation: basic principles and clinical correlates. New York: Raven Press Ltd, 1992: 325–39

    Google Scholar 

  81. Warhol MJ, Siegel AJ, Evans WJ, et al. Skeletal muscle injury and repair in marathon runners after competition. Am J Pathol 1985; 118:331–9

    PubMed  CAS  Google Scholar 

  82. Hall-Craggs ECB. The longitudinal division of fibres in overloaded rat skeletal muscle. J Anat 1970; 107: 459–70

    PubMed  CAS  Google Scholar 

  83. St Pierre B, Tidball JG. Differential response of macrophage subpopulations to soleus muscle reloading after rat hindlimb suspension. J Appl Physiol 1994; 77(1): 290–7

    PubMed  CAS  Google Scholar 

  84. Haralambie G, Keul J, Theumert F. Changes in serum proteins, iron and copper in swimmers before and after altitude training. Eur J Appl Physiol 1976; 35: 21–31

    Article  CAS  Google Scholar 

  85. Rocker L, Kirsch KA, Stoboy H. Plasma volume, albumin and globulin concentrations and their intravascular masses. A comparative study in endurance athletes and sedentary subjects. Eur J Appl Physiol 1976; 36: 57–64

    Article  CAS  Google Scholar 

  86. Poortmans JR, Haralambie G. Biochemical changes in a 100 km run: proteins in serum and urine. Eur J Appl Physiol 1979; 40: 245–54

    Article  CAS  Google Scholar 

  87. Liesen H, Dufaux B, Hollman W. Modifications of serum glycoproteins the days following a prolonged physical exercise and the influence of physical training. Eur J Appl Physiol 1977; 37: 243–54

    Article  CAS  Google Scholar 

  88. Friden J, Sfakianos PN, Hargens AR. Muscle soreness and intramuscular fluid pressure: comparison between eccentric and concentric load. J Appl Physiol 1986; 61: 2175–9

    PubMed  CAS  Google Scholar 

  89. Morgan-Hughes JA. Painful disorders of muscle. Br J Hosp Med 1979; 22: 360–5

    PubMed  CAS  Google Scholar 

  90. Meeusen R, Lievens I. The use of cryotherapy in sport injuries. Sports Med 1986; 3: 398–414

    Article  PubMed  CAS  Google Scholar 

  91. Hasson S, Mundorf R, Barnes W, et al. Effect of pulsed ultrasound versus placebo on muscle soreness perception and muscular performance. Scan J Rehabil Med 1990; 22: 199–205

    CAS  Google Scholar 

  92. Kuipers H, Keizer H, Verstappen FTJ, et al. Influence of a prostoglandin inhibiting drug on muscle soreness after eccentric work. Int J Sports Med 1985; 6: 336–9

    Article  PubMed  CAS  Google Scholar 

  93. Hasson SM, Daniels JC, Divine JG, et al. Effect of ibuprofen use on muscle soreness, damage and performance: a preliminary investigation. Med Sci Sports Exerc 1993; 25(1): 9–17

    Article  PubMed  CAS  Google Scholar 

  94. Byrnes WC, Clarkson PM. Delayed onset muscle soreness and training. Clin Sports Med 1986; 5(3): 605–14

    PubMed  CAS  Google Scholar 

  95. Friden J, Seger J, Sjostrom, M et al. Adaptive response in human skeletal muscle subjected to prolonged eccentric training. Int J Sports Med 1983; 4: 177–83

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacIntyre, D.L., Reid, W.D. & McKenzie, D.C. Delayed Muscle Soreness. Sports Med. 20, 24–40 (1995). https://doi.org/10.2165/00007256-199520010-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199520010-00003

Keywords

Navigation