Skip to main content
Log in

Strategies to Optimise Propofol-Opioid Anaesthesia

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Propofol-opioid combinations are widely used in today’s anaesthetic practice. Over the past 20–30 years the pharmacology of these agents has been described in increasingly greater detail. Together with novel intravenous administration devices and improved anaesthetic depth monitoring, this has created a basis for the optimisation of the administration of propofol-opioid anaesthesia. This article describes the current strategies regarding the application of this type of anaesthesia, focusing on three strategic tools: (i) application of pharmacokinetic-pharmacodynamic knowledge of propofol and the Opioids, with particular attention to pharmacodynamic interactions between them; (ii) the use of state-of-the-art administration techniques; and (iii) the application of bispectral index monitoring. Together, these techniques have improved the level of control, the flexibility and the safety of anaesthetic practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Fig. 3
Table II
Fig. 4

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Kuipers JA, Boer F, de Roode A, et al. Modeling population pharmacokinetics of lidocaine: should cardiac output be included as a patient factor? Anesthesiology 2001; 94(4): 566–73

    Article  PubMed  CAS  Google Scholar 

  2. Kuipers JA, Boer F, Olofsen E, et al. Recirculatory and compartmental pharmacokinetic modeling of alfentanil in pigs: the influence of cardiac output. Anesthesiology 1999; 90(4): 1146–57

    Article  PubMed  CAS  Google Scholar 

  3. Kuipers JA, Boer F, Olofsen E, et al. Recirculatory pharmacokinetics and pharmacodynamics of rocuronium in patients: the influence of cardiac output. Anesthesiology 2001; 94(1): 47–55

    Article  PubMed  CAS  Google Scholar 

  4. Kharasch ED, Jubert C, Senn T, et al. Intraindividual variability in male hepatic CYP3A4 activity assessed by alfentanil and midazolam clearance. J Clin Pharmacol 1999; 39(7): 664–9

    Article  PubMed  CAS  Google Scholar 

  5. Labroo RB, Paine MF, Thummel KE, et al. Fentanyl metabolism by human hepatic and intestinal cytochrome P450 3A4: implications for interindividual variability in disposition, efficacy, and drug interactions. Drug Metab Dispos 1997; 25(9): 1072–80

    PubMed  CAS  Google Scholar 

  6. van den Nieuwenhuyzen MC, Engbers FH, Burm AG, et al. Target-controlled infusion of alfentanil for postoperative analgesia: contribution of plasma protein binding to intra-patient and inter-patient variability. Br J Anaesth 1999; 82(4): 580–5

    Article  PubMed  Google Scholar 

  7. Mertens MJ, Vuyk J, Olofsen E, et al. Propofol alters the pharmacokinetics of alfentanil in healthy male volunteers. Anesthesiology 2001; 94(6): 949–57

    Article  PubMed  CAS  Google Scholar 

  8. Vuyk J, Mertens MJ, Olofsen E, et al. Propofol anesthesia and rational Opioid selection: determination of optimal EC50-EC95 propofol-opioid concentrations that assure adequate anesthesia and a rapid return of consciousness. Anesthesiology 1997; 87(6): 1549–62

    Article  PubMed  CAS  Google Scholar 

  9. Kanto J, Gepts E. Pharmacokinetic implications for the clinical use of propofol. Clin Pharmacokinet 1989; 17(5): 308–26

    Article  PubMed  CAS  Google Scholar 

  10. Smith C, McEwan AI, Jhaveri R, et al. The interaction of fentanyl on the Cp50 of propofol for loss of consciousness and skin incision. Anesthesiology 1994; 81(4): 820–8

    Article  PubMed  CAS  Google Scholar 

  11. Stanski DR, Shafer SL. Quantifying anesthetic drug interaction: implications for drug dosing. Anesthesiology 1995; 83(1): 1–5

    Article  PubMed  CAS  Google Scholar 

  12. Vuyk J, Lim T, Engbers FH, et al. The pharmacodynamic interaction of propofol and alfentanil during lower abdominal surgery in women. Anesthesiology 1995; 83(1): 8–22

