Skip to main content
Log in

Isokinetic Eccentric Exercise

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

The development of active isokinetic dynamometers has allowed the assessment of muscular moment under eccentric activations that have different characteristics to concentric actions. It is well documented that at a given angular velocity the eccentric moment is greater than the corresponding concentric moment. The moment-velocity relationship under eccentric conditions has been investigated, with conflicting results. Particularly, eccentric moment was reported to remain similar to, or to increase or decrease with, increasing angular velocity. As with concentric actions, the reliability of isokinetic eccentric measurements is influenced by a number of factors such as gravity, preload force and testing position.

The velocity-specific effects of eccentric training have not been extensively investigated. Based on current knowledge, eccentric exercise does not appear to be velocity-specific. Although the mode specificity of both concentric and eccentric exercises have been investigated, the resultant observations are conflicting. Eccentric training has been found to improve both concentric and eccentric strength; yet, it has also been reported to improve only concentric or eccentric strength. The reciprocal muscle group ratios under eccentric actions were found not to be influenced by angular velocity, but the significant role of the eccentric/concentric moment ratio of each muscle has not been examined thoroughly. It is well documented that eccentric activations are associated with delayed muscle soreness and muscle damage. A limited number of studies have reported that isokinetic eccentric efforts may result in a lower amount of muscle soreness compared with other exercise modalities.

Isokinetic dynamometers provide some unique characteristics for rehabilitation applications. Examination of the clinical application of eccentric exercise is limited. Consequently, the use of this exercise modality in prevention and assessment of musculoskeletal injuries should be investigated further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cabri JMH. Isokinetic strength aspects of human joints and muscles. Clin Rev Biomed Eng 1991; 19: 231–59

    CAS  Google Scholar 

  2. Perrin DH. Isokinetic exercise and assessment. Champaign, IL: Human Kinetics, 1993

    Google Scholar 

  3. Westing SH, Gresswell AG, Thorstensson A. Muscle activation during maximal voluntary eccentric and concentric knee extension. Eur J Appl Physiol 1991; 62: 104–8

    Article  CAS  Google Scholar 

  4. Stauber WT. Eccentric action of muscles: physiology, injury and adaptation. Exerc Sport Sci Rev 1989; 17: 157–85

    PubMed  CAS  Google Scholar 

  5. Komi PV, Kaneko M, Aura O. EMG activity of the leg extensor muscles with special reference to mechanical efficiency in concentric and eccentric exercise. Int J Sports Med 1987; 8: 22–9

    Article  PubMed  Google Scholar 

  6. Bober T, Jaskolski E, Nowacki Z. Study on eccentric-concentric contraction of the upper extremity muscles. J Biomech 1980; 13: 135–8

    Article  PubMed  CAS  Google Scholar 

  7. Gray JW, Chandler JM. Percent decline in peak torque production during repeated concentric and eccentric contractions of the quadriceps femoris muscle. J Orthop Sport Phys Ther 1989; 11 Feb: 309–14

    Google Scholar 

  8. Colliander EB, Tesch PA. Bilateral eccentric and concentric torque of quadriceps and hamstring muscles in males and females. Eur J Appl Physiol 1989; 59: 227–32

    Article  CAS  Google Scholar 

  9. Cress NM, Peters KS, Chandler JM. Eccentric and concentric force-velocity relationship of the quadriceps femoris muscle. J Orthop Sport Phys Ther 1992; 16: 82–6

    CAS  Google Scholar 

  10. Ghena DR, Kurth AL, Thomas M, et al. Torque characteristics of the quadriceps and hamstring muscles during concentric and eccentric loading. J Orthop Sport Phys Ther 1991; 14: 149–54

    CAS  Google Scholar 

  11. Griffin JW. Differences in elbow flexion torque measured concentrically, eccentrically and isometrically. Phys Ther 1987; 67: 1205–9

    PubMed  CAS  Google Scholar 

  12. Hageman PA, Gillaspie DM, Hill LD. Effects of speed and limb dominance on eccentric and concentric isokinetic training. J Orthop Sport Phys Ther 1988; 10: 59–65

    CAS  Google Scholar 

  13. Walmsley RP, Pearson N, Stymiest P. Eccentric wrist extensor contractions and the force velocity relationship in muscle. J Orthop Sport Phys Ther 1986; 8: 288–93

    CAS  Google Scholar 

  14. Westing SH, Seger JY, Karlson E, et al. Eccentric and concentric torque-velocity characteristics in man. Eur J Appl Physiol 1988; 58: 100–4

    Article  CAS  Google Scholar 

  15. Westing SH, Seger JY. Eccentric and concentric torque-velocity characteristics,torque output comparisons and gravity effect torque corrections for the quadriceps and hamstring muscles in females. Int J Sports Med 1989; 10: 175–80

    Article  PubMed  CAS  Google Scholar 

  16. Dudley GA, Harris RT, Duvoisin MR, et al. Effect of voluntary vs. artificial activation on the relationship of muscle torque to speed. J Appl Physiol 1990; 69: 2215–21

    PubMed  CAS  Google Scholar 

  17. Griffin JW, Tooms RE, Zwaag RV, et al. Eccentric muscle performance of elbow and knee muscle groups in untrained mean and women. Med Sci Sports Exerc 1993; 25: 936–44

    PubMed  CAS  Google Scholar 

  18. Hanten WP, Ramberg CL. Effect of stabilization on maximal isokinetic torque of the quadriceps femoris muscle during concentric and eccentric contractions. Phys Ther 1988; 68: 219–22

    PubMed  CAS  Google Scholar 

  19. Kramer J, Nusca D, Fowler P, et al. Knee flexor and extensor strength during concentric and eccentric muscle actions after anterior cruciate ligament reconstruction using the semitendinosus tendon and ligament augmentation device. Am J Sports Med 1993; 21: 285–91

    Article  PubMed  CAS  Google Scholar 

  20. Rowinski M. The role of eccentric exercise. Biodex clinical manual. New York: Biodex, 1988

    Google Scholar 

  21. Tredinnick TJ, Duncan PW. Reliability of measurements of concentric and eccentric isokinetic loading. Phys Ther 1988; 68: 656–9

    PubMed  CAS  Google Scholar 

  22. Westing SH, Seger JY, Thorstensson A. Isoacceleration: a new concept of resistive exercise. Med Sci Sports Exerc 1991; 23: 631–5

    PubMed  CAS  Google Scholar 

  23. Mayer F, Hortsmann T, Rocker K, et al. Normal values of isokinetic maximum strength, the strength/velocity curve, and the angle at peak torque of all degrees of freedom in the shoulder. Int J Sports Med 1994; 15 (Suppl.): S19–25

    Article  PubMed  Google Scholar 

  24. Rizzardo M, Wessel J, Bay G. Eccentric and concentric torque and power of the knee extensors of females. Can J Sport Sci 1988; 13: 166–9

    PubMed  CAS  Google Scholar 

  25. Poulin MJ, Vandervoort AA, Paterson DH, et al. Eccentric and concentric torque of knee and elbow extension in young and old women. Can J Sport Sci 1992; 17: 3–7

    PubMed  CAS  Google Scholar 

  26. Hortobagyi T, Katch FI. Eccentric and concentric torque-velocity relationships during arm flexion and extension. Eur J Appl Physiol 1990; 60: 395–401

    Article  CAS  Google Scholar 

  27. Hortobagyi T, Katch FI. Role of concentric force in limiting improvement in muscular strength. J Appl Physiol 1990; 68: 650–8

    PubMed  CAS  Google Scholar 

  28. Katz B. The relationship between force and speed in muscular contraction. J Physiol 1939; 96: 45–64

    PubMed  CAS  Google Scholar 

  29. Asmussen E. Positive and negative work. Acta Physiol Scand 1953; 28: 364–82

    Article  PubMed  CAS  Google Scholar 

  30. Baltzopoulos V, Brodie DA. Isokinetic dynamometry: applications and limitations. Sports Med 1989; 8: 111–6

    Article  Google Scholar 

  31. Westing SH, Seger JY, Thorstensson A. Effects of electrical stimulation on eccentric and concentric torque-velocity relationships during knee extension in man. Acta Physiol Scand 1990; 140: 17–22

    Article  PubMed  CAS  Google Scholar 

  32. Barrata R, Solomonow M, Zhou B, et al. The role of antagonistic musculature in maintaining knee stability. Am J Sports Med 1988; 16: 113–22

    Article  Google Scholar 

  33. Steiner LA, Harris BA, Krebs DA. Reliability of eccentric isokinetic knee flexion and extension measurements. Arch Phys Med Rehab 1993; 74: 1327–35

    Article  CAS  Google Scholar 

  34. Kramer JF. Reliability of knee extensor and flexor torques during continuous concentric-eccentric cycles. Arch Phys Med Rehab 1990; 71: 460–4

    CAS  Google Scholar 

  35. Kues JM, Rothstein JM, Lamb RL. Obtaining reliable measurements of knee extensor torque produced during maximal voluntary contractions: an experimental investigation. Phys Ther 1992; 72: 492–501

    PubMed  CAS  Google Scholar 

  36. McCrory MA, Aitkens SC, Avery CM, et al. Reliability of concentric and eccentric measurements on the lido active isokinetic rehabilitation system [abstract]. Med Sci Sports Exerc 1989; 21(2) Suppl.: S52

    Google Scholar 

  37. Trudelle-Jackson E, Meske N, Highenboten C, et al. Eccentric/concentric deficits in the quadriceps muscle. J Orthop Sport Phys Ther 1989; 11: 142–6

    CAS  Google Scholar 

  38. Wilhite M, Cohen E, Wilhite S. Reliability of concentric and eccentric measurements of quadriceps using the Kin-com dynamometer: the effect of testing order for three different speeds. J Orthop Sport Phys Ther 1992; 15: 175–83

    CAS  Google Scholar 

  39. Malerba JL, Adam ML, Harris BA, et al. Reliability of dynamic and isometric testing of shoulder external and internal rotators. J Orthop Sport Phys Ther 1993; 18: 543–52

    CAS  Google Scholar 

  40. Hageman PA, Mason DK, Rydlund KW, et al. Effects of position and speed on eccentric and concentric isokinetic testing of the shoulder rotators. J Orthop Sport Phys Ther 1989; 11: 65–70

    Google Scholar 

  41. Tis LT, Perrin DH, Weltman A. Effect of preload and range of motion on isokinetic torque in women. Med Sci Sports Exerc 1993; 25: 1038–43

    PubMed  CAS  Google Scholar 

  42. Ponichtera JA, Rodgers MM, Clarser RM, et al. Concentric and eccentric isokinetic lower extremity strength in persons with multiple sclerosis. J Orthop Sport Phys Ther 1992; 16: 113–22

    Google Scholar 

  43. Ryan LM, Magidow PW, Duncan PW. Velocity specificity and mode specificity od eccentric isokinetic training of the hamstrings. J Orthop Sport Phys Ther 1991; 13: 33–9

    CAS  Google Scholar 

  44. Tomberlin JP, Basford JR, Schwen EE, et al. Comparative study of isokinetic eccentric and concentric training. J Orthop Sport Phys Ther 1991; 14: 31–5

    CAS  Google Scholar 

  45. Worrell TW, Perrin DH, Gansneder B, et al. Comparison of isokinetic strength and flexibility measures between hamstring injured and non-injured athletes. J Orthop Sport Phys Ther 1991; 13: 118–25

    CAS  Google Scholar 

  46. Jensen RC, Warren B, Laursen C, et al. Static pre-load effect on knee extensor isokinetic concentric and eccentric performance. Med Sci Sports Exerc 1991; 23: 10–4

    PubMed  CAS  Google Scholar 

  47. Kramer JF, Vaz MD, Hakansson D. Effect of activation force on knee extensor torques. Med Sci Sports Exerc 1991; 23: 231–7

    PubMed  CAS  Google Scholar 

  48. Helgeson K, Gajdosik RL. The stretch-shortening cycle of the quadriceps femoris muscle group measured by isokinetic dynamometry. J Orthop Sport Phys Ther 1993; 17: 17–23

    CAS  Google Scholar 

  49. Farrell M, Richards JG. Analysis of the reliability and validity of the kinetic communicator exercise device. Med Sci Sports Exerc 1986; 18: 44–9

    PubMed  CAS  Google Scholar 

  50. Feiring DC, Christ CB, Massey BH. Test-retest reliability of the Biodex isokinetic dynamometer. J Orthop Sport Phys Ther 1990; 11: 298–300

    CAS  Google Scholar 

  51. Patterson LA, Spivey WE. Validity and reliability of the lido active isokinetic system. J Orthop Sport Phys Ther 1992; 15: 32–6

    CAS  Google Scholar 

  52. Francis K, Hoobler T. Comparison of peak torque values of knee flexor and extensor muscle groups using the Cybex II and Lido isokinetic dynamometers. J Orthop Sport Phys Ther 1987; 8: 480–3

    Google Scholar 

  53. Gross MT, Huffman GM, Phillips CN, et al. Intramachine and intermachine reliability of the Biodex and Cybex II for knee flexion and extension peak torque and angular work. J Orthop Sport Phys Ther 1991; 13: 329–35

    Google Scholar 

  54. Thompson MC, Shingleton LG, Kegerreis ST. Comparison of values generated during testing of the knee using the Cybex II plus and Biodex model B-2000 isokinetic dynamometers. J Orthop Sport Phys Ther 1989; 11: 108–15

    Google Scholar 

  55. Rothstein JM, Lamp RL, Mayhew TP. Clinical uses of isokinetic measurements. Phys Ther 1987; 67: 1840–4

    PubMed  CAS  Google Scholar 

  56. Kramer JF, Ingham-Tupper S, Walters-Stansbury K, et al. Reliability of absolute and ratio data in assessment of knee extensor and flexor strength. Isokinet Exerc Sci 1994; 4: 51–7

    Google Scholar 

  57. Appen L, Duncan PW. Strength relationship of the knee musculature, effects of gravity and sport. J Orthop Sport Phys Ther 1986; 7: 232–5

    Google Scholar 

  58. Ford WJ, Bailey SD, Babich K, et al. Effect of hip position on gravity effect torque. Med Sci Sports Exerc 1994; 26: 230–4

    Article  PubMed  CAS  Google Scholar 

  59. Nelson SG, Duncan PW. Correction of isokinetic and isometric torque recording for the effects of gravity. Phys Ther 1983; 63: 674–6

    PubMed  CAS  Google Scholar 

  60. Winter DA, Wells RP, Orr GW. Errors in the use of isokinetic dynamometers. Eur J Appl Physiol 1981; 46: 397–408

    Article  CAS  Google Scholar 

  61. Barr AE, Duncan PW. Influence of position on knee flexor peak torque. J Orthop Sport Phys Ther 1988; 9: 279–83

    CAS  Google Scholar 

  62. Sapega AA. Muscle performance evaluation in orthopaedic practice. J Bone Joint Surg Am 1990; 72: 1562–74

    PubMed  CAS  Google Scholar 

  63. Baltzopoulos V, Williams JG, Brodie DA. Sources of error in isokinetic dynamometry: effects of visual feedback on maximum torque measurements. J Orthop Sport Phys Ther 1991; 13: 138–42

    CAS  Google Scholar 

  64. Hald RD, Bottjen EJ. Effect of visual feedback on maximal and submaximal isokinetic test measurements of normal quadriceps and hamstrings. J Orthop Sport Phys Ther 1987; 9: 86–93

    CAS  Google Scholar 

  65. Gulch RW. Force-velocity relations in human skeletal muscle. Int J Sports Med 1994; 15 (Suppl.): S2–S10

    Article  PubMed  Google Scholar 

  66. Sapega AA, Nicholas JA, Sokolow D, et al. The nature of torque ‘overshoot’ in cybex isokinetic dynamometry. Med Sci Sports Exerc 1982; 14: 368–75

    PubMed  CAS  Google Scholar 

  67. Worrell TW, Denegar CR, Armstrong SL, et al. Effect of body position on hamstring muscle group average torque. J Orthop Sport Phys Ther 1990; 11: 449–52

    CAS  Google Scholar 

  68. Kramer JF, Hill K, Jones IC, et al. Effect of dynamometer application arm length on concentric and eccentric torques during isokinetic knee extension. Physiother Can 1989; 41: 100–6

    Google Scholar 

  69. Bell GJ, Wenger HA. Physiological adaptations to velocity-controlled resistance training. Sports Med 1992; 13: 234–44

    Article  PubMed  CAS  Google Scholar 

  70. Duncan PW, Chandler JM, Cavanaugh DK, et al. Mode and speed specificity of eccentric and concentric exercise. J Orthop Sport Phys Ther 1989; 11: 70–4

    CAS  Google Scholar 

  71. Bishop K, Durrant E, Allsen P. The effect of eccentric strength training at various speeds on concentric strength of hamstring muscles. J Orthop Sport Phys Ther 1991; 13: 226–30

    CAS  Google Scholar 

  72. Ellenbecker TS, Davies CJ, Rowinski MJ. Concentric versus eccentric strengthening of the rotator cuff. Am J Sports Med 1988; 16: 64–9

    Article  PubMed  CAS  Google Scholar 

  73. Higbie EJ, Cureton KJ, Warren GL. Effects of concentric and eccentric training on muscle strength, cross sectional area and neural activation [abstract]. Med Sci Sports Exerc 1994; 26(5) Suppl.: S31

    Google Scholar 

  74. Hortobagyi T, Hill J, Lambert N, et al. Force and EMG responses to eccentric and concentric resistive exercise training [abstract]. Med Sci Sports Exerc 1994; 26(5) Suppl.: S31

    Google Scholar 

  75. Petersen SR, Bell GJ, Bagnall KM, et al. Effects of concentric resistance training training of eccentric peak torque and muscle cross sectional area. J Orthop Sport Phys Ther 1991; 13: 132–7

    CAS  Google Scholar 

  76. Friden J, Seger J, Sjostrom M, et al. Adaptive response in human skeletal muscle subjected to prolonged eccentric training. Int J Sports Med 1983; 4: 177–83

    Article  PubMed  CAS  Google Scholar 

  77. Singh M, Karpovich PV. Isotonic and isometric forces of forearm flexors and extensors. J Appl Physiol 1967; 21: 1435–7

    Google Scholar 

  78. Golden C, Dudley G. Strength after bouts of eccentric or concentric actions. Med Sci Sports Exerc 1992; 24: 926–33

    PubMed  CAS  Google Scholar 

  79. Ebbeling CB, Clarkson PM. Muscle adaptation prior to recovery following eccentric exercise. Eur J Appl Physiol 1990; 60: 26–31

    Article  CAS  Google Scholar 

  80. Seto JL, Orofino AS, Morrissey MC, et al. Assessment of quadriceps/hamstrings strength ratios, knee ligament stability, functional and sport activity levels five years after anterior ligament reconstruction. Am J Sports Med 1988; 16: 170–80

    Article  PubMed  CAS  Google Scholar 

  81. Kannus P. Hamstring/quadriceps strength ratios in knees with medical collateral ligament insufficiency. J Sports Med Phys Fitness 1989; 29: 194–8

    PubMed  CAS  Google Scholar 

  82. Murray SM, Warren RF, Ottis JC, et al. Torque-velocity relationships of the knee extensor and flexor muscles in individuals sustaining injuries of the anterior cruciate ligament. Am J Sports Med 1984; 12: 436–40

    Article  PubMed  CAS  Google Scholar 

  83. Highgenboten CL, Jackson AW, Meske NB. Concentric and eccentric torque comparisons for knee extension and flexion in young adult males and females using the kinetic communicator. Am J Sports Med 1988; 16: 234–7

    Article  PubMed  CAS  Google Scholar 

  84. Alexander MJL. Peak torque values for agonist groups and concentric and eccentric contractions type for elite sprinters. Arch Phys Med Rehab 1990; 71: 334–9

    CAS  Google Scholar 

  85. Anderson M, Gieck JH, Perrin D, et al. The relationships among isometric, isotonic and isokinetic concentric and eccentric quadriceps and hamstring force and three components of athletic performance. J Orthop Sport Phys Ther 1991; 14: 115–20

    Google Scholar 

  86. Bennet G, Stauber W. Evaluation and treatment of anterior knee pain using eccentric exercise. Med Sci Sports Exerc 1986; 18: 526–30

    Google Scholar 

  87. Posch E, Haglund Y, Eriksson E. Prospective study of concentric and eccentric leg muscle torques, flexibility, physical conditioning, and variation of injury rates during one season of amateur ice hockey. Int J Sports Med 1989; 10: 113–7

    Article  PubMed  CAS  Google Scholar 

  88. Friden J, Sfakianos PN, Hargens AR. Muscle soreness and intramuscular fluid pressure: comparison between eccentric and concentric load. J Appl Physiol 1986; 61: 2175–9

    PubMed  CAS  Google Scholar 

  89. Newham DJ, Jones DA, Clarkson DM. Repeated high-force eccentric exercise effects on muscle pain and damage. J Appl Physiol 1987; 63: 1381–6

    PubMed  CAS  Google Scholar 

  90. Newham DJ, Jones DA, Auropa P. Muscle fatigue and pain after eccentric contractions at long and short length. Clin Sci 1988; 74: 553–8

    PubMed  CAS  Google Scholar 

  91. Fitzgerland GK, Rothestein JM, Mayhew TP. Exercise-induced muscle soreness after concentric and eccentric isokinetic contractions. Phys Ther 1991; 71: 505–13

    Google Scholar 

  92. Franklin ME, Chamness MS, Smith LL, et al. Effects of isokinetic soreness-inducing exercise levels of c-reactive protein and creatine kinase. J Orthop Sport Phys Ther 1992; 16: 208–14

    CAS  Google Scholar 

  93. Mair J, Koller A, Artner-Dworzak E, et al. Effects of exercise on plasma myosin heavy chain fragments and MRI of skeletal muscle. J Appl Physiol 1992; 72: 656–63

    PubMed  CAS  Google Scholar 

  94. Dedrick ME, Clarkson PM. The effect of eccentric exercise on motor performance in young and older women. Eur J Appl Physiol 1990; 60: 183–6

    Article  CAS  Google Scholar 

  95. Hasson S, Barnes W, Hunter M, et al. Therapeutic effect of high speed voluntary muscle contractions on muscle soreness and muscle performance. J Orthop Sport Phys Ther 1989; 11: 499–507

    Google Scholar 

  96. Komi PV, Viitasalo JT. Changes in motor unit activity and metabolism in human skeletal muscle during and after repeated eccentric and concentric contractions. Acta Physiol Scand 1977; 100: 246–54

    Article  PubMed  CAS  Google Scholar 

  97. Barnes W. Isokinetic fatigue curves at different contractile velocities. Arch Phys Med Rehab 1981; 62: 62–9

    Google Scholar 

  98. Patton RB, Hinson MM, Arnold BR, et al. Fatigue curves of isokinetic contractions. Arch Phys Med Rehab 1978; 59: 507–9

    CAS  Google Scholar 

  99. Verdonck A, Frobose I, Hardelauf U, et al. Contraction patterns during isokinetic eccentric and concentric contractions after anterior cruciate ligament injury. Int J Sports Med 1994; 15(Suppl. 1): S60–3

    Article  PubMed  Google Scholar 

  100. Emery L, Sitler M, Ryan J. Mode of action and angular velocity fatigue response of the hamstrings and quadriceps. Isokinet Exerc Sci 1994; 4: 91–5

    Google Scholar 

  101. Kawakami Y, Kanehisa H, Ikegawa S, et al. Concentric and eccentric strength, during and after fatigue in 13 year-old boys. Eur J Appl Physiol 1993; 67: 121–4

    Article  CAS  Google Scholar 

  102. Grimby G. Progressive resistance exercise for injury rehabilitation. Sports Med 1985; 2: 309–15

    Article  PubMed  CAS  Google Scholar 

  103. Osterning L. Isokinetic dynamometry: implications for muscle testing and rehabilitation. Exerc Sport Sci Rev 1986; 14: 45–78

    Google Scholar 

  104. Cabri JM, Claris JP. Isokinetic exercise in rehabilitation. Appl Ergon 1991; 22: 295–8

    Article  PubMed  CAS  Google Scholar 

  105. Kellet J. Acute soft injuries — a review of the literature. Med Sci Sports Exerc 1986; 18: 489–500

    Google Scholar 

  106. Paulos LE, Wnorowski DW, Beck CL. Rehabilitation following knee surgery. Sports Med 1991; 11: 257–75

    Article  PubMed  CAS  Google Scholar 

  107. Shirakura K, Kato K, Udagawa E. Characteristics of the isokinetic performance of patients with injured cruciate ligaments. Am J Sports Med 1992; 20: 755–60

    Article  Google Scholar 

  108. Dvir Z, Shklar A, Halperin N, et al. Concentric and eccentric torque variations of the quadriceps femoris in patellofemoral pain syndrome. Clin Biomech 1990; 5: 68–72

    Article  Google Scholar 

  109. Jonhagen S, Nemeth G, Eriksson E. Hamstring injuries in sprinters: the role of concentric and eccentric hamstring muscle strength and flexibility. Am J Sports Med 1994; 22: 262–6

    Article  PubMed  CAS  Google Scholar 

  110. Horstmann T, Mayer F, Fisher J, et al. The cardiocirculatory reaction to isokinetic exercise in dependence on the form of exercise and age. Int J Sports Med 1994; 15 (Suppl.): S50–5

    Article  PubMed  Google Scholar 

  111. Stanish WD, Rubinovich RM, Curwin S. Eccentric exercise in chronic tendinitis. Clin Orthop Relat Res 1986; 208 Jul: 605–8

    Google Scholar 

  112. Jensen K, Fabio RPD. Evaluation of eccentric exercise in treatment of pattelar tendinitis. Phys Ther 1989; 69: 211–6

    PubMed  CAS  Google Scholar 

  113. Hoesley M. Use of eccentric contraction of muscle to increase range of movement in the upper motor neurone syndrome. Theory Pract Physiother 1991; 7: 91–101

    Article  Google Scholar 

  114. Crocker B, Stauber WT. Objective analysis of quadriceps force during bracing of the patellae: a preliminary report. Aust J Sci Med Sport 1989; 21: 25–8

    Google Scholar 

  115. Dean E. Physiology and therapeutic implications of negative work. Phys Ther 1988; 68: 233–7

    PubMed  CAS  Google Scholar 

  116. Stanton P, Purdam C. Hamstring injuries in sprinting: the role of eccentric exercise. J Orthop Sport Phys Ther 1989; 10: 343–4

    CAS  Google Scholar 

  117. Baltzopoulos V. Muscular and tibiofemoral joint forces during isokinetic knee extension. Clin Biomech 1995 10(4): in press

    Google Scholar 

  118. Kaufman KR, An K, Litchy WJ, et al. Dynamic joint forces during knee isokinetic exercise. Am J Sports Med 1989; 19: 305–16

    Article  Google Scholar 

  119. Nissel R, Erricson M. Pattelar forces during isokinetic knee extension. Clin Biomech 1992; 7: 104–8

    Article  Google Scholar 

  120. Nissel R, Erricson M, Nemmeth G, et al. Tibiofemoral joint forces during isokinetic knee extension. Am J Orthop Rehab Med 1989; 17: 49–54

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kellis, E., Baltzopoulos, V. Isokinetic Eccentric Exercise. Sports Med 19, 202–222 (1995). https://doi.org/10.2165/00007256-199519030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199519030-00005

Keywords

Navigation