Skip to main content
Log in

Remifentanil

A Review of its Use During the Induction and Maintenance of General Anaesthesia

  • Adis Drug Evaluation
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Abstract

Remifentanil (Ultiva™), a fentanyl derivative, is an ultra-short acting, nonspecific esterase-metabolised, selective μ-opioid receptor agonist, with a pharmacodynamic profile typical of opioid analgesic agents. Notably, the esterase linkage in remifentanil results in a unique and favourable pharmacokinetic profile for this class of agent.

Adjunctive intravenous remifentanil during general anaesthesia is an effective and generally well tolerated opioid analgesic in a broad spectrum of patients, including adults and paediatric patients, undergoing several types of surgical procedures in both the inpatient and outpatient setting. Remifentanil is efficacious in combination with intravenous or volatile hypnotic agents, with these regimens generally being at least as effective as fentanyl- or alfentanil-containing regimens in terms of attenuation of haemodynamic, autonomic and somatic intraoperative responses, and postoperative recovery parameters. The rapid offset of action and short context-sensitive half-time of remifentanil, irrespective of the duration of the infusion, makes the drug a valuable opioid analgesic option for use during balanced general inhalational or total intravenous anaesthesia (TIVA) where rapid, titratable, intense analgesia of variable duration, and a fast and predictable recovery are required.

Pharmacological Profile

Remifentanil, a selective μ-opioid receptor agonist, demonstrates typical opioid agonist effects, including analgesia, respiratory depression and haemodynamic effects (e.g. decreased heart rate and blood pressure). In terms of analgesic intensity, the lack of response to surgical incision and management of intraoperative stress, remifentanil exhibited similar potency to fentanyl and appeared to be 16- to 70-fold more potent than alfentanil in adult healthy volunteers and surgical patients. Naloxone, but not norbinaltorphimine, antagonised the effects of remifentanil. In remifentanil recipients, haemodynamic effects were not associated with the release of histamine. The drug has a rapid onset of analgesic action (1 minute) and fast offset of action (3–10 minutes vs 5–20, 20–30 and 180–240 minutes, respectively, with alfentanil, fentanyl and morphine). Remifentanil recipients experienced no clinically relevant effects on intraocular or intracranial pressure, cerebral blood flow, cerebrovascular carbon dioxide reactivity or cerebral capacity. In association with volatile or intravenous anaesthetic agents, remifentanil demonstrates typical opioid-induced hypnotic sparing effects. The primary metabolite of remifentanil (GR90291) exhibits ≈300- to 4600-fold less activity than the parent compound.

Intravenous remifentanil exhibits a linear, dose-dependent pharmacokinetic profile in surgical patients and in healthy volunteers. The drug is rapidly absorbed and distributed throughout the body (mean volume of distribution at steady state [Vdss] 260–415 mL/kg) and is ≈70% bound to plasma proteins. Remifentanil rapidly crosses the placental barrier, but is quickly metabolised and/or redistributed in the neonate. The drug readily crosses the blood-brain barrier.

Remifentanil is rapidly (mean terminal elimination half-life [t1/2β] ≈10 minutes) and extensively metabolised by nonspecific blood and tissue esterases to the relatively inactive carboxylic acid metabolite GR90291. This metabolite is eliminated mainly (≥88% of the dose) in the urine, with mean t1/2β values ranging from 88.1 to 137.4 minutes following bolus doses of remifentanil 2–30 μg/kg. The mean clearance (CL) rate of remifentanil exceeded the average hepatic blood flow by ≈3- to 4-fold. The pharmacokinetic profile of remifentanil is unlikely to be affected by inherited or acquired deficiencies in plasma cholinesterases. The context-sensitive half-time of remifentanil was independent of the duration of infusion, unlike that of other μ-opioid receptor agonists. Remifentanil recipients had similar mean Vd of the central compartment (Vdc) and distribution half-life values to those of alfentanil recipients; however, the mean CL value was ≈5-fold greater and the mean t1/2β was ≈6-fold shorter with remifentanil treatment (no statistical data reported).

There were no clinically relevant differences in the pharmacokinetic profile of the drug in those with renal or hepatic impairment, or based on gender. During the hypothermic phase (core body temperature 28–30°C) of cardiopulmonary bypass, the mean clearance of remifentanil was reduced by ≈20%. In surgical patients aged 0 to <18 years, after correction for bodyweight, there were no significant differences in pharmacokinetic parameters of remifentanil in these recipients versus those in adults. Between the age of 20 and 85 years, Vdc and CL values decrease by ≈25% and 33% in healthy adult volunteers, requiring a 50% reduction in the initial and subsequent doses of remifentanil in those >65 years of age. These pharmacokinetic parameters are also reduced by about one-third in obese versus lean patients; reductions in dose in obese recipients should be based on the patient’s ideal bodyweight.

Therapeutic Efficacy

Intravenous remifentanil in combination with volatile or intravenous hypnotic agents provided effective analgesia and attenuated responses to various stimuli during the induction and/or maintenance of general anaesthesia in a broad spectrum of surgical patients in several comparative, randomised clinical trials. As per therapeutic recommendations, bolus doses of remifentanil were typically 0.5–1 μg/kg, with infusion rates of 0.2–0.5 μg/kg/min; higher infusion rates (1–2 μg/kg/min) were used in patients undergoing ‘fast-track’ coronary artery bypass graft surgery (CABG).

During induction of anaesthesia in adult patients undergoing various surgical procedures, remifentanil attenuated the stress response to intubation, and facilitated endotracheal intubation without a muscle relaxant. Remifentanil also facilitated laryngeal mask airway insertion during induction of propofol-based TIVA. In morbidly obese patients, remifentanil was as effective as alfentanil or fentanyl in blunting the haemodynamic response to tracheal intubation using propofol-based TIVA.

In surgical patients, remifentanil-containing regimens were generally at least as effective as fentanyl- and alfentanil-containing regimens during the induction and/or maintenance of balanced general anaesthesia, as assessed by various intraoperative responses and postoperative recovery parameters. For instance, in a large (≈2500 inpatients and outpatients) single-blind trial, relative to fentanyl recipients, remifentanil-treated patients responded to verbal commands faster (after both inpatient and outpatient surgery) and, after day surgery, recovered faster and were discharged from hospital sooner. Notably, haemodynamic profiles in response to intraoperative stimuli were generally better and postoperative functional abilities improved at a faster rate in remifentanil than fentanyl recipients. In a large double-blind trial, significantly fewer remifentanil than alfentanil recipients responded to intraoperative surgical stimuli (primary endpoint), intubation or skin incision. Typically, remifentanil recipients experienced effective analgesia and attenuation of intraoperative responses irrespective of their age (including paediatric and elderly patients), bodyweight, the degree of renal or hepatic impairment, type (e.g. major abdominal surgery, CABG, neurosurgery, ear, nose and throat, or opthalmic surgery) and duration of surgery being undertaken, whether the drug was combined with intravenous or volatile hypnotic agents, or whether the drug was used in the inpatient or outpatient setting. Limited data also suggested that intravenous remifentanil was an effective opioid analgesic during Caesarean section, with generally no significant difference in Apgar or Neurologic and Adaptive Capacity Scores at most timepoints in neonates born to mothers receiving a remifentanil-versus a fentanyl-based anaesthetic regimen in a small single-blind trial.

Tolerability

Bolus doses and/or infusions of intravenous remifentanil were generally well tolerated as a component of induction- and maintenance-regimens for general anaesthesia in adults and children undergoing surgery. Common adverse events associated with remifentanil treatment during the perioperative period, such as muscle rigidity (0–8%), bradycardia (2–12%), hypotension (6–30%), nausea (12–47%), vomiting (3–33%) and shivering (6–26%), are typical of those reported with all μ-opioid receptor agonists and resolved rapidly upon discontinuation of the drug or reduction in the infusion rate and/or with appropriate treatment.

The nature of adverse events occurring in remifentanil recipients was generally similar to that seen in fentanyl recipients, although hypotension occurred significantly more frequently in remifentanil recipients (inpatients [18% vs 7%], outpatients [9% vs 3%]) in a large (n = 2438) single-blind trial. A significantly higher percentage of remifentanil recipients experienced at least one drug-related adverse event in the overall population (21% vs 11% of fentanyl recipients) and in subgroup analyses of inpatients (34% vs 16%) and outpatients (26% vs 9%). There were no between-group differences in the intensity of these adverse events, with 3% of patients in each group experiencing at least one severe adverse event. There was no intergroup difference in the incidence of postoperative nausea in either patient populations, although postoperative vomiting occurred significantly more frequently in remifentanil recipients undergoing outpatient surgery (15.5% vs 12.5%).

There was no between-group difference in the nature of treatment-related adverse events in remifentanil groups compared with alfentanil groups, although some individual events occurred with a higher incidence. Eighty-two percent of remifentanil recipients and 75% of alfentanil recipients experienced at least one adverse event in the largest trial (n = 234), with a significantly higher incidence of hypotension (30% vs 10% of patients) and bradycardia (10% vs 3%) in the remifentanil group during the maintenance phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Table III
Table IV
Table V
Table VI
Fig. 2
Table VII
Table VIII
Table IX
Table X
Fig. 3
Table XI

Similar content being viewed by others

Notes

  1. The use of trade names is for identification purposes only and does not imply endorsement.

References

  1. Ferguson CN, Jones RM. Remifentanil: introduction and preclinical studies. Drugs Today 1997; 33(9): 603–9

    CAS  Google Scholar 

  2. Cohen J, Royston D. Remifentanil. Curr Opin Crit Care 2001 Aug; 7(4): 227–31

    Article  PubMed  CAS  Google Scholar 

  3. Dodds C. General anaesthesia: practical recommendations and recent advances. Drugs 1999 Sep; 58: 453–67

    Article  PubMed  CAS  Google Scholar 

  4. Patel SS, Spencer CM. Remifentanil. Drugs 1996 Sep; 52(3): 417–27; discussion 428

    Article  PubMed  CAS  Google Scholar 

  5. Beers R, Camporesi E. Remifentanil update: clinical science and utility. CNS Drugs 2004; 18(15): 1085–104

    Article  PubMed  CAS  Google Scholar 

  6. Black ML, Hill JL, Zacny JP. Behavioral and physiological effects of remifentanil and alfentanil in healthy volunteers. Anesthesiology 1999 Mar; 90(3): 718–26

    Article  PubMed  CAS  Google Scholar 

  7. Lorenz IH, Kolbitsch C, Schocke M, et al. Low-dose remifentanil increases regional cerebral blood flow and regional cerebral blood volume, but decreases regional mean transit time and regional cerebrovascular resistance in volunteers. Br J Anaesth 2000 Aug; 85(2): 199–204

    Article  PubMed  CAS  Google Scholar 

  8. Lorenz IH, Kolbitsch C, Hinteregger M, et al. Remifentanil and nitrous oxide reduce changes in cerebral blood flow velocity in the middle cerebral artery caused by pain. Br J Anaesth 2003 Mar; 90(3): 296–9

    Article  PubMed  CAS  Google Scholar 

  9. Amin HM, Sopchak AM, Esposito BF, et al. Naloxone-induced and spontaneous reversal of depressed ventilatory responses to hypoxia during and after continuous infusion of remifentanil or alfentanil. J Pharmacol Exp Ther 1995 Jul; 274(1): 34–9

    PubMed  CAS  Google Scholar 

  10. Glass PS, Hardman D, Kamiyama Y, et al. Preliminary pharmacokinetics and pharmacodynamics of an ultra-shortacting opioid: remifentanil (GI87084B). Anesth Analg 1993 Nov; 77(5): 1031–40

    Article  PubMed  CAS  Google Scholar 

  11. Glass PS, Iselin-Chaves IA, Goodman D, et al. Determination of the potency of remifentanil compared with alfentanil using ventilatory depression as the measure of opioid effect. Anesthesiology 1999 Jun; 90(6): 1556–63

    Article  PubMed  CAS  Google Scholar 

  12. Wagner KJ, Willoch F, Kochs EF, et al. Dose-dependent regional cerebral blood flow changes during remifentanil infusion in humans: a positron emission tomography study. Anesthesiology 2001 May; 94(5): 732–9

    Article  PubMed  CAS  Google Scholar 

  13. Noseir RK, Ficke DJ, Kundu A, et al. Sympathetic and vascular consequences from remifentanil in humans. Anesth Analg 2003 Jun; 96(6): 1645–50

    Article  PubMed  CAS  Google Scholar 

  14. Babenco HD, Conard PF, Gross JB. The pharmacodynamic effect of a remifentanil bolus on ventilatory control. Anesthesiology 2000 Feb; 92(2): 393–8

    Article  PubMed  CAS  Google Scholar 

  15. Egan TD, Minto CF, Hermann DJ, et al. Remifentanil versus alfentanil: comparative pharmacokinetics and pharmacodynamics in healthy adult male volunteers. Anesthesiology 1996 Apr; 84(4): 821–33

    Article  PubMed  CAS  Google Scholar 

  16. Gustorff B, Felleiter P, Nahlik G, et al. The effect of remifentanil on the heat pain threshold in volunteers. Anesth Analg 2001 Feb; 92(2): 369–74

    Article  PubMed  CAS  Google Scholar 

  17. Lorenz IH, Kolbitsch C, Hormann C, et al. The effects of remifentanil on cerebral capacity in awake volunteers. Anesth Analg 2000 Mar; 90(3): 609–13

    Article  PubMed  CAS  Google Scholar 

  18. Nieuwenhuijs DJ, Olofsen E, Romberg RR, et al. Response surface modeling of remifentanil-propofol interaction on cardiorespiratory control and bispectral index. Anesthesiology 2003 Feb; 98(2): 312–22

    Article  PubMed  CAS  Google Scholar 

  19. Petersen KL, Jones B, Segredo V, et al. Effect of remifentanil on pain and secondary hyperalgesia associated with the heat-capsaicin sensitization model in healthy volunteers. Anesthesiology 2001 Jan; 94(1): 15–20

    Article  PubMed  CAS  Google Scholar 

  20. Lotsch J, Angst MS. The (μ-opioid agonist remifentanil attenuates hyperalgesia evoked by blunt and punctuated stimuli with different potency: a pharmacological evaluation of the freeze lesion in humans. Pain 2003 Mar; 102(1–2): 151–61

    Article  PubMed  Google Scholar 

  21. Curatolo M, Petersen-Felix S, Gerber A, et al. Remifentanil inhibits muscular more than cutaneous pain in humans. Br J Anaesth 2000 Oct; 85(4): 529–32

    Article  PubMed  CAS  Google Scholar 

  22. Bouillon T, Bruhn J, Radu-Radulescu L, et al. Non-steady state analysis of the pharmacokinetic interaction between propofol and remifentanil. Anesthesiology 2002 Dec; 97(6): 1350–62

    Article  PubMed  CAS  Google Scholar 

  23. Lang E, Kapila A, Shlugman D, et al. Reduction of isoflurane minimal alveolar concentration by remifentanil. Anesthesiology 1996 Oct; 85(4): 721–8

    Article  PubMed  CAS  Google Scholar 

  24. Sebel PS, Hoke JF, Westmoreland C, et al. Histamine concentrations and hemodynamic responses after remifentanil. Anesth Analg 1995 May; 80(5): 990–3

    PubMed  CAS  Google Scholar 

  25. Engelhard K, Werner C, Mollenberg O, et al. Effects of remifentanil/propofol in comparison with isoflurane on dynamic cerebrovascular autoregulation in humans. Acta Anaesthesiol Scand 2001 Sep; 45(8): 971–6

    Article  PubMed  CAS  Google Scholar 

  26. Paris A, Scholz J, von Knobelsdorff G, et al. The effect of remifentanil on cerebral blood flow velocity. Anesth Analg 1998 Sep; 87(3): 569–73

    PubMed  CAS  Google Scholar 

  27. Ostapkovich ND, Baker KZ, Fogarty-Mack P, et al. Cerebral blood flow and CO2 reactivity is similar during remifentanil/N2O and fentanyl/N2O anesthesia. Anesthesiology 1998 Aug; 89(2): 358–63

    Article  PubMed  CAS  Google Scholar 

  28. Baker KZ, Ostapkovich N, Sisti MB, et al. Intact cerebral blood flow reactivity during remifentanil/nitrous oxide anesthesia. J Neurosurg Anesthesiol 1997 Apr; 9(2): 134–40

    Article  PubMed  CAS  Google Scholar 

  29. Jhaveri R, Joshi P, Batenhorst R, et al. Dose comparison of remifentanil and alfentanil for loss of consciousness. Anesthesiology 1997 Aug; 87(2): 253–9

    Article  PubMed  CAS  Google Scholar 

  30. Schafer R, Klett J, Auffarth G, et al. Intraocular pressure more reduced during anesthesia with propofol than with sevoflurane: both combined with remifentanil. Acta Anaesthesiol Scand 2002 Jul; 46(6): 703–6

    Article  PubMed  CAS  Google Scholar 

  31. Ng HP, Chen FG, Yeong SM, et al. Effect of remifentanil compared with fentanyl on intraocular pressure after succinylcholine and tracheal intubation. Br J Anaesth 2000 Nov; 85(5): 785–7

    Article  PubMed  CAS  Google Scholar 

  32. Alexander R, Hill R, Lipham WJ, et al. Remifentanil prevents an increase in intraocular pressure after succinylcholine and tracheal intubation. Br J Anaesth 1998 Oct; 81(4): 606–7

    Article  PubMed  CAS  Google Scholar 

  33. Sator-Katzenschlager SM, Oehmke MJ, Deusch E, et al. Effects of remifentanil and fentanyl on intraocular pressure during the maintenance and recovery of anaesthesia in patients undergoing non-ophthalmic surgery. Eur J Anaesthesiol 2004 Feb; 21(2): 95–100

    PubMed  CAS  Google Scholar 

  34. Koitabashi T, Johansen JW, Sebel PS. Remifentanil dose/electroencephalogram bispectral response during combined propofol/regional anesthesia. Anesth Analg 2002 Jun; 94(6): 1530–3

    PubMed  CAS  Google Scholar 

  35. Ropcke H, Konen-Bergmann M, Cuhls M, et al. Propofol and remifentanil pharmacodynamic interaction during orthopedic surgical procedures as measured by effects on bispectral index. J Clin Anesth 2001 May; 13(3): 198–207

    Article  PubMed  CAS  Google Scholar 

  36. Olofsen E, Sleigh JW, Dahan A. The influence of remifentanil on the dynamic relationship between sevoflurane and surrogate anesthetic effect measures derived from the EEG. Anesthesiology 2002 Mar; 96(3): 555–64

    Article  PubMed  CAS  Google Scholar 

  37. Engelhard K, Reeker W, Kochs E, et al. Effect of remifentanil on intracranial pressure and cerebral blood flow velocity in patients with head trauma. Acta Anaesthesiol Scand 2004 Apr; 48(4): 396–9

    Article  PubMed  CAS  Google Scholar 

  38. James MK, Feldman PL, Schuster SV, et al. Opioid receptor activity of GI 87084B, a novel ultra-short acting analgesic, in isolated tissues. J Pharmacol Exp Ther 1991; 259(2): 712–8

    PubMed  CAS  Google Scholar 

  39. James MK, Vuong A, Grizzle MK, et al. Hemodynamic effects of GI 87084B, an ultra-short acting mu-opioid analgesic, in anesthetized dogs. J Pharmacol Exp Ther 1992; 263(1): 84–91

    PubMed  CAS  Google Scholar 

  40. Cox EH, Langemeijer MW, Gubbens-Stibbe JM, et al. The comparative pharmacodynamics of remifentanil and its metabolite, GR90291, in a rat electroencephalographic model. Anesthesiology 1999 Feb; 90(2): 535–44

    Article  PubMed  CAS  Google Scholar 

  41. Hoffman WE, Cunningham F, James MK, et al. Effects of remifentanil, a new short-acting opioid, on cerebral blood flow, brain electrical activity, and intracranial pressure in dogs anesthetized with isoflurane and nitrous oxide. Anesthesiology 1993 Jul; 79(1): 107–13; discussion 26A

    Article  PubMed  CAS  Google Scholar 

  42. Hoke JF, Cunningham F, James MK, et al. Comparative pharmacokinetics and pharmacodynamics of remifentanil, its principle metabolite (GR90291) and alfentanil in dogs. J Pharmacol Exp Ther 1997 Apr; 281(1): 226–32

    PubMed  CAS  Google Scholar 

  43. Shinohara K, Aono H, Unruh GK, et al. Suppressive effects of remifentanil on hemodynamics in baro-denervated rabbits. Can J Anaesth 2000 Apr; 47(4): 361–6

    Article  PubMed  CAS  Google Scholar 

  44. Egan TD. Remifentanil pharmacokinetics and pharmacodynamics. A preliminary appraisal. Clin Pharmacokinet 1995 Aug; 29(2): 80–94

    CAS  Google Scholar 

  45. Egan TD. Pharmacokinetics and pharmacodynamics of remifentanil: an update in the year 2000. Curr Opin Anaesth 2000; 13(4): 449–55

    Article  CAS  Google Scholar 

  46. Mason P. Remifentanil. Intensive Crit Care Nurs 2002 Dec; 18(6): 355–7

    Article  PubMed  Google Scholar 

  47. GlaxoSmithKline UK. Ultiva injection [online]. Available from URL: http://emc.medicines.org.uk [Accessed 2005 Jul 18]

  48. Demirbilek S, Ganidagli S, Aksoy N, et al. The effects of remifentanil and alfentanil-based total intravenous anesthesia (TIVA) on the endocrine response to abdominal hysterectomy. J Clin Anesth 2004 Aug; 16(5): 358–63

    Article  PubMed  CAS  Google Scholar 

  49. Bell G, Dickson U, Arana A, et al. Remifentanil vs fentanyl/morphine for pain and stress control during pediatric cardiac surgery. Paediatr Anaesth 2004 Oct; 14(10): 856–60

    Article  PubMed  CAS  Google Scholar 

  50. Westmoreland CL, Hoke JF, Sebel PS, et al. Pharmacokinetics of remifentanil (GI87084B) and its major metabolite (GI90291) in patients undergoing elective inpatient surgery. Anesthesiology 1993 Nov; 79(5): 893–903

    Article  PubMed  CAS  Google Scholar 

  51. Michelsen LG, Holford NH, Lu W, et al. The pharmacokinetics of remifentanil in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass. Anesth Analg 2001 Nov; 93(5): 1100–5

    Article  PubMed  CAS  Google Scholar 

  52. Russell D, Royston D, Rees PH, et al. Effect of temperature and cardiopulmonary bypass on the pharmacokinetics of remifentanil. Br J Anaesth 1997 Oct; 79(4): 456–9

    Article  PubMed  CAS  Google Scholar 

  53. Egan TD, Huizinga B, Gupta SK, et al. Remifentanil pharmacokinetics in obese versus lean patients. Anesthesiology 1998 Sep; 89(3): 562–73

    Article  PubMed  CAS  Google Scholar 

  54. Davis PJ, Wilson AS, Siewers RD, et al. The effects of cardiopulmonary bypass on remifentanil kinetics in children undergoing atrial septal defect repair. Anesth Analg 1999 Oct; 89(4): 904–8

    PubMed  CAS  Google Scholar 

  55. Ross AK, Davis PJ, Dear GD, et al. Pharmacokinetics of remifentanil in anesthetized pediatric patients undergoing elective surgery or diagnostic procedures. Anesth Analg 2001 Dec; 93(6): 1393–401

    Article  PubMed  CAS  Google Scholar 

  56. Kan RE, Hughes SC, Rosen MA, et al. Intravenous remifentanil: placental transfer, maternal and neonatal effects. Anesthesiology 1998 Jun; 88(6): 1467–74

    Article  PubMed  CAS  Google Scholar 

  57. Navapurkar VU, Archer S, Gupta SK, et al. Metabolism of remifentanil during liver transplantation. Br J Anaesth 1998 Dec; 81(6): 881–6

    Article  PubMed  CAS  Google Scholar 

  58. Dahaba AA, Oettl K, von Klobucar F, et al. End-stage renal failure reduces central clearance and prolongs the elimination half life of remifentanil. Can J Anaesth 2002 Apr; 49(4): 369–74

    Article  PubMed  Google Scholar 

  59. Egan TD, Lemmens HJ, Fiset P, et al. The pharmacokinetics of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers. Anesthesiology 1993 Nov; 79(5): 881–92

    Article  PubMed  CAS  Google Scholar 

  60. Minto CF, Schnider TW, Egan TD, et al. Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology 1997 Jan; 86(1): 10–23

    CAS  Google Scholar 

  61. Dershwitz M, Hoke JF, Rosow CE, et al. Pharmacokinetics and pharmacodynamics of remifentanil in volunteer subjects with severe liver disease. Anesthesiology 1996 Apr; 84(4): 812–20

    Article  PubMed  CAS  Google Scholar 

  62. Dershwitz M, Rosow CE. The pharmacokinetics and pharmacodynamics of remifentanil in volunteers with severe hepatic or renal dysfunction. J Clin Anesth 1996 May; 8 (3 Suppl.): 88S–90S

    Article  PubMed  CAS  Google Scholar 

  63. Hoke JF, Shlugman D, Dershwitz M, et al. Pharmacokinetics and pharmacodynamics of remifentanil in persons with renal failure compared with healthy volunteers. Anesthesiology 1997 Sep; 87(3): 533–41

    Article  PubMed  CAS  Google Scholar 

  64. Lauwers M, Camu F, Vanlersberghe C. Remifentanil, an esterase metabolised opioid: what advantages does it offer in analgesia and anaesthesia? CNS Drugs 1997; 8(3): 189–98

    Article  CAS  Google Scholar 

  65. Michelsen LG, Hug Jr CC. The pharmacokinetics of remifentanil. J Clin Anesth 1996 Dec; 8(8): 679–82

    Article  PubMed  CAS  Google Scholar 

  66. Davis PJ, Stiller RL, Wilson AS, et al. In vitro remifentanil metabolism: the effects of whole blood constituents and plasma butyrylcholinesterase. Anesth Analg 2002 Nov; 95(5): 1305–7

    Article  PubMed  CAS  Google Scholar 

  67. Kapila A, Glass PS, Jacobs JR, et al. Measured context-sensitive half-times of remifentanil and alfentanil. Anesthesiology 1995 Nov; 83(5): 968–75

    Article  PubMed  CAS  Google Scholar 

  68. Klemola UM, Mennander S, Saarnivaara L. Tracheal intubation without the use of muscle relaxants: remifentanil or alfentanil in combination with propofol. Acta Anaesthesiol Scand 2000 Apr; 44(4): 465–9

    Article  PubMed  CAS  Google Scholar 

  69. Alexander R, Olufolabi AJ, Booth J, et al. Dosing study of remifentanil and propofol for tracheal intubation without the use of muscle relaxants. Anaesthesia 1999 Nov; 54(11): 1037–40

    Article  PubMed  CAS  Google Scholar 

  70. Alexander R, Booth J, Olufolabi AJ, et al. Comparison of remifentanil with alfentanil or suxamethonium following propofol anaesthesia for tracheal intubation. Anaesthesia 1999 Nov; 54(11): 1032–6

    Article  PubMed  CAS  Google Scholar 

  71. McAtamney D, O’Hare R, Hughes D, et al. Evaluation of remifentanil for control of haemodynamic response to tracheal intubation. Anaesthesia 1998 Dec; 53(12): 1223–7

    Article  PubMed  CAS  Google Scholar 

  72. Grant S, Noble S, Woods A, et al. Assessment of intubating conditions in adults after induction with propofol and varying doses of remifentanil. Br J Anaesth 1998 Oct; 81(4): 540–3

    Article  PubMed  CAS  Google Scholar 

  73. Woods AW, Grant S, Harten J, et al. Tracheal intubating conditions after induction with propofol, remifentanil and lignocaine. Eur J Anaesthesiol 1998 Nov; 15(6): 714–8

    Article  PubMed  CAS  Google Scholar 

  74. Stevens JB, Wheatley L. Tracheal intubation in ambulatory surgery patients: using remifentanil and propofol without muscle relaxants. Anesth Analg 1998 Jan; 86(1): 45–9

    PubMed  CAS  Google Scholar 

  75. Erhan E, Ugur G, Alper I, et al. Tracheal intubation without muscle relaxants: remifentanil or alfentanil in combination with propofol. Eur J Anaesthesiol 2003 Jan; 20(1): 37–43

    Article  PubMed  CAS  Google Scholar 

  76. Salihoglu Z, Demiroluk S, Demirkiran O, et al. Comparison of effects of remifentanil, alfentanil and fentanyl on cardiovascular responses to tracheal intubation in morbidly obese patients. Eur J Anaesthesiol 2002 Feb; 19(2): 125–8

    PubMed  CAS  Google Scholar 

  77. Lee MP, Kua JS, Chiu WK. The use of remifentanil to facilitate the insertion of the laryngeal mask airway. Anesth Analg 2001 Aug; 93(2): 359–62

    PubMed  CAS  Google Scholar 

  78. Grewal K, Samsoon G. Facilitation of laryngeal mask airway insertion: effects of remifentanil administered before induction with target-controlled propofol infusion. Anaesthesia 2001 Sep; 56(9): 897–901

    Article  PubMed  CAS  Google Scholar 

  79. Chung F, Mulier JP, Scholz J, et al. A comparison of anaesthesia using remifentanil combined with either isoflurane, enflurane or propofol in patients undergoing gynaecological laparoscopy, varicose vein or arthroscopic surgery. Acta Anaesthesiol Scand 2000 Aug; 44(7): 790–8

    Article  PubMed  CAS  Google Scholar 

  80. Wilhelm W, Grundmann U, Van Aken H, et al. A multicenter comparison of isoflurane and propofol as adjuncts to remifentanil-based anesthesia. J Clin Anesth 2000 Mar; 12(2): 129–35

    Article  PubMed  CAS  Google Scholar 

  81. Rowbotham DJ, Peacock JE, Jones RM, et al. Comparison of remifentanil in combination with isoflurane or propofol for short-stay surgical procedures. Br J Anaesth 1998 Jun; 80(6): 752–5

    Article  PubMed  CAS  Google Scholar 

  82. Hogue Jr CW, Bowdle TA, O’Leary C, et al. A multicenter evaluation of total intravenous anesthesia with remifentanil and propofol for elective inpatient surgery. Anesth Analg 1996 Aug; 83(2): 279–85

    PubMed  CAS  Google Scholar 

  83. Schüttler J, Albrecht S, Breivik H, et al. A comparison of remifentanil and alfentanil in patients undergoing major abdominal surgery. Anaesthesia 1997 Apr; 52(4): 307–17

    Article  PubMed  Google Scholar 

  84. Sneyd JR, Camu F, Doenicke A, et al. Remifentanil and fentanyl during anaesthesia for major abdominal and gynaecological surgery. An open, comparative study of safety and efficacy. Eur J Anaesthesiol 2001 Sep; 18(9): 605–14

    CAS  Google Scholar 

  85. Twersky RS, Jamerson B, Warner DS, et al. Hemodynamics and emergence profile of remifentanil versus fentanyl prospectively compared in a large population of surgical patients. J Clin Anesth 2001 Sep; 13(6): 407–16

    Article  PubMed  CAS  Google Scholar 

  86. Fleisher LA, Hogue S, Colopy M, et al. Does functional ability in the postoperative period differ between remifentanil- and fentanyl-based anesthesia? J Clin Anesth 2001 Sep; 13(6): 401–6

    Article  PubMed  CAS  Google Scholar 

  87. Cheng DC, Newman MF, Duke P, et al. The efficacy and resource utilization of remifentanil and fentanyl in fast-track coronary artery bypass graft surgery: a prospective randomized, double-blinded controlled, multi-center trial. Anesth Analg 2001 May; 92(5): 1094–102

    Article  PubMed  CAS  Google Scholar 

  88. Mollhoff T, Herregods L, Moerman A, et al. Comparative efficacy and safety of remifentanil and fentanyl in ‘fast track’ coronary artery bypass graft surgery: a randomized, double-blind study. Remifentanil Study Group. Br J Anaesth 2001 Nov; 87(5): 718–26

    CAS  Google Scholar 

  89. Geisler FE, de Lange S, Royston D, et al. Efficacy and safety of remifentanil in coronary artery bypass graft surgery: a randomized, double-blind dose comparison study. J Cardiothorac Vasc Anesth 2003 Feb; 17(1): 60–8

    Article  PubMed  Google Scholar 

  90. Cheng DCH. Fast track cardiac surgery pathways: early extubation, process of care, and cost containment. Anesthesiology 1998; 88: 1429–33

    Article  PubMed  CAS  Google Scholar 

  91. Cheng DCH, Karski J, Peniston C, et al. Early tracheal extubation after coronary artery bypass graft surgery reduces costs and improves resource use. Anesthiology 1996; 85: 1300–10

    Article  CAS  Google Scholar 

  92. Howie MB, Cheng D, Newman MF, et al. A randomized double-blinded multicenter comparison of remifentanil versus fentanyl when combined with isoflurane/propofol for early extubation in coronary artery bypass graft surgery. Anesth Analg 2001 May; 92(5): 1084–93

    Article  PubMed  CAS  Google Scholar 

  93. Kazmaier S, Hanekop GG, Buhre W, et al. Myocardial consequences of remifentanil in patients with coronary artery disease. Br J Anaesth 2000 May; 84(5): 578–83

    Article  PubMed  CAS  Google Scholar 

  94. Straka Z, Brucek P, Vanek T, et al. Routine immediate extubation for off-pump coronary artery bypass grafting without thoracic epidural analgesia. Ann Thorac Surg 2002; 74: 1544–7

    Article  PubMed  Google Scholar 

  95. Gelb AW, Salevsky F, Chung F, et al. Remifentanil with morphine transitional analgesia shortens neurological recovery compared to fentanyl for supratentorial craniotomy: Can J Anaesth 2003 Nov; 50(9): 946–52

    PubMed  Google Scholar 

  96. Balakrishnan G, Raudzens P, Samra SK, et al. A comparison of remifentanil and fentanyl in patients undergoing surgery for intracranial mass lesions. Anesth Analg 2000 Jul; 91(1): 163–9

    PubMed  CAS  Google Scholar 

  97. Sneyd JR, Whaley A, Dimpel HL, et al. An open, randomized comparison of alfentanil, remifentanil and alfentanil followed by remifentanil in anaesthesia for craniotomy. Br J Anaesth 1998 Sep; 81(3): 361–4

    Article  PubMed  CAS  Google Scholar 

  98. Guy J, Hindman BJ, Baker KZ, et al. Comparison of remifentanil and fentanyl in patients undergoing craniotomy for supratentorial space-occupying lesions. Anesthesiology 1997 Mar; 86(3): 514–24

    Article  PubMed  CAS  Google Scholar 

  99. Philip BK, Scuderi PE, Chung F, et al. Remifentanil compared with alfentanil for ambulatory surgery using total intravenous anesthesia: the Remifentanil/Alfentanil Outpatient TIVA Group. Anesth Analg 1997 Mar; 84(3): 515–21

    PubMed  CAS  Google Scholar 

  100. Cartwright DP, Kvalsvik O, Cassuto J, et al. A randomized, blind comparison of remifentanil and alfentanil during anesthesia for outpatient surgery. Anesth Analg 1997 Nov; 85(5): 1014–9

    PubMed  CAS  Google Scholar 

  101. Hughes SC, Kan RE, Rosen MA, et al. Remifentanil: ultra-short acting opioid for obstetric anesthesia [abstract no. A894]. Anesthesiology 1996 Sep; 85 Suppl.

  102. Scott H, Bateman C, Price M. The use of remifentanil in general anaesthesia for caesarean section in a patient with mitral valve disease. Anaesthesia 1998 Jul; 53(7): 695–7

    Article  PubMed  CAS  Google Scholar 

  103. McCarroll CP, Paxton LD, Elliott P, et al. Use of remifentanil in a patient with peripartum cardiomyopathy requiring Caesarean section. Br J Anaesth 2001 Jan; 86(1): 135–8

    Article  PubMed  CAS  Google Scholar 

  104. Manullang TR, Chun K, Egan TD. The use of remifentanil for Cesarean section in a parturient with recurrent aortic coarctation. Can J Anaesth 2000 May; 47(5): 454–9

    Article  PubMed  CAS  Google Scholar 

  105. Johnston AJ, Hall JM, Levy DM. Anaesthesia with remifentanil and rocuronium for caesarean section in a patient with long-QT syndrome and an automatic implantable cardioverter-defibrillator. Int J Obstet Anesth 2000; 9(2): 133–6

    Article  PubMed  CAS  Google Scholar 

  106. Wadsworth R, Greer R, MacDonald JMS, et al. The use of remifentanil during general anaesthesia for caesarean delivery in two patients with severe heart dysfunction. Int J Obstet Anesth 2002; 11(1): 38–43

    Article  PubMed  CAS  Google Scholar 

  107. Brockhurst NJ, Littleford JA, Halpern SH. The Neurologic and Adaptive Capacity Score: a systematic review of its use in obstetric anesthesia research. Anesthesiology 2000; 92(1): 237–46

    Article  PubMed  CAS  Google Scholar 

  108. Bedard JM, Richardson MG, Wissler RN. General anesthesia with remifentanil for Cesarean section in a parturient with an acoustic neuroma. Can J Anaesth 1999 Jun; 46(6): 576–80

    Article  PubMed  CAS  Google Scholar 

  109. Friesen RH, Veit AS, Archibald DJ, et al. A comparison of remifentanil and fentanyl for fast track paediatric cardiac anaesthesia. Paediatr Anaesth 2003 Feb; 13(2): 122–5

    Article  PubMed  Google Scholar 

  110. Grundmann U, Uth M, Eichner A, et al. Total intravenous anaesthesia with propofol and remifentanil in paediatric patients: a comparison with a desflurane-nitrous oxide inhalation anaesthesia. Acta Anaesthesiol Scand 1998 Aug; 42(7): 845–50

    Article  PubMed  CAS  Google Scholar 

  111. Davis PJ, Galinkin J, McGowan FX, et al. A randomized multicenter study of remifentanil compared with halothane in neonates and infants undergoing pyloromyotomy. I. Emergence and recovery profiles. Anesth Analg 2001 Dec; 93(6): 1380–6

    CAS  Google Scholar 

  112. Davis PJ, Finkel JC, Orr RJ, et al. A randomized, double-blinded study of remifentanil versus fentanyl for tonsillectomy and adenoidectomy surgery in pediatric ambulatory surgical patients. Anesth Analg 2000 Apr; 90(4): 863–71

    Article  PubMed  CAS  Google Scholar 

  113. Ganidagli S, Cengiz M, Baysal Z. Remifentanil vs alfentanil in the total intravenous anaesthesia for paediatric abdominal surgery. Paediatr Anaesth 2003 Oct; 13(8): 695–700

    Article  PubMed  Google Scholar 

  114. Davis PJ, Lerman J, Suresh S, et al. A randomized multicenter study of remifentanil compared with alfentanil, isoflurane, or propofol in anesthetized pediatric patients undergoing elective strabismus surgery. Anesth Analg 1997 May; 84(5): 982–9

    PubMed  CAS  Google Scholar 

  115. Dahaba AA, von Klobucar F, Rehak PH, et al. Total intravenous anesthesia with remifentanil, propofol and cisatracurium in end-stage renal failure. Can J Anaesth 1999 Jul; 46(7): 696–700

    Article  PubMed  CAS  Google Scholar 

  116. Lai A, Hung CT. Effect of age on recovery from remifentanil anaesthesia. Anaesth Intensive Care 2001 Oct; 29(5): 506–9

    PubMed  CAS  Google Scholar 

  117. Bekker AY, Berklayd P, Osborn I, et al. The recovery of cognitive function after remifentanil-nitrous oxide anesthesia is faster than after an isoflurane-nitrous oxide-fentanyl combination in elderly patients. Anesth Analg 2000 Jul; 91(1): 117–22

    PubMed  CAS  Google Scholar 

  118. Song D, Whitten CW, White PF. Remifentanil infusion facilitates early recovery for obese outpatients undergoing laparoscopic cholecystectomy. Anesth Analg 2000 May; 90(5): 1111–3

    Article  PubMed  CAS  Google Scholar 

  119. Joshi GP, Warner DS, Twersky RS, et al. A comparison of the remifentanil and fentanyl adverse effect profile in a multicenter phase IV study. J Clin Anesth 2002 Nov; 14(7): 494–9

    Article  PubMed  CAS  Google Scholar 

  120. Buerkle H, Wilhelm W. Remifentanil for gynaecological and obstetric procedures. Curr Opin Anaesth 2000; 13(3): 271–5

    Article  CAS  Google Scholar 

  121. Miller DR. Intravenous anaesthesia: new drugs, new concepts, and clinical applications. Can J Anaesth 1996 May; 43 (Part 2): R142–8

    Article  PubMed  CAS  Google Scholar 

  122. Reddy P, Feret BM, Kulicki L, et al. Cost analysis of fentanyl and remifentanil in coronary artery bypass graft surgery without cardiopulmonary bypass. J Clin Pharm Ther 2002 Apr; 27(2): 127–32

    Article  PubMed  CAS  Google Scholar 

  123. Myles PS, Hunt JO, Fletcher H, et al. Remifentanil, fentanyl, and cardiac surgery: a double-blinded, randomized, controlled trial of costs and outcomes. Anesth Analg 2002 Oct; 95(4): 805–12

    PubMed  CAS  Google Scholar 

  124. Eberhart LH, Eberspaecher M, Wulf H, et al. Fast-track eligibility, costs and quality of recovery after intravenous anaesthesia with propofol-remifentanil versus balanced anaesthesia with isoflurane-alfentanil. Eur J Anaesthesiol 2004 Feb; 21(2): 107–14

    PubMed  CAS  Google Scholar 

  125. Loop T, Priebe HJ. Prospective, randomized cost analysis of anesthesia with remifentanil combined with propofol, desflurane or sevoflurane for otorhinolaryngeal surgery. Acta Anaesthesiol Scand 2002 Nov; 46(10): 1251–60

    Article  PubMed  CAS  Google Scholar 

  126. Suttner S, Boldt J, Schmidt C, et al. Cost analysis of target-controlled infusion-based anesthesia compared with standard anesthesia regimens. Anesth Analg 1999 Jan; 88: 77–82

    PubMed  CAS  Google Scholar 

  127. Hogue S, Reese PR, Munshi O, et al. Cost analysis of remifentanil and fentanyl for neurosurgical anesthesia. Am J Health Syst Pharm 1999; 56(6): 551–4

    PubMed  CAS  Google Scholar 

  128. Heidvall M, Hein A, Davidson S, et al. Cost comparison between three different general anaesthetic techniques for elective arthroscopy of the knee. Acta Anaesthesiol Scand 2000 Feb; 44: 157–62

    Article  PubMed  CAS  Google Scholar 

  129. Beers RA, Calimlim JR, Uddoh E, et al. A comparison of the cost-effectiveness of remifentanil versus fentanyl as an adjuvant to general anesthesia for outpatient gynecologic surgery. Anesth Analg 2000 Dec; 91(6): 1420–5

    Article  PubMed  CAS  Google Scholar 

  130. Epple J, Kubitz J, Schmidt H, et al. Comparative analysis of costs of total intravenous anaesthesia with propofol and remifentanil vs. balanced anaesthesia with isoflurane and fentanyl. Eur J Anaesthesiol 2001 Jan; 18(1): 20–8

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley J. Scott.

Additional information

Various sections of the manuscript reviewed by: J. Ard, Department of Anesthesiology, New York University Medical Center, New York, New York, USA; D.C.H. Cheng, Department of Anaesthesia and Perioperative Medicine, London Health Science Centre and St Joseph Health Care, University of Western Ontario, London, Ontario, Canada; L. Fleisher, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA; R.H. Friesen, Cardiac Anaesthesia, The Children’s Hospital, University of Colorado School of Medicine, Denver, Colorado, USA; L.H. Garvey, Department of Anesthesiology, Centre of Head and Orthopaedics, Copenhagen University Hospital, Copenhagen, Denmark; E.M. Gruber, Department of Cardiothoracic Anaesthesia, Vienna General Hospital, University of Vienna, Vienna, Austria; A.S. Habib, Duke University Medical Center, Durham, North Carolina, USA; J.E. Mandel, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA; D. Royston, Department of Cardiothoracic Anaesthesia, Harefield Hospital, Harefield, Middlesex, England.

Data Selection

Sources: Medical literature published in any language since 1980 on remifentanil, identified using MEDLINE and EMBASE, supplemented by AdisBase (a proprietary database of Adis International). Additional references were identified from the reference lists of published articles. Bibliographical information, including contributory unpublished data, was also requested from the company developing the drug.

Search strategy: MEDLINE search terms were ‘remifentanil’ or ‘remifentanyl’. EMBASE search terms were ‘remifentanil’ or ‘remifentanyl’ or ‘GI-87084’. AdisBase search terms were ‘remifentanil’ or ‘remifentanyl’ or ‘GI 87084’. Searches were last updated 8 August 2005.

Selection: Studies in patients undergoing surgery who received remifentanil. Inclusion of studies was based mainly on the methods section of the trials. When available, large, well controlled trials with appropriate statistical methodology were preferred. Relevant pharmacodynamic and pharmacokinetic data are also included.

Index terms: Remifentanil, anaesthesia, opioid, pharmacodynamics, pharmacokinetics, therapeutic use.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, L.J., Perry, C.M. Remifentanil. Drugs 65, 1793–1823 (2005). https://doi.org/10.2165/00003495-200565130-00007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200565130-00007

Keywords

Navigation