    Article  PubMed  CAS  Google Scholar 

  13. Schnider TW, Minto CF, Gambus PL, et al. The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology 1998; 88(5): 1170–82

    Article  PubMed  CAS  Google Scholar 

  14. Scott JC, Stanski DR. Decreased fentanyl and alfentanil dose requirements with age: a simultaneous pharmacokinetic and pharmacodynamic evaluation. J Pharmacol Exp Ther 1987; 240(1): 159–66

    PubMed  CAS  Google Scholar 

  15. Minto CF, Schnider TW, Shafer SL. Pharmacokinetics and pharmacodynamics of remifentanil (II): model application. Anesthesiology 1997; 86(1): 24–33

    Article  PubMed  CAS  Google Scholar 

  16. Maitre PO, Vozeh S, Heykants J, et al. Population pharmacokinetics of alfentanil: the average dose-plasma concentration relationship and interindividual variability in patients. Anesthesiology 1987; 66(1): 3–12

    Article  PubMed  CAS  Google Scholar 

  17. Gepts E, Shafer SL, Camu F, et al. Linearity of pharmacokinetics and model estimation of sufentanil. Anesthesiology 1995; 83(6): 1194–204

    Article  PubMed  CAS  Google Scholar 

  18. Vuyk J, Engbers FH, Burm AG, et al. Pharmacodynamic interaction between propofol and alfentanil when given for induction of anesthesia. Anesthesiology 1996; 84(2): 288–99

    Article  PubMed  CAS  Google Scholar 

  19. Schnider TW, Minto CF, Shafer SL, et al. The influence of age on propofol pharmacodynamics. Anesthesiology 1999; 90(6): 1502–16

    Article  PubMed  CAS  Google Scholar 

  20. Saint-Maurice C, Cockshott ID, Douglas EJ, et al. Pharmacokinetics of propofol in young children after a single dose. Br J Anaesth 1989; 63(6): 667–70

    Article  PubMed  CAS  Google Scholar 

  21. Kirkpatrick T, Cockshott ID, Douglas EJ, et al. Pharmacokinetics of propofol (Diprivan) in elderly patients. Br J Anaesth 1988; 60(2): 146–50

    Article  PubMed  CAS  Google Scholar 

  22. Schüttler J, Ihmsen H. Population pharmacokinetics of propofol: a multicenter study. Anesthesiology 2000; 92(3): 727–38

    Article  PubMed  Google Scholar 

  23. Vuyk J, Oostwouder CJ, Vletter AA, et al. Gender differences in the pharmacokinetics of propofol in elderly patients during and after continuous infusion. Br J Anaesth 2001; 86(2): 183–8

    Article  PubMed  CAS  Google Scholar 

  24. Oda Y, Hamaoka N, Hiroi T, et al. Involvement of human liver cytochrome P4502B6 in the metabolism of propofol. Br J Clin Pharmacol 2001; 51(3): 281–5

    Article  PubMed  CAS  Google Scholar 

  25. Guitton J, Buronfosse T, Desage M, et al. Possible involvement of multiple human cytochrome P450 isoforms in the liver metabolism of propofol. Br J Anaesth 1998; 80(6): 788–95

    Article  PubMed  CAS  Google Scholar 

  26. McKillop D, Wild MJ, Butters CJ, et al. Effects of propofol on human hepatic microsomal cytochrome P450 activities. Xenobiotica 1998; 28(9): 845–53

    Article  PubMed  CAS  Google Scholar 

  27. Ebert TJ, Muzi M, Berens R, et al. Sympathetic responses to induction of anesthesia in humans with propofol or etomidate. Anesthesiology 1992; 76(5): 725–33

    Article  PubMed  CAS  Google Scholar 

  28. Sztark F, Ichas F, Mazat JP, et al. Propofol and cellular calcium homeostasis [letter]. Anesthesiology 1995; 83(6): 1386

    Article  PubMed  CAS  Google Scholar 

  29. Li YC, Ridefelt P, Wiklund L, et al. Propofol induces a lowering of free cytosolic calcium in myocardial cells. Acta Anaesthesiol Scand 1997; 41(5): 633–8

    Article  PubMed  CAS  Google Scholar 

  30. Nieuwenhuijs D, Sarton E, Teppema L, et al. Propofol for monitored anesthesia care: implications on hypoxic control of cardiorespiratory responses. Anesthesiology 2000; 92(1): 46–54

    Article  PubMed  CAS  Google Scholar 

  31. Nieuwenhuijs D, Sarton E, Teppema LJ, et al. Respiratory sites of action of propofol: absence of depression of peripheral chemoreflex loop by low-dose propofol. Anesthesiology 2001; 95(4): 889–95

    Article  PubMed  CAS  Google Scholar 

  32. Kapila A, Glass PS, Jacobs JR, et al. Measured contextsensitive half-times of remifentanil and alfentanil. Anesthesiology 1995; 83(5): 968–75

    Article  PubMed  CAS  Google Scholar 

  33. Westmoreland CL, Hoke JF, Sebel PS, et al. Pharmacokinetics of remifentanil (GI87084B) and its major metabolite (GI90291) in patients undergoing elective inpatient surgery. Anesthesiology 1993; 79(5): 893–903

    Article  PubMed  CAS  Google Scholar 

  34. Dershwitz M, Hoke JF, Rosow CE, et al. Pharmacokinetics and pharmacodynamics of remifentanil in volunteer subjects with severe liver disease. Anesthesiology 1996; 84(4): 812–20

    Article  PubMed  CAS  Google Scholar 

  35. Hoke JF, Shlugman D, Dershwitz M, et al. Pharmacokinetics and pharmacodynamics of remifentanil in persons with renal failure compared with healthy volunteers. Anesthesiology 1997; 87(3): 533–41

    Article  PubMed  CAS  Google Scholar 

  36. Minto CF, Schnider TW, Egan TD, et al. Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil (I): model development. Anesthesiology 1997; 86(1): 10–23

    Article  PubMed  CAS  Google Scholar 

  37. Egan TD, Huizinga B, Gupta SK, et al. Remifentanil pharmacokinetics in obese versus lean patients. Anesthesiology 1998; 89(3): 562–73

    Article  PubMed  CAS  Google Scholar 

  38. Egan TD. Remifentanil pharmacokinetics and pharmacodynamics: a preliminary appraisal. Clin Pharmacokinet 1995; 29(2): 80–94

    Article  PubMed  CAS  Google Scholar 

  39. Pavlin DJ, Coda B, Shen DD, et al. Effects of combining propofol and alfentanil on ventilation, analgesia, sedation, and emesis in human volunteers. Anesthesiology 1996; 84(1): 23–37

    Article  PubMed  CAS  Google Scholar 

  40. Matot I, Neely CF, Katz RY, et al. Pulmonary uptake of propofol in cats: effect of fentanyl and halothane. Anesthesiology 1993; 78(6): 1157–65

    Article  PubMed  CAS  Google Scholar 

  41. Gepts E, Jonckheer K, Maes V, et al. Disposition kinetics of propofol during alfentanil anaesthesia. Anaesthesia 1988; 43 Suppl.: 8–13

    Article  PubMed  CAS  Google Scholar 

  42. Janicki PK, James MF, Erskine WA. Propofol inhibits enzymatic degradation of alfentanil and sufentanil by isolated liver microsomes in vitro. Br J Anaesth 1992; 68(3): 311–2

    Article  PubMed  CAS  Google Scholar 

  43. Baker MT, Chadam MV, Ronnenberg Jr WC. Inhibitory effects of propofol on cytochrome P450 activities in rat hepatic microsomes. Anesth Analg 1993; 76(4): 817–21

    Article  PubMed  CAS  Google Scholar 

  44. Kharasch ED, Hill HF, Eddy AC. Influence of dexmedetomidine and Clonidine on human liver microsomal alfentanil metabolism. Anesthesiology 1991; 75(3): 520–4

    Article  PubMed  CAS  Google Scholar 

  45. Vuyk J. Pharmacokinetic and pharmacodynamic interactions between Opioids and propofol. J Clin Anesth 1997; 9 (6 Suppl.): 23–6S

    Article  Google Scholar 

  46. Mertens MJ, Olofsen E, Burm AGL, et al. Mixed effects modeling of the influence on alfentanil on propofol pharmacokinetics. Anesthesiology 2004; 100: 795–805

    Article  PubMed  CAS  Google Scholar 

  47. Bovill JG. Adverse drug interactions in anesthesia. J Clin Anesth 1997; 9 (6 Suppl.): 3–13S

    Article  Google Scholar 

  48. Minto CF, Schnider TW, Short TG, et al. Response surface model for anesthetic drug interactions. Anesthesiology 2000; 92(6): 1603–16

    Article  PubMed  CAS  Google Scholar 

  49. Berenbaum MC. Concepts for describing the interaction of two agents. Radiat Res 1991; 126(2): 264–8

    Article  PubMed  CAS  Google Scholar 

  50. Berenbaum MC. What is synergy? Pharmacol Rev 1989; 41(2): 93–141

    PubMed  CAS  Google Scholar 

  51. Billard V, Moulla F, Bourgain JL, et al. Hemodynamic response to induction and intubation: propofol/fentanyl interaction. Anesthesiology 1994; 81(6): 1384–93

    Article  PubMed  CAS  Google Scholar 

  52. Bouillon T, Schmidt C, Garstka G, et al. Pharmacokinetic-pharmacodynamic modeling of the respiratory depressant effect of alfentanil. Anesthesiology 1999; 91(1): 144–55

    Article  PubMed  CAS  Google Scholar 

  53. Schüttler J, Schwilden H, Stoekel H. Pharmacokinetics as applied to total intravenous anaesthesia: practical implications. Anaesthesia 1983; 38 Suppl.: 53–6

    Article  PubMed  Google Scholar 

  54. Alvis JM, Reves JG, Govier AV, et al. Computer-assisted continuous infusions of fentanyl during cardiac anesthesia: comparison with a manual method. Anesthesiology 1985; 63(1): 41–9

    Article  PubMed  CAS  Google Scholar 

  55. Marsh B, White M, Morton N, et al. Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth 1991; 67(1): 41–8

    Article  PubMed  CAS  Google Scholar 

  56. Shafer SL, Siegel LC, Cooke JE, et al. Testing computer-controlled infusion pumps by simulation. Anesthesiology 1988; 68(2): 261–6

    Article  PubMed  CAS  Google Scholar 

  57. Vuyk J, Engbers FH, Burm AG, et al. Performance of computer-controlled infusion of propofol: an evaluation of five pharmacokinetic parameter sets. Anesth Analg 1995; 81(6): 1275–82

    PubMed  CAS  Google Scholar 

  58. Mertens MJ, Engbers FHM, Burm AGL, et al. Predictive performance of computer controlled infusion of remifentanil during propofol-remifentanil anaesthesia. Br J Anaesth 2003; 90(2): 132–41

    Article  PubMed  CAS  Google Scholar 

  59. Egan TD, Minto CF, Hermann DJ, et al. Remifentanil versus alfentanil: comparative pharmacokinetics and pharmacodynamics in healthy adult male volunteers. Anesthesiology 1996; 84(4): 821–33

    Article  PubMed  CAS  Google Scholar 

  60. Caton R. The electrical currents of the brain. BMJ 1875; II: 278

    Google Scholar 

  61. Gibbs F, Gibbs E, Lennox W. Effect on the electroencephalogram of certain drugs which influence nervous activity. Arch Intern Med 1937; 60: 154–66

    Article  Google Scholar 

  62. Breimer LT, Burm AG, Danhof M, et al. Pharmacokineticpharmacodynamic modelling of the interaction between flumazenil and midazolam in volunteers by aperiodic EEG analysis. Clin Pharmacokinet 1991; 20(6): 497–508

    Article  PubMed  CAS  Google Scholar 

  63. Breimer LT, Hennis PJ, Burm AG, et al. Quantification of the EEG effect of midazolam by aperiodic analysis in volunteers: pharmacokinetic/pharmacodynamic modelling. Clin Pharmacokinet 1990; 18(3): 245–53

    Article  PubMed  CAS  Google Scholar 

  64. Scott JC, Cooke JE, Stanski DR. Electroencephalographic quantitation of Opioid effect: comparative pharmacodynamics of fentanyl and sufentanil. Anesthesiology 1991; 74(1): 34–42

    Article  PubMed  CAS  Google Scholar 

  65. Scott JC, Ponganis KV, Stanski DR. EEG quantitation of narcotic effect: the comparative pharmacodynamics of fentanyl and alfentanil. Anesthesiology 1985; 62(3): 234–41

    Article  PubMed  CAS  Google Scholar 

  66. Kuizenga K, Kalkman CJ, Hennis PJ. Quantitative electroencephalographic analysis of the biphasic concentrationeffect relationship of propofol in surgical patients during extradural analgesia. Br J Anaesth 1998; 80(6): 725–32

    Article  PubMed  CAS  Google Scholar 

  67. Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology 1998; 89 (4): 980–1002

    Article  PubMed  CAS  Google Scholar 

  68. Johansen JW, Sebel PS. Development and clinical application of electroencephalographic bispectrum monitoring. Anesthesiology 2000; 93(5): 1336–44

    Article  PubMed  CAS  Google Scholar 

  69. Glass PS, Bloom M, Kearse L, et al. Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers. Anesthesiology 1997; 86(4): 836–47

    Article  PubMed  CAS  Google Scholar 

  70. Lysakowski C, Dumont L, Pellegrini M, et al. Effects of fentanyl, alfentanil, remifentanil and sufentanil on loss of consciousness and bispectral index during propofol induction of anaesthesia. Br J Anaesth 2001; 86(4): 523–7

    Article  PubMed  CAS  Google Scholar 

  71. Strays MM, De Smet T, Versichelen LF, et al. Comparison of closed-loop controlled administration of propofol using Bispectral Index as the controlled variable versus ’standard practice’ controlled administration. Anesthesiology 2001; 95(1): 6–17

    Article  Google Scholar 

  72. Mortier E, Strays M, De Smet T, et al. Closed-loop controlled administration of propofol using bispectral analysis. Anaesthesia 1998; 53(8): 749–54

    Article  PubMed  CAS  Google Scholar 

  73. Absalom AR, Sutcliffe N, Kenny GN. Closed-loop control of anesthesia using Bispectral index: performance assessment in patients undergoing major orthopedic surgery under combined general and regional anesthesia. Anesthesiology 2002; 96(1): 67–73

    Article  PubMed  Google Scholar 

  74. Thornton C, Barrowcliffe MP, Konieczko KM, et al. The auditory evoked response as an indicator of awareness. Br J Anaesth 1989; 63: 113–5

    Article  PubMed  CAS  Google Scholar 

  75. Schraag S, Bothner U, Gajraj RJ, et al. The performance of the electroencephalogram bispectral index and auditory evoked potential index to predict loss of consciousness during propofol infusion. Anesth Analg 1999; 89: 1311–5

    Article  PubMed  CAS  Google Scholar 

  76. Bonhomme V, Plourde G, Meuret P, et al. Auditory steady-state response and bispectral index for assessing level of consciousness during propofol sedation and hypnosis. Anesth Analg 2000; 91: 1398–403

    Article  PubMed  CAS  Google Scholar 

Download references

This review has been written on the basis of funding by the Department of Anaesthesiology of the Leiden University Medical Center. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaap Vuyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lichtenbelt, BJ., Mertens, M. & Vuyk, J. Strategies to Optimise Propofol-Opioid Anaesthesia. Clin Pharmacokinet 43, 577–593 (2004). https://doi.org/10.2165/00003088-200443090-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200443090-00002

Keywords

Navigation