Skip to main content
Log in

Effects of Food on Clinical Pharmacokinetics

  • Review Articles
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Food-drug interactions can be associated with alterations in the pharmacokinetic and pharmacodynamic profile of various drugs that may have clinical implications. The various phases in which food may interact with a coadministered drug are: (i) before and during gastrointestinal absorption; (ii) during distribution; (iii) during metabolism; and (iv) during elimination. Absorption and metabolism are the phases where food has most effect, and this review will focus on those areas. It will also review the variable and complex effects of antacids and metal ions on drug absorption.

Mechanisms related to food effects on drug absorption have been described under 5 categories: those causing decreased, delayed, increased or accelerated absorption, and those in which food has no significant effect. Among the major variables that interface between differential effects of food and postprandial bioavailability are: (i) the physicochemical characteristics and enantiomorphic composition of the drug; (ii) timing of meals in relation to time of drug administration; (iii) size and composition of meals (especially fat, protein and fibre); and (iv) dose size. However, the influence of food is largely a matter of the design of the pharmaceutical formulation. In addition, the mechanism of ‘food effect’ may involve physiological and sensory responses to food, such as changes in gastrointestinal milieu and gastric emptying rate, reflex action, and may also involve the site and route (either portal or lymphatic) of drug absorption.

Mixing drugs with fruit juice, such as grapefruit and orange juice, and acidic beverages, such as commercial soft drinks, may affect absorption because of decreases in gastric pH, which could offer a therapeutic advantage in certain clinical conditions, such as patients with HIV disease and cancer. The increased bioavailability caused by the concomitant intake of grapefruit juice results from the inhibition of intestinal cytochrome P450 (CYP) 3A4, but not hepatic CYP3A4 or colon CYP3A5, which probably involves the bioflavonoid naringenin and furanocoumarins.

Although there is a vast amount of literature, there is still no rational scientific basis to predict the effect of food for a particular chemical entity or a chemical class of therapeutic agents. A mechanistic understanding of the effects of food may serve as a key to the pharmacokinetic optimisation of patient therapy, both in outpatients and hospitalised patients of various age groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Welling PG. Effects of food on drug absorption. Annu Rev Nutr 1996; 16: 383–415.

    Article  PubMed  CAS  Google Scholar 

  2. Piquette-Miller M, Jamali F. Pharmacokinetics and multiple peaking of acebutolol enantiomers in rats. Biopharm Drug Dispos 1997; 18: 543–56.

    Article  PubMed  CAS  Google Scholar 

  3. Pao L-H, Zhou SY, Cook C, et al. Reduced systemic availability of an antiarrhythmic drug, bidisomide, with meal co-administration: relationship with region-dependent intestinal absorption. Pharm Res 1998; 15: 221–7.

    Article  PubMed  CAS  Google Scholar 

  4. Massarella JW, DeFeo TM, Brown AN, et al. The influence of food on the pharmacokinetics and ACE inhibition of cilazapril. Br J Clin Pharmacol 1989; 27 Suppl. 2: 205–9.

    Article  Google Scholar 

  5. Rittig S, Jensen AR, Jensen KT, et al. Desmopressin tablet treatment: factors influencing gastrointestinal absorption. Scand J Urol Nephrol Suppl 1997; 183: 51–2.

    PubMed  CAS  Google Scholar 

  6. Ritting S, Jensen AR, Jensen KT, et al. Effect of food intake on the pharmacokinetics and antidiuretic activity of oral desmopressin (DDAVP) in hydrated normal subjects. Clin Endocrinol 1998; 48: 235–41.

    Article  Google Scholar 

  7. Kindler J, Ruegg PC, Neuray M, et al. Effect of food intake on plasma levels and antihypertensive response during maintenance therapy with endralazine. Eur J Clin Pharmacol 1987; 32: 367–72.

    Article  PubMed  CAS  Google Scholar 

  8. Clancy A, Locke-Haydon J, Cregeen RJ, et al. Effect of concomitant food intake on absorption kinetics of fenoldopam (SK&F 82526) in healthy volunteers. Eur J Clin Pharmacol 1987; 32: 103–6.

    Article  PubMed  CAS  Google Scholar 

  9. Paintaud G, Alvan G, Eckernas SA, et al. The influence of food intake on the effect of two controlled release formulations of furosemide. Biopharm Drug Dispos 1995; 16: 221–32.

    Article  PubMed  CAS  Google Scholar 

  10. McCrindle JL, Li Kam Wa TC, Barron W, et al. Effect of food on the absorption of frusemide and bumetanide in man. Br J Clin Pharmacol 1996; 42: 743–6.

    Article  PubMed  CAS  Google Scholar 

  11. Jackson SH, Shepherd AM, Ludden TM, et al. Effect of food on oral availability of apresoline and controlled release hydralazine in hypertensive patients. J Cardiovasc Pharmacol 1990; 16: 624–8.

    Article  PubMed  CAS  Google Scholar 

  12. Choi RL, Kochak GM, Reydel-Bax P, et al. Effects of food on the bioavailability of CGS 16617, an angiotensin converting enzyme inhibitor, in healthy subjects. J Clin Pharmacol 1988; 28: 848–52.

    PubMed  CAS  Google Scholar 

  13. Ritter W, Wingender W, Hanisch M, et al. Food and muzolimine interaction [in German]. Z Kardiol 1985; 74 Suppl. 2: 145–8.

    PubMed  Google Scholar 

  14. Buice RG, Subramanian VS, Duchin KL, et al. Bioequivalence of a highly variable drug: an experience with nadolol. Pharm Res 1996; 13: 1109–15.

    Article  PubMed  CAS  Google Scholar 

  15. Buice RG, Subramanian V, Lane E. Bioequivalence of two orally administered nicardipine products. Biopharm Drug Dispos 1996; 17: 471–80.

    Article  PubMed  CAS  Google Scholar 

  16. Wells TG, Sinaiko AR. Antihypertensive effect and pharmacokinetics of nitrendipine in children. J Pediatr 1991; 118: 638–43.

    Article  PubMed  CAS  Google Scholar 

  17. Lecocq B, Funck-Brentano C, Lecocq V, et al. Influence of food on the pharmacokinetics of perindopril and the time course of antgiotensin-converting enzyme inhibition in serum. Clin Pharmacol Ther 1990; 47: 397–402.

    Article  PubMed  CAS  Google Scholar 

  18. Morgan T. Clinical pharmacokinetics and pharmacodynamics of carvedilol. Clin Pharmacokinet 1994 May; 26: 335–46.

    Google Scholar 

  19. Kosoglou T, Kazierad DJ, Schentag JJ, et al. Effect of food on the oral bioavailability of isosorbide-5-mononitrate administered as an extended-release tablet. J Clin Pharmacol 1995; 35: 151–8.

    PubMed  CAS  Google Scholar 

  20. Mazer N, Abisch E, Gfeller JC, et al. Intragastric behavior and absorption kinetics of a normal and ‘floating’ modified-release capsule of isradipine under fasted and fed conditions. J Pharm Sci 1988; 77: 647–57.

    Article  PubMed  CAS  Google Scholar 

  21. Reitberg DP, Love SJ, Quercia GT, et al. Effect of food on nifedipine pharmacokinetics. Clin Pharmacol Ther 1987; 42: 72–5.

    Article  PubMed  CAS  Google Scholar 

  22. Qato MK, Mohammed FA. Effect of food on the comparative bioavailability of two commercially available sustained-release tablet formulations containing nifedipine. STP Pharma Sci 1998; 8: 369–73.

    Google Scholar 

  23. Conway EL, Phillips PA, Drummer OH, et al. Influence of food on the bioavailability of a sustained-release verapamil preparation. J Pharm Sci 1990; 79: 228–31.

    Article  PubMed  CAS  Google Scholar 

  24. Bianchetti G, Bagheri H, Houin G, et al. Pharmacokinetics and bioavailability of diltiazem sustained-release: influence of food and time of administration. Fundam Clin Pharmacol 1995; 9: 197–201.

    Article  PubMed  CAS  Google Scholar 

  25. Wilson CG, Washington N, Greaves JL, et al. Predictive modeling of the behavior of a controlled release buflomedil HC1 formulation using scintigraphic and pharmacokinetic data. Int J Pharm 1991; 72: 79–86.

    Article  CAS  Google Scholar 

  26. Sun JX, Cipriano A, Chan K, et al. Effect of food on the relative bioavailability of a hypolipidemic agent (CGP 43371) in healthy subjects. J Pharm Sci 1994; 83: 264–6.

    Article  PubMed  CAS  Google Scholar 

  27. Inskeep PB, Davis KM, Reed AE. Pharmacokinetics of the acyl coenzyme A: cholesterol acyl transferase inhibitor CP-105, 191 in dogs: the effect of food and sesame oil on systemic exposure following oral dosing. J Pharm Sci 1995; 84: 131–3.

    Article  PubMed  CAS  Google Scholar 

  28. Koytchev R, Alken RG, Mayer O, et al. Influence of food on the bioavailability and some pharmacokinetic parameters of diprafenone: a novel antiarrhythmic agent. Eur J Clin Pharmacol 1996; 50: 315–9.

    Article  PubMed  CAS  Google Scholar 

  29. Garnett WR. Interactions with hydroxymethylglutaryl-coenzyme A reductase inhibitors. Am J Health Syst Pharm 1995; 52: 1639–45.

    PubMed  CAS  Google Scholar 

  30. Rosillon D, Stockis A, Poli G, et al. Food effect on the oral bioavailability of manidipine: single dose, randomized, crossover study in healthy male subjects. Eur J Drug Metab Pharmacokinet 1998; 23: 197–202.

    Article  PubMed  CAS  Google Scholar 

  31. Balogh Nemes K, Horvath V, Grezal G, et al. Food interaction pharmacokinetic study of cordaflex 20 mg retard filmtablet in healthy volunteers. Int J Clin Pharmacol Ther 1998; 36: 263–9.

    PubMed  CAS  Google Scholar 

  32. Abrahamsson B, Alpsten M, Bake B, et al. Drug absorption from nifedipine hydrophilic matrix extended-release (ER) tablet — comparison with an osmotic pump tablet and effect of food. J Control Rel 1998; 52: 301–10.

    Article  CAS  Google Scholar 

  33. Ueno K, Kawashima S, Uemoto K, et al. Effect of food on nifedipine sustained-release preparation. DICP 1989; 23: 662–5.

    PubMed  CAS  Google Scholar 

  34. Martinez MN, Pelsor FR, Shah VP, et al. Effect of dietary fat content on the bioavailability of a sustained release quinidine gluconate tablet. Biopharm Drug Dispos 1990; 11: 17–29.

    Article  PubMed  CAS  Google Scholar 

  35. Dessager JP. Clinical pharmacokinetics of ticlopidine. Clin Pharmacokinet 1994 May; 26: 347–55.

    Google Scholar 

  36. Deedwania PC, Cheitlin MD, Das SK, et al. Amlodipine once a day in stable angina: double-blind crossover comparison with placebo. Clin Cardiol 1993; 16: 599–602.

    Article  PubMed  CAS  Google Scholar 

  37. Radulovic LL, Cilla DD, Posvar EL, et al. Effect of food on the bioavailability of atorvastatin, an HMG-CoA reductase inhibitor. J Clin Pharmacol 1995; 35: 990–4.

    PubMed  CAS  Google Scholar 

  38. Karam R, Marcello S, Brooks RR, et al. Azimilide dihydrochloride, a novel antiarrhythmic agent. Am J Cardiol 1998; 81 (6A): 40D–6D.

    Article  PubMed  CAS  Google Scholar 

  39. Mooradian AD. Digitalis. An update of clinical pharmacokinetics, therapeutic monitoring techniques and treatment recommendations. Clin Pharmacokinet 1988; 15: 165–79.

    Article  PubMed  CAS  Google Scholar 

  40. Du Souich P, Lery N, Lery L, et al. Influence of food on the bioavailability of diltiazem and two of its metabolites following the administration of conventional tablets and slow-release capsules. Biopharm Drug Dispos 1990; 11: 137–47.

    Article  PubMed  Google Scholar 

  41. Wilding IR, Hardy JG, Maccari M, et al. Scintigraphic and pharmacokinetic assessment of a multiparticulate sustained release formulation of diltiazem. Int J Pharm 1991; 76: 133–43.

    Article  CAS  Google Scholar 

  42. Tenero D, Martin D, Ilson B, et al. Pharmacokinetics of intravenously and orally administered eprosartan in healthy males: absolute bioavailability and effect of food. Biopharm Drug Dispos 1998; 19: 351–6.

    Article  PubMed  CAS  Google Scholar 

  43. Abrahamsson B, Alpsten M, Hugosson M, et al. Absorption, gastrointestinal transit, and tablet erosion of felodipine extended-release (ER) tablets. Pharm Res 1993; 10: 709–14.

    Article  PubMed  CAS  Google Scholar 

  44. Vachharajani NN, Shyu WC, Mantha S, et al. Lack of effect of food on the oral bioavailability of irbesartan in healthy male volunteers. J Clin Pharmacol 1998; 38: 433–6.

    PubMed  CAS  Google Scholar 

  45. van den Berg G, van Steveninck F, Gubbens-Stibbe JM, et al. Influence of food on the bioavailability of metoprolol from an OROS system: a study in healthy volunteers. Eur J Clin Pharmacol 1990; 39: 315–6.

    Article  PubMed  Google Scholar 

  46. Rimoy GH, Idle JR, Bhaskar NK, et al. The influence of food on the pharmacokinetics of ‘biphasic’ nifedipine at steady state in normal subjects. Br J Clin Pharmacol 1989; 28: 612–5.

    Article  PubMed  CAS  Google Scholar 

  47. Armstrong J, Challenor VF, Macklin BS, et al. The influence of two types of meal on the pharmacokinetics of a modified-re-lease formulation of nifedipine (Adalat Retard). Eur J Clin Pharmacol 1997; 53: 141–3.

    Article  PubMed  CAS  Google Scholar 

  48. Holm V, Melander A, Wahlin-Boll E. Influence of food and age on nitrazepam kinetics. Drug Nutr Interact 1982; 1: 307–11.

    PubMed  CAS  Google Scholar 

  49. Junginger HE, Verhoeven J, Danhof M. Oral controlled drug delivery systems based on microporous polymers. Drug Dev Ind Pharm 1989; 15: 1059–72.

    Article  CAS  Google Scholar 

  50. Berdai D, Demotes-Mainard F, Philip F, et al. Influence of food and body weight on the pharmacokinetics of penticainide. Fundam Clin Pharmacol 1994; 8: 453–7.

    Article  PubMed  CAS  Google Scholar 

  51. Haegele KD, Hinze C, Joder-Ohlenbusch AM, et al. Effects of a standardized meal on the pharmacokinetics of the new cardiotonic agent piroximone. Arzneimittel Forschung 1991; 41: 1225–9.

    PubMed  CAS  Google Scholar 

  52. Quion JA, Jones PH. Clinical pharmacokinetics of pravastatin. Clin Pharmacokinet 1994 Aug; 27 (2): 94–103.

    Article  PubMed  CAS  Google Scholar 

  53. Dahlström U, Graffner C, Johnsson U, et al. Pharmacokinetics of prenalterol after single and multiple administration of controlled release tablets to patients with congestive heart failure. Eur J Clin Pharmacol 1983; 24: 495–502.

    Article  PubMed  Google Scholar 

  54. Rocci ML, Mojaverian P, Davis RJ, et al. Food-induced gastric retention and absorption of sustained release procainamide. Clin Pharmacol Ther 1987; 42: 45–9.

    Article  PubMed  CAS  Google Scholar 

  55. Ferry JJ, Horvath AM, Sedman AJ, et al. Influence of food on the pharmacokinetics of quinapril and its active diacid metabolite, Cl-928. J Clin Pharmacol 1987; 27: 397–9.

    PubMed  CAS  Google Scholar 

  56. Boberg M, Ahra H-J, Beckermann B, et al. Pharmacokinetics and metabolism of the new thromboxane A2 receptor antagonist ramatroban in animals. 1 st communication: absorption, concentrations in plasma, metabolism, and excretion after single administration to rats and dogs. Arzneimittel Forschung 1997; 47: 928–38.

    PubMed  CAS  Google Scholar 

  57. Lee I-D, Hunt TL, Bradley CR, et al. Effects on the pharmacokinetics and pharmacodynamics in the elderly of coadministering ramipril with water, apple juice, and apple sauce. Pharm Res 1996; 13: 639–42.

    Article  PubMed  CAS  Google Scholar 

  58. Hashiguchi M, Ogata H, Maeda A, et al. No effect of high-protein food on the stereoselective bioavailability and pharmacokinetics of verapamil. J Clin Pharmacol 1996; 36: 1022–8.

    Article  PubMed  CAS  Google Scholar 

  59. Gupta SK, Yih BM, Atkinson L, et al. The effect of food, time of dosing, and body position on the pharmacokinetics and pharmacodynamics of verapamil and norverapamil. J Clin Pharmacol 1995; 35: 1083–93.

    PubMed  CAS  Google Scholar 

  60. Gottfries J, Svenheden A, Alpsten M, et al. Gastrointestinal transit of amoxicillin modofied-release tablets and a placebo tablet including pharmacokinetic assessments of amoxicillin. Scand J Gastroenterol 1996; 31: 49–53.

    Article  PubMed  CAS  Google Scholar 

  61. Wan XX, Xia ZQ, Zhang L. Influence of food on bioavailability of ciprofloxacin. Chin J Hosp Pharm 1993; 13: 17–8.

    Google Scholar 

  62. Digenis GA, Sandefer EP, Parr AF, et al. Gastrointestinal behavior of orally administered radiolabeled erythromycin pellets in man as determined by gamma scintigraphy. J Clin Pharmacol 1990; 30: 621–31.

    PubMed  CAS  Google Scholar 

  63. Randinitis EJ, Sedman AJ, Welling PG, et al. Effect of a high-fat meal on the bioavailability of a polymer-coated erythromycin particle tablet formulation. J Clin Pharmacol 1989; 29: 79–84.

    PubMed  CAS  Google Scholar 

  64. Peloquin CA, Bulpitt AE, Jaresco GS, et al. Pharmacokinetics of ethambutol under fasting conditions, with food, and with antacids. Antimicrob Agents Chemother 1999; 43: 568–72.

    PubMed  CAS  Google Scholar 

  65. Yeh KC, Deutsch PJ, Haddix H, et al. Single-dose pharmacokinetics of indinavir and the effect of food. Antimicrob Agents Chemother 1998; 42: 332–8.

    PubMed  CAS  Google Scholar 

  66. Zent C, Smith P. Study of the effect of concomitant food on the bioavailability of rifampicin, isoniazid and pyrazinamide. Tuber Lung Dis 1995; 76: 109–13.

    Article  PubMed  CAS  Google Scholar 

  67. Van de Velde VJS, Van Peer AP, Heykants JJP, et al. Effect of food on the pharmacokinetics of a new hydroxypropyl-β-cyclodextrin formulation of itraconazole. Pharmacotherapy 1996; 16: 424–8.

    PubMed  Google Scholar 

  68. Osman MA, Patel RB, Schuna A, et al. Reduction in oral penicillamine absorption by food, antacid and ferrous sulfate. Clin Pharmacol Ther 1983; 33: 465–70.

    Article  PubMed  CAS  Google Scholar 

  69. D’Angelo L, De Ponti F, Crema F, et al. Effect of food on the bioavailability of pidotimod in healthy volunteers. Arzneimittel Forschung 1994; 44: 1473–5.

    PubMed  Google Scholar 

  70. Nazareno LA, Holazo AA, Limjuco R, et al. The effect of food on pharmacokinetics of zalcitabine in HIV-positive patients. Pharm Res 1995; 12: 1462–5.

    Article  PubMed  CAS  Google Scholar 

  71. Borin MT, Forbes KK, Hughes GS. The bioavailability of cefpodoxime proxetil tablets relative to an oral solution. Biopharm Drug Dispos 1995; 16: 295–302.

    Article  PubMed  CAS  Google Scholar 

  72. Kearns GL, Abdel-Rahman SM, Jacobs RF, et al. Cefpodoxime pharmacokinetics in children: effect of food. Pediatr Infect Dis J 1998; 17: 799–804.

    Article  PubMed  CAS  Google Scholar 

  73. Zimmermann T, Yeates RA, Albrecht M, et al. Influence of concomitant food intake on the gastrointestinal absorption of fluconazole and itraconazole in Japanese subjects. Int J Clin Pharmacol Res 1994; 14: 87–93.

    PubMed  CAS  Google Scholar 

  74. Lelawongs P, Barone JA, Colaizzi JL, et al. Effect of food and gastric acidity on absorption of orally administered ketoconazole. Clin Pharm 1988; 7: 228–35.

    PubMed  CAS  Google Scholar 

  75. Lee LJ, Hafkin B, Lee ID, et al. Effects of food and sucralfate on a single oral dose of 500 milligrams of levofloxacin in healthy subjects. Antimicrob Agents Chemother 1997; 41: 2196–200.

    PubMed  CAS  Google Scholar 

  76. Granneman GR, Mukherjee D. Effect of food on the bioavailability of temafloxacin: a review of 3 studies. Clin Pharmacokinet 1992; 22 Suppl. 1: 48–56.

    Article  PubMed  CAS  Google Scholar 

  77. Awadzi K, Hero M, Opoku NO, et al. The chemotherapy of onchocerciasis XVII. A clinical evaluation of albendazole in patients with onchocerciasis: effects of food and pretreatment with ivermectin on drug response and pharmacokinetics. Trop Med Parasitai 1994; 45: 203–8.

    CAS  Google Scholar 

  78. Lange H, Eggers R, Bircher J. Increased systemic availability of albendazole when taken with a fatty meal. Eur J Clin Pharmacol 1988; 34: 315–7.

    Article  PubMed  CAS  Google Scholar 

  79. Dixon R, Pozniak AL, Watt HM, et al. Single-dose and steadystate pharmacokinetics of a novel microfluidized suspension of atovaquone in human immunodeficiency virus-seropositive patients. Antimicrob Agents Chemother 1996; 40: 556–60.

    PubMed  CAS  Google Scholar 

  80. Emori H, Yamamoto K, Yokohama S, et al. Bioavailability of bropirimine 250 mg tablet in dogs: effect of food. J Pharm Pharmacol 1995; 47: 822–6.

    Article  PubMed  CAS  Google Scholar 

  81. Lode H, Fassbender M, Schaberg T, et al. Comparative pharmacokinetics of the new oral cephalosporins. Drugs 1994; 47 Suppl. 3: 10–9.

    Article  PubMed  CAS  Google Scholar 

  82. Hughes GS, Heald DL, Barker KB, et al. The effects of gastric pH and food on the pharmacokinetics of a new oral cephalosporin, cefpodoxime proxetil. Clin Pharmacol Ther 1989; 46: 674–85.

    Article  PubMed  CAS  Google Scholar 

  83. Borin MT, Driver MR, Forbes KK. Effect of timing of food on absorption of cefpodoxime proxetil. J Clin Pharmacol 1995; 35: 505–9.

    PubMed  CAS  Google Scholar 

  84. Finn A, Straughn A, Meyer M, et al. Effect of dose and food on the bioavailability of cefuroxime axetil. Biopharm Drug Dispos 1987; 8: 519–26.

    Article  PubMed  CAS  Google Scholar 

  85. Chen RR, Lee TY, Hsieh WC. Effect of food on pharmacokinetics of cefuroxime axetil in Chinese subjects. JFormos Med Assoc 1992; 91: 1171–81.

    Google Scholar 

  86. Schaad-Lanyi Z, Dieterle W, Dubois JP, et al. Pharmacokinetics of clofazimine in healthy human volunteers. Int J Leprosy 1987; 55: 9–15.

    CAS  Google Scholar 

  87. Lavelle J, Follansbee S, Trapnell CB, et al. Effect of food on the relative bioavailability of oral ganciclovir. J Clin Pharmacol 1996; 36: 238–41.

    PubMed  CAS  Google Scholar 

  88. Griffy KG. Pharmacokinetics of oral ganciclovir capsules in HIV-infected persons. AIDS 1996; 10 Suppl. 4: 3–6.

    Google Scholar 

  89. Khalafalla N, Elgholmy ZA, Khalil SA. Influence of high fat diet on GI absorption of griseofulvin tablets in man. Pharmazie 1981; 36: 692–3.

    PubMed  CAS  Google Scholar 

  90. Humberstone AJ, Porter CJ, Charman WN. Physicochemical basis for the effect of food on the absolute oral bioavailability of halofantrine. J Pharm Sci 1996; 85: 525–9.

    Article  PubMed  CAS  Google Scholar 

  91. Milton KA, Edwards G, Ward SA, et al. Pharmacokinetics of halofantrine in man: effects of food and dose size. Br J Clin Pharmacol 1989; 28: 71–7.

    Article  PubMed  CAS  Google Scholar 

  92. Zimmermann T, Yeates RA, Laufen H, et al. Influence of concomitant food intake on the oral absorption of two triazole antifungal agents, itraconazole and fluconazole. Eur J Clin Pharmacol 1994; 46: 147–50.

    Article  PubMed  CAS  Google Scholar 

  93. Crevoisier C, Handschin J, Barre J, et al. Food increases the bioavailability of mefloquine. Eur J Clin Pharmacol 1997; 53: 135–9.

    Article  PubMed  CAS  Google Scholar 

  94. Quart BD, Chapman SK, Peterkin J, et al. Phase I safety, tolerance, pharmacokinetics and food effect studies of AG1343: a novel HIV protease inhibitor [abstract no. LB3]. 2nd National Conference on Human Retrovirus and Related Infections; 1995 Jan 29–Feb 2; Washington, DC.

  95. Abdel-Rahman SM, Kearns GL. Single-dose pharmacokinetics of pleconaril (VP 63843) oral solution and effect of food. Antimicrob Agents Chemother 1998; 42: 2706–9.

    PubMed  CAS  Google Scholar 

  96. Saathoff A, Lode H, Hampel B, et al. Pharmacokinetics of FCE 22891, a new oral penem. Antimicrob Agents Chemother 1990; 34: 1001–6.

    Article  PubMed  CAS  Google Scholar 

  97. Muirhead GJ, Shaw T, Williams PEO, et al. Pharmacokinetics of the HIV-proteinase inhibitor, Ro 318959, after single and multiple oral doses in healthy volunteers [abstract]. Br J Clin Pharmacol 1992; 34: 170P.

    Google Scholar 

  98. Kenyon CJ, Brown F, McClelland GR, et al. The use of pharmacoscintigraphy to elucidate food effects observed with a novel protease inhibitor. Pharm Res 1998; 15: 417–22.

    Article  PubMed  CAS  Google Scholar 

  99. Nedelman J, Cramer JA, Robbins B, et al. The effect of food on the pharmacokinetics of multiple-dose terbinafine in young and elderly healthy subjects. Biopharm Drug Dispos 1997; 18: 127–38.

    Article  PubMed  CAS  Google Scholar 

  100. Lecaillon JB, Godbillon J, Campestrini J, et al. Effect of food on the bioavailability of triclabendazole in patients with fascioliasis. Br J Clin Pharmacol 1998; 45: 601–4.

    Article  PubMed  CAS  Google Scholar 

  101. Cundy KC, Sue IL, Visor GC, et al. Oral formulations of adefovir dipivoxil: in vitro dissolution and in vivo bioavailability in dogs. J Pharm Sci 1997; 86: 1334–8.

    Article  PubMed  CAS  Google Scholar 

  102. Dien TK, de Vries PJ, Khanh NX, et al. Effect of food intake on pharmacokinetics of oral artemisinin in healthy Vietnamese subjects. Antimicrob Agents Chemother 1997; 41: 1069–72.

    PubMed  CAS  Google Scholar 

  103. Foulds G, Luke DR, Teng R, et al. The absence of an effect of food on the bioavailability of azithromycin administered as tablets, sachet or suspension. J Antimicrob Chemother 1996; 37 Suppl. C: 37–44.

    Article  PubMed  CAS  Google Scholar 

  104. Faulkner RD, Bohaychuk W, Haynes JD, et al. The pharmacokinetics of cefixime in the fasted and fed state. Eur J Clin Pharmacol 1988; 34: 525–8.

    Article  PubMed  CAS  Google Scholar 

  105. Barriere SL. Pharmacology and pharmacokinetics of cefprozil. Clin Infect Dis 1992; 14 Suppl. 2: 184–8.

    Article  CAS  Google Scholar 

  106. Umemura K, Ikeda Y, Kondo K, et al. Safety and pharmacokinetics of CS-834, a new oralcarbapenem antibiotic, in healthy volunteers. Antimicrob Agents Chemother 1997; 41: 2664–9.

    PubMed  CAS  Google Scholar 

  107. Rao N, Eller M, Arumugham T, et al. The effect of food on the relative bioavailability of deflazacort. Eur J Drug Metab Pharmacokinet 1996; 21: 241–5.

    Article  PubMed  CAS  Google Scholar 

  108. Lehto P, Kivisto KT. Effects of milk and food on the absorption of enoxacin. Br J Clin Pharmacol 1995; 39: 194–6.

    Article  PubMed  CAS  Google Scholar 

  109. Nielsen P, Gyrd-Hansen N. Bioavailability of enrofloxacin after oral administration to fed and fasted pigs. Pharmacol Toxicol 1997; 80: 246–50.

    Article  PubMed  CAS  Google Scholar 

  110. Bertino Jr JS, Nafziger AN, Wong M, et al. Effect of a fat- and calcium-rich breakfast on pharmacokinetics of fleroxacin administered in single and multiple doses. Antimicrob Agents Chemother 1994; 38: 499–503.

    Article  PubMed  CAS  Google Scholar 

  111. Lepore AM, Bonardi G, Maggi GC. Influence of food on the absorption of flurithromycin in man. Int J Clin Pharmacol Res 1988; 8: 253–7.

    PubMed  CAS  Google Scholar 

  112. Efthymiopoulos C, Bramer SL, Maroli A. Effect of food and gastric pH on the bioavailability of grepafloxacin. Clin Pharmacokinet 1997; 33 Suppl. 1: 18–24.

    Article  PubMed  CAS  Google Scholar 

  113. Angel JB, Hussey EK, Hall ST, et al. Pharmacokinetics of 3TC (GR-109714X) administered with and without food to HIV-infected patients. Drug Invest 1993; 6: 70–4.

    Google Scholar 

  114. Washington N, Lamont G, Wilson CG, et al. The effect of high and low fat meals on the absorption of rifampicin from the gastrointestinal tract in volunteer subjects. Int J Pharm 1994; 108: 125–32.

    Article  CAS  Google Scholar 

  115. Hsu A, Granneman GR, Bertz RJ. Ritonavir: clinical pharmacokinetics and interactions with other anti-HIV agents. Clin Pharmacokinet 1998 Oct; 35: 275–91.

    Google Scholar 

  116. Kaul S, Christofalo B, Raymond RH, et al. Effect of food on the bioavailability of stavudine in subjects with human immunodeficiency virus infection. Antimicrob Agents Chemother 1998; 42: 2295–8.

    PubMed  CAS  Google Scholar 

  117. Eller MG, Walker BJ, Yuh L, et al. Absence of food effects on the pharmacokinetics of terfenadine. Biopharm Drug Dispos 1992; 13: 171–7.

    Article  PubMed  CAS  Google Scholar 

  118. Teng R, Dogolo LC, Willavize SA, et al. Oral bioavailability of trovafloxacin with and without food in healthy volunteers. J Antimicrob Chemother 1997; 39 Suppl. B: 87–92.

    Article  PubMed  CAS  Google Scholar 

  119. Peck RW, Wootton R, Wiggs R, et al. Effect of food and gender on the pharmacokinetics of tucaresol in healthy volunteers. Br J Clin Pharmacol 1998; 46: 83–6.

    Article  PubMed  CAS  Google Scholar 

  120. Marathe PH, Greene DS, Lee JS, et al. Assessment of effect of food, gender, and intra-subject variability in the pharmacokinetics of avitriptan. Biopharm Drug Dispos 1998; 19: 153–7.

    Article  PubMed  CAS  Google Scholar 

  121. Marathe PH, Sandefer EP, Kollia GE, et al. In vivo evaluation of the absorption and gastrointestinal transit of avitriptan in fed and fasted subjects using gamma scintigraphy. J Pharmacokinet Biopharm 1998; 26: 1–20.

    PubMed  CAS  Google Scholar 

  122. Bjornsson TD, Troetel WM, Imbimbo BR Effect of food on the absorption of eptastigmine. Eur J Clin Pharmacol 1998; 54: 243–7.

    Article  PubMed  CAS  Google Scholar 

  123. Contin M, Riva R, Martinelli P, et al. Effect of meal timing on the kinetic-dynamic profile of levodopa/carbidopa controlled release in parkinsonian patients. Eur J Clin Pharmacol 1998; 54: 303–8.

    Article  PubMed  CAS  Google Scholar 

  124. Welty DF, Siedlik PH, Posvar EL, et al. The temporal effect of food on tacrine bioavailability. J Clin Pharmacol 1994; 34: 985–8.

    PubMed  CAS  Google Scholar 

  125. Fleishaker JC, Phillips JP, Lau HS. Effect of food on the bioavailability of adinazolam from a sustained release formulation: effect of meal timing and lack of dose dumping. Biopharm Drug Dispos 1990; 11: 715–27.

    Article  PubMed  CAS  Google Scholar 

  126. Drewe J, Mazer N, Abisch E, et al. Differential effect of food on kinetics of bromocriptine in a modified release capsule and a conventional formulation. Eur J Clin Pharmacol 1988; 35: 535–41.

    Article  PubMed  CAS  Google Scholar 

  127. Lippert C, Keung A, Arumugham T, et al. The effect of food on the bioavailability of dolasetron mesylate tablets. Biopharm Drug Dispos 1998; 19: 17–9.

    Article  PubMed  CAS  Google Scholar 

  128. Schoerlin MP, Mayersohn M, Hoevels B, et al. Effect of food intake on the relative bioavailability of moclobemide (Ro 11-1163). J Neural Transm Suppl 1988; 26: 115–21.

    PubMed  CAS  Google Scholar 

  129. Takahashi H, Ogata H, Nagai N, et al. Variability in absorption lag time of pyridoxal phosphate under fasting and pre- and postmeal conditions. Biopharm Drug Dispos 1994; 15: 505–17.

    Article  PubMed  CAS  Google Scholar 

  130. Cheng H, Polvino WJ, Sciberras D, et al. Pharmacokinetics and food interaction of MK-462 in healthy males. Biopharm Drug Dispos 1996; 17: 17–24.

    Article  PubMed  CAS  Google Scholar 

  131. Dresse A, Rosen JM, Brems H, et al. Influence of food on tianeptine and its main metabolite kinetics. J Clin Pharmacol 1988; 28: 1115–9.

    PubMed  CAS  Google Scholar 

  132. Troy SM, Parker VP, Hicks DR, et al. Pharmacokinetics and effect of food on the bioavailability of orally administered venlafaxine. J Clin Pharmacol 1997; 37: 954–61.

    PubMed  CAS  Google Scholar 

  133. Dingemanse J, Kleinbloesem CH, Crevoisier C, et al. Pharmacokinetic studies with a dual-release formulation of levodopa, a novel principle in the treatment of Parkinson’s disease. Eur Neurol 1998; 39: 119–24.

    Article  PubMed  CAS  Google Scholar 

  134. Lukkari E, Castren-Kortekangas P, Juhakoski A, et al. Effect of food on the bioavailability of oxybutynin from a controlled release tablet. Eur J Clin Pharmacol 1996; 50: 221–3.

    Article  PubMed  CAS  Google Scholar 

  135. Lubowskil T, Bertino JS, Shin IS, et al. Effect of food on the oral absorption of a generic carbamazepine [abstract]. American Society of Hospital Pharmacists Midyear Clinical Meeting: 1989 Dec 3–7; Atlanta. CR-10.

  136. Liedholm H, Liden A, Kroon L, et al. Pharmacokinetics of dixyrazine: low bioavailability, improved by food intake. Drug Nutr Interact 1985; 3: 87–92.

    PubMed  CAS  Google Scholar 

  137. Drake J, Kirkpatrick CT, Aliyar CA, et al. Effect of food on the comparative pharmacokinetics of modified-release morphine tablet formulations: Oramorph SR and MST Continus. Br J Clin Pharmacol 1996; 41: 417–20.

    Article  PubMed  CAS  Google Scholar 

  138. Gourlay GK, Plummer JL, Cherry DA, et al. The reproducibility of bioavailability of oral morphine from solution under fed and fasted conditions. J Pain Symptom Manage 1991; 6: 431–6.

    Article  PubMed  CAS  Google Scholar 

  139. Bozigian HP, Pritchard JF, Gooding AE, et al. Ondansetron absorption in adults: effect of dosage form, food, and antacids. JPharm Sci 1994; 83: 1011–3.

    Article  CAS  Google Scholar 

  140. Cardot J-M, Lecaillon J-B, Czendlik C, et al. The influence of food on the disposition of the antiepileptic rufinamide in healthy volunteers. Biopharm Drug Dispos 1998; 19: 259–62.

    Article  PubMed  CAS  Google Scholar 

  141. Mahmood I. Clinical pharmacokinetics and pharmacodynamics of selegiline. Clin Pharmacokinet 1997 Aug; 33: 91–102.

    Google Scholar 

  142. Ingwersen SH, Mant TG, Larsen JJ. Food intake increases the relative oral bioavailability of vanoxerine. Br J Clin Pharmacol 1993; 35: 308–10.

    Article  PubMed  CAS  Google Scholar 

  143. Hamelin BA, Allard S, Laplante L, et al. The effect of timing of a standard meal on the pharmacokinetics and pharmacodynamics of the novel atypical antipsychotic agent ziprasidone. Pharmacotherapy 1998; 18: 9–15.

    PubMed  CAS  Google Scholar 

  144. Aaes-Jorgensen T, Liedholm H, Melander A. Influence of food intake on the bioavailability of zuclopenthixol. Drug Nun-Interact 1987; 5: 157–60.

    CAS  Google Scholar 

  145. Eller MG, Della-Coletta AA. Absence of effect of food on alprazolam absorption from sustained release tablets. Biopharm Drug Dispos 1990; 11: 31–7.

    Article  PubMed  CAS  Google Scholar 

  146. Peterson GM, McLean S, Millingen KS. Food does not affect the bioavailability of baclofen. Med J Aust 1985; 142: 689–90.

    PubMed  CAS  Google Scholar 

  147. Srinivas NR, Shyu WC, Lee J, et al. Lack of effect of food on the steady state pharmacokinetics of BMS-181101, an antidepressant, in healthy subjects. Biopharm Drug Dispos 1997; 18: 585–93.

    Article  PubMed  CAS  Google Scholar 

  148. Kopitar Z, Vrhovac B, Povšiè L, et al. The effect of food and metoclopramide on the pharmacokinetics and side effects of bromocriptine. Eur J Drug Metab Pharmacokinet 1991; 16: 177–81.

    Article  PubMed  CAS  Google Scholar 

  149. Persiani S, Rocchetti M, Pacciarini MA, et al. The effect of food on cabergoline pharmacokinetics and tolerability in healthy volunteers. Biopharm Drug Dispos 1996; 17: 443–55.

    Article  PubMed  CAS  Google Scholar 

  150. Retzow A, Schurer M, Schulz HU. Influence of food on the bioavailability of a carbamazepine slow-release formulation. Int J Clin Pharmacol Ther 1997; 35: 557–60.

    PubMed  CAS  Google Scholar 

  151. Cenraud B, Guyot M, Levy RH, et al. No effect of food intake on clobazam absorption. Br J Clin Pharmacol 1983; 16: 728–30.

    Article  PubMed  CAS  Google Scholar 

  152. Van Harten J, Van Bemmel P, Dobrinska MR, et al. Bioavailability of fluvoxamine given with and withoutfood. Biopharm Drug Dispos 1991; 12: 571–6.

    Article  PubMed  Google Scholar 

  153. Gidal BE, Maly MM, Kowalski JW, et al. Gabapentin absorption: effect of mixing with foods of varying macronutrient composition. Ann Pharmacother 1998; 32: 405–9.

    Article  PubMed  CAS  Google Scholar 

  154. Benetello P, Fuflanut M, Fortunato M, et al. Oral gabapentin disposition in patients with epilepsy after a high-protein meal. Epilepsia 1997; 38: 1140–2.

    Article  PubMed  CAS  Google Scholar 

  155. Sainati SM, Hubbard JW, Chi E, et al. Safety, tolerability, and effect of food on the pharmacokinetics of iloperidone (HP 873), a potential atypical antipsychotic. J Clin Pharmacol 1995; 35: 713–20.

    PubMed  CAS  Google Scholar 

  156. Umemura K, Konda K, Ikeda Y, et al. Pharmacokinetics and safety of JTP-4819, a novel specific orally active prolyl endopeptidase inhibitor, in healthy male volunteers. Br J Clin Pharmacol 1997; 43: 613–8.

    Article  PubMed  CAS  Google Scholar 

  157. Malcolm SL, Allen JG, Bird H, et al. Single-dose pharmacokinetics of Madospar HBS in patients and effect of food and antacid on the absorption of Madopar HBS in volunteers. Eur Neurol 1987; 27 Suppl. 1: 28–35.

    Article  PubMed  Google Scholar 

  158. Kaiko RF, Lazarus H, Cronin C, et al. Controlled-release morphine bioavailability (MS Contin tablets) in the presence and absence of food. Hosp J 1990; 6: 17–30.

    Article  PubMed  CAS  Google Scholar 

  159. Kaiko RF. The effect of food intake on the pharmacokinetics of sustained-release morphine sulfate capsules. Clin Ther 1997; 19: 296–303.

    Article  PubMed  CAS  Google Scholar 

  160. Dockens RC, Greene DS, Barbhaiya RH. The lack effect of food on the bioavailability of nefazodone tablets. Biopharm Drug Dispos 1996; 17: 135–43.

    Article  PubMed  CAS  Google Scholar 

  161. Benziger DP, Kaiko RF, Miotto JB, et al. Differential effects of food on the bioavailability of controlled-release oxycodone tablets and immediate-release oxycodone solution. J Pharm Sci 1996; 85: 407–10.

    Article  PubMed  CAS  Google Scholar 

  162. Nemeroff CB. Paroxetine: an overview of the efficacy and safety of a new selective serotonin reuptake inhibitor in the treatment of depression. J Clin Psychopharmacol 1993; 13 (6 Suppl.): 10S–7S.

    PubMed  CAS  Google Scholar 

  163. Dostert P, Benedetti MS, Poggesi I. Review of the pharmacokinetics and metabolism of reboxetine, a selective noradren-aline reuptake inhibitor. Eur Neuropsychopharmacol 1997; 7 Suppl. 1: 23–35.

    Article  Google Scholar 

  164. Brefel C, Thalamas C, Rayet S, et al. Effect of food on the pharmacokinetics of ropinirole in parkinsonian patients. Br J Clin Pharmacol 1998; 45: 412–5.

    Article  PubMed  CAS  Google Scholar 

  165. Wong SL, Linnen P, Mack R, et al. Effects of food, antacids, and dosage form on the pharmacokinetics and relative bioavailability of sertindole in healthy volunteers. Biopharm Drug Dispos 1997; 18: 533–41.

    Article  PubMed  CAS  Google Scholar 

  166. Ronfeld RA, Wilner KD, Baris BA. Sertraline. Chronopharmacokinetics and the effect of coadministration with food. Clin Pharmacokinet 1997; 32 Suppl. 1: 50–5.

    Article  PubMed  CAS  Google Scholar 

  167. Hutchinson DR. Modified release tizanidine: a review. J Int Med Res 1989; 17: 565–73.

    PubMed  CAS  Google Scholar 

  168. Doose DR, Walker SA, Gisclon LG, et al. Single-dose pharmacokinetics and effect of food on the bioavailability of topiramate, a novel antiepileptic drug. J Clin Pharmacol 1996; 36: 884–91.

    PubMed  CAS  Google Scholar 

  169. Kirsten R, Nelson K, Molz KH, et al. Influence of food intake on the bioavailability of urapidil in healthy volunteers. Int J Clin Pharmacol Ther Toxicol 1989; 27: 298–301.

    PubMed  CAS  Google Scholar 

  170. Retzow A, Vens-Cappell B, Wangemann M. Influence of food on the pharmacokinetics of a new multiple unit sustained release sodium valproate formulation. Arzneimittel Forschung 1997; 47: 1347–50.

    PubMed  CAS  Google Scholar 

  171. Puri SK, Hsu RS, Ho I, et al. The effect of food on the bioavailability of velnacrine (HP 029) in healthy elderly men: a potential Alzheimer agent. J Clin Pharmacol 1989; 29: 956–60.

    PubMed  CAS  Google Scholar 

  172. Rey E, Pons G, Olive G. Vigabatrin: clinical pharmacokinetics. Clin Pharmacokinet 1992 Oct; 23: 267–78.

    Google Scholar 

  173. Seaber EJ, Peck RW, Smith DA, et al. The absolute bioavailability and effect of food on the pharmacokinetics of zolmitriptan in healthy volunteers. Br J Clin Pharmacol 1998; 46: 433–9.

    Article  PubMed  CAS  Google Scholar 

  174. Birkett DJ, Lines DR, Kneebone GM, et al. Effects of time of dose in relation to food on the bioavailability of Theo-Dur Sprinkle at steady state in asthmatic children. Clin Pharmacol Ther 1989; 45: 305–11.

    Article  PubMed  CAS  Google Scholar 

  175. Fujimura A, Shiga T, Kumagai Y, et al. Effect of food intake on pharmacokinetics and effects of a new thromboxane A2 receptor antagonist, S-1452. Eur J Clin Pharmacol 1996; 50: 311–4.

    Article  PubMed  CAS  Google Scholar 

  176. Uematsu T, Nagashima S, Inaba H, et al. Pharmacokinetic and pharmacodynamic profiles of CS-518, a selective, long-lasting thromboxane synthase inhibitor, after single and multiple oral administration to healthy volunteers. J Clin Pharmacol 1994; 34: 41–7.

    PubMed  CAS  Google Scholar 

  177. Spangler DL, Lutz CN, Tinkelman D. The effect of diet on the efficacy onset and duration of action of procaterol hydrochloride tablets. Ann Allergy 1987; 58: 59–62.

    PubMed  CAS  Google Scholar 

  178. Hussey EK, Donn KH, Powell JR, et al. Albuterol extended-release products: effect of food on the pharmacokinetics of single oral doses of Volmax® and Proventil® Repetabs® in healthy male volunteers. J Clin Pharmacol 1991; 31: 561–4.

    PubMed  CAS  Google Scholar 

  179. Delhotal-Landes B, Flouvat B, Boutin MS, et al. Influence of food on the absorption of theophylline administered in the form of sustained release tablet and microgranules. Biopharm Drug Dispos 1988; 9: 19–29.

    Article  PubMed  CAS  Google Scholar 

  180. Schoors DF, De Smet M, Reiss T, et al. Single-dose pharmacokinetics, safety and tolerability of MK-0476, a new leukotriene D4-receptor antagonist, in healthy volunteers. Br J Clin Pharmacol 1995; 40: 277–80.

    Article  PubMed  CAS  Google Scholar 

  181. Edsbäcker S, Wollmer P, Nilsson Å, et al. Pharmacokinetics and gastrointestinal transit of budesonide controlled ileal release (CIR) capsules [abstract]. Gastroenterology 1993; 104 Suppl.: A695.

    Google Scholar 

  182. Cvetkovic S, Edsbäcker S, Wollmer P, et al. Food does not alter site of absorption of budesonide from controlled ileal release capsules [abstract]. Gut 1995; 37 Suppl. 2: A51.

    Google Scholar 

  183. Schran HF, Petryk L, Chang CT, et al. The pharmacokinetics and bioavailability of clemastine and phenylpropanolamine in single-component and combination formulations. J Clin Pharmacol 1996; 36: 911–22.

    PubMed  CAS  Google Scholar 

  184. Nomeir AA, Mojaverian P, Kosoglou T, et al. Influence of food on the oral bioavailability of loratadine and pseudoephedrine from extended-release tablets in healthy volunteers. J Clin Pharmacol 1996; 36: 923–30.

    PubMed  CAS  Google Scholar 

  185. Lee DA, Taylor GM, Walker JG, et al. The effect of food and tablet formulation on plasma prednisolone levels following administration of enteric-coated tablets. Br J Clin Pharmacol 1979; 7: 523–8.

    Article  PubMed  CAS  Google Scholar 

  186. Chao ST, Prather D, Pinson D, et al. Effect of food on bioavailability of pseudoephedrine and brompheniramine administered from a gastrointestinal therapeutic system. J Pharm Sci 1991; 80: 432–5.

    Article  PubMed  CAS  Google Scholar 

  187. Pabst G, Weber W, Muller M, et al. Study on the influence of food on the absorption of theophylline from a controlled-release preparation. Arzneimittel Forschung 1994; 44: 333–7.

    PubMed  CAS  Google Scholar 

  188. Gonzalez MA, Straughan AB. Effect of meals and dosage-form modification on theophylline bioavailability from a 24-hour sustained-release delivery system. Clin Ther 1994; 16: 804–14.

    PubMed  CAS  Google Scholar 

  189. Ürmös I, Grézal Gy, Balogh Nemes K, et al. Food interaction study of a new theophylline (Egifilin) 200 and 400 mg retard tablet in healthy volunteers. Int J Clin Pharmacol Ther 1997; 35: 65–70.

    PubMed  Google Scholar 

  190. Awni WM, Cavanaugh JH, Witt G, et al. Effect of food on the pharmacokinetics of zileuton. Clin Pharmacokinet 1995; 29 Suppl. 2: 62–6.

    Article  PubMed  CAS  Google Scholar 

  191. Reigner B, Verweij J, Dirix L, et al. Effect of food on the pharmacokinetics of capecitabine and its metabolites following oral administration in cancer patients. Clin Cancer Res 1998; 4: 941–8.

    PubMed  CAS  Google Scholar 

  192. Gunnarsson PO, Davidsson T, Andersson SB, et al. Impairment of estramustine phosphate absorption by concurrent intake of milk and food. Eur J Clin Pharmacol 1990; 38: 189–93.

    Article  PubMed  CAS  Google Scholar 

  193. Riccardi R, Balis FM, Ferrara P, et al. Influence of food intake on bioavailability of oral 6-mercaptopurine in children with acute lymphoblastic leukemia. Pediatr Hematol Oncol 1986; 3: 319–24.

    Article  PubMed  CAS  Google Scholar 

  194. Dupuis LL, Koren G, Silverman ED, et al. Influence of food on the bioavailability of oral methotrexate in children. J Rheumatol 1995; 22: 1570–3.

    PubMed  CAS  Google Scholar 

  195. Rowinsky EK, Lucas VS, Hsieh AL, et al. The effects of food and divided dosing on the bioavailability of oral vinorelbine. Cancer Chemother Pharmacol 1996; 39: 9–16.

    Article  PubMed  CAS  Google Scholar 

  196. Sioufi A, Sandrenan N, Godbillon J, et al. Comparative bioavailability of letrozole under fed and fasting conditions in 12 healthy subjects after a 2.5mg single oral administration. Biopharm Drug Dispos 1997; 18: 489–97.

    Article  PubMed  CAS  Google Scholar 

  197. Mueller EA, Kovarik JM, Van Bree JB, et al. Influence of a fat-rich meal on the pharmacokinetics of a new oral formulation of cyclosporine in a crossover comparison with the market formulation. Pharm Res 1994; 11: 151–5.

    Article  PubMed  CAS  Google Scholar 

  198. Doose DR, Minn FL, Stellar S, et al. Effects of meals and meal composition on the bioavailability of fenretinide. J Clin Pharmacol 1992; 32: 1089–95.

    PubMed  CAS  Google Scholar 

  199. Cockshott ID, Oliver SD, Young JJ, et al. The effect of food on the pharmacokinetics of the bicalutamide (‘Casodex’) enantiomers. Biopharm Drug Dispos 1997; 18: 499–507.

    Article  PubMed  CAS  Google Scholar 

  200. Steiner JF. Clinical pharmacokinetics and pharmacodynamics of finasteride. Clin Pharmacokinet 1996 Jan; 30: 16–27.

    Google Scholar 

  201. Hamilton RA, Kremer JM. The effects of food on methotrexate absorption. J Rheumatol 1995; 22: 630–2.

    PubMed  CAS  Google Scholar 

  202. Bannwarth B, Pehourcq F, Schaeverbeke T, et al. Clinical pharmacokinetics of low-dose pulse methotrexate in rheumatoid arthritis. Clin Pharmacokinet 1996 Mar; 30: 194–210.

    Google Scholar 

  203. Oguey D, Kölliker F, Gerber NJ, et al. Effect of food on the bioavailability of low-dose methotrexate in patients with rheumatoid arthritis. Arthritis Rheum 1992; 35: 611–4.

    Article  PubMed  CAS  Google Scholar 

  204. Kozloski GD, De Vito JM, Kisicki JC, et al. The effect of food on the absorption of methotrexate sodium tablets in healthy volunteers. Arthritis Rheum 1992; 35: 761–4.

    Article  PubMed  CAS  Google Scholar 

  205. Kaniwa N, Ogata H, Aoyagi N, et al. The bioavailabilies of aspirin from an aspirin aluminum and an aspirin tablet and the effects of food and aluminum hydroxide gel. J Pharmacobiodyn 1981; 4: 860–4.

    Article  PubMed  CAS  Google Scholar 

  206. Forbes JA, Sandberg RA, Bood-Bjorklund L. The effect of food on bromfenac, naproxen sodium and acetaminophen in postoperative pain after orthopedic surgery. Pharmacotherapy 1998; 18: 492–503.

    PubMed  CAS  Google Scholar 

  207. Caille G, du Souich P, Besner JG, et al. Effects of food and sucralfate on the pharmacokinetics of naproxen and ketoprofen in humans. Am J Med 1989; 86 (6A): 38–44.

    Article  PubMed  CAS  Google Scholar 

  208. Chaikin P, Marriott TB, Simon D, et al. Comparative bioavailability of suprofen after coadministration with food or milk. J Clin Pharmacol 1988; 28: 1132–5.

    PubMed  CAS  Google Scholar 

  209. Mojaverian P, Rocci ML, Conner DP, et al. Effect of food on the absorption of enteric coated aspirin: correlation with gastric residence time. Clin Pharmacol Ther 1987; 41: 11–7.

    Article  PubMed  CAS  Google Scholar 

  210. Poli A, Moreno RA, Ribeiro W, et al. Influence of gastric acid secretion blockade and food intake on the bioavailability of a potassium diclofenac suspension in healthy male volunteers. Int J Clin Pharmacol Ther 1996; 34: 76–9.

    PubMed  CAS  Google Scholar 

  211. Zmeili S, Hasan M, Najib N, et al. Bioavailability and pharmacokinetic properties of 2 sustained-release formulations of diclofenac sodium, Voltaren vs Inflaban: effect of food on inflaban bioavailability. Int J Clin Pharmacol Ther 1996; 34: 564–70.

    PubMed  CAS  Google Scholar 

  212. Aoyagi N, Kaniwa N, Ogata H. Effects of food on bioavailability of two indomethacin capsules containing different sizes of particles. Chem Pharm Bull 1990; 38: 1338–40.

    Article  PubMed  CAS  Google Scholar 

  213. Coates PE, Mesure R. Pharmacokinetics of tenidap sodium administered with food or antacid in healthy volunteers. Br J Clin Pharmacol 1995; 39 Suppl. 1: 17–9.

    Article  Google Scholar 

  214. Day RO, Lam S, Pauli P, et al. Effect of food and various antacids on the absorption of tenoxicam. Br J Clin Pharmacol 1987; 24: 323–8.

    Article  PubMed  CAS  Google Scholar 

  215. Pargal A, Kelkar MG, Nayak PJ. The effect of food on the bioavailability of ibuprofen and flurbiprofen from sustained release formulations. Biopharm Drug Dispos 1996; 17: 511–9.

    Article  PubMed  CAS  Google Scholar 

  216. von Schrader HW, Buscher G, Dierdorf D, et al. Nabumetone: a novel anti-inflammatory drug. The influence of food, milk, antacids, and analgesics on bioavailability of single oral doses. Int J Clin Pharmacol Ther Toxicol 1983; 21: 311–21.

    Google Scholar 

  217. George S, Dauwe K, McBurney A, et al. The influence of food intake on the bioavailability of timegadine, a novel non-steroidal anti-inflammatory drug. Br J Clin Pharmacol 1983; 15: 495–8.

    Article  PubMed  CAS  Google Scholar 

  218. McEwen J, De Luca M, Casini A, et al. The effect of food and an antacid on the bioavailability of dexketoprofen trometamol. J Clin Pharmacol 1998; 38 Suppl.: 41–5.

    Google Scholar 

  219. Flusser D, Zylber-Katz E, Granit L, et al. Influence of food on the pharmacokinetics of dipyrone. Eur J Clin Pharmacol 1988; 34: 105–7.

    Article  PubMed  CAS  Google Scholar 

  220. Benet LZ. Pharmacokinetics of sustained-release etodolac. Rheumatol Int 1993; 13 (2 Suppl.): 3S–5S.

    Article  Google Scholar 

  221. Kraml M, Cosyns L, Hicks DR, et al. Bioavailability studies with etodolac in dogs and man. Biopharm Drug Dispos 1984; 5: 63–74.

    Article  PubMed  CAS  Google Scholar 

  222. Stoltz M, Arumugham T, Lippert C, et al. Effect of food on the bioavailability of fexofenadine hydrochloride (MDL 16455A). Biopharm Drug Dispos 1997; 18: 645–8.

    Article  PubMed  CAS  Google Scholar 

  223. Borin MT, Khare S, Beihn RM, et al. Effect of food on gastrointestinal (GI) transit of sustained-release ibuprofen tablets as evaluated by gamma scintigraphy. Pharm Res 1990; 7: 304–7.

    Article  PubMed  CAS  Google Scholar 

  224. Skinhøj A, Bechgaard H, Chasseaud LF, et al. The influence of food and repeated dosing on the bioavailability of indomethacin from a multiple-units controlled release formulation. Int J Clin Pharmacol Ther Toxicol 1984; 22: 557–61.

    PubMed  Google Scholar 

  225. Tiirck D, Busch U, Heinzel G, et al. Effect of food on the pharmacokinetics of meloxicam after oral administration. Clin Drug Invest 1995; 9: 270–6.

    Article  Google Scholar 

  226. Marzo A, Dal Bo L, Wool C, et al. Bioavailability, food effect and tolerability of S-naproxenbetainate sodium salt monohydrate in steady state. Arzneimittel Forschung 1998; 48: 935–40.

    PubMed  CAS  Google Scholar 

  227. Kenyon CJ, Hooper G, Tierney D, et al. The effect of food on the gastrointestinal transit and systemic absorption of naproxen from a novel sustained release formulation. J Control Rel 1995; 34: 31–6.

    Article  CAS  Google Scholar 

  228. Norlander B, Gotthard R, Strom M. Pharmacokinetics of a 5-aminosalicylic acid enteric-coated tablet and suppository dosage form. Aliment Pharmacol Ther 1989; 3: 333–42.

    Article  PubMed  CAS  Google Scholar 

  229. Karim A, Rozek LF, Smith ME, et al. Effects of food and antacid on oral absorption of misoprostol, a synthetic prostaglandin E1 analog. J Clin Pharmacol 1989; 29: 439–43.

    PubMed  CAS  Google Scholar 

  230. Huang SM, Marriott TB, Weintraub HS, et al. The effect of food or milk on the bioavailability of etintidine in healthy subjects. Int J Clin Pharmacol Ther Toxicol 1988; 26: 113–7.

    PubMed  CAS  Google Scholar 

  231. Lin JH, Chremos AN, Kanovsky SM, et al. Effects of antacids and food on absorption of famotidine. Br J Clin Pharmacol 1987; 24: 551–3.

    Article  PubMed  CAS  Google Scholar 

  232. Hardy JG, Harvey WJ, Sparrow RA, et al. Localization of drug release sites from an oral sustained-release formulation of 5-ASA (Pentasa™) in the gastrointestinal tract using gamma scintigraphy. J Clin Pharmacol 1993; 33: 712–8.

    PubMed  CAS  Google Scholar 

  233. De Mey C, Meineke I. Prandial and diurnal effects on the absorption of orally administered enteric coated 5-aminosalicylic acid (5-ASA). Br J Clin Pharmacol 1992; 33: 179–82.

    Article  PubMed  Google Scholar 

  234. Huber R, Hartmann M, Bliesath H, et al. Pharmacokinetics of pantoprazole in man. Int J Clin Pharmacol Ther 1996; 34 (1 Suppl.): 7S–16S.

    Google Scholar 

  235. Yasuda S, Ohnishi A, Ogawa T, et al. Pharmacokinetic properties of E 3810, a new proton pump inhibitor, in healthy male volunteers. Int J Clin Pharmacol Ther 1994; 32: 466–73.

    PubMed  CAS  Google Scholar 

  236. Tse FL, Labbadia D, Habucky K, et al. Effect of food on the bioavailability of SDZ DJN 608, an oral hypoglycemic agent, from a tablet and a liquid-filled capsule in the dog. Pharm Res 1996; 13: 440–4.

    Article  PubMed  CAS  Google Scholar 

  237. Gleiter CH, Schug BS, Hermann R, et al. Influence of food intake on the bioavailability of thioctic acid enantiomers. Eur J Clin Pharmacol 1996; 50: 513–4.

    Article  PubMed  CAS  Google Scholar 

  238. Lau DT-W, Kalafsky G, Tse FLS. The effect of food on the absorption of 14C-SDZ FOX 988, an antidiabetic agent, in healthy human volunteers. Biopharm Drug Dispos 1995; 16: 191–200.

    Article  PubMed  CAS  Google Scholar 

  239. Young MA, Lettis S, Eastmond R. Improvement in the gastrointestinal absorption of troglitazone when taken with, or shortly after, food. Br J Clin Pharmacol 1998; 45: 31–5.

    Article  PubMed  CAS  Google Scholar 

  240. Rosskamp R, Wernicke-Panten K, Draeger E. Clinical profile of the novel sulphonylurea glimepiride. Diabetes Res Clin Pract 1996; 31 Suppl.: 33–42.

    Google Scholar 

  241. Saffar F, Aiache JM, Andre P. Influence of food on the disposition of the antidiabetic drug metformin in diabetic patients at steadystate. Methods Find Exp Clin Pharmacol 1995; 17: 483–7.

    PubMed  CAS  Google Scholar 

  242. Okuno A, Taguchi T, Inyaku F, et al. Pharmacokinetics of propylthiouracil in children and adolescents with Graves disease after a single oral dose. Pediatr Pharmacol 1983; 3: 43–7.

    CAS  Google Scholar 

  243. McNamara PJ, Jewell RC, Jensen BK, et al. Food increases the bioavailability of acitretin. J Clin Pharmacol 1988; 28: 1051–5.

    PubMed  CAS  Google Scholar 

  244. Uematsu T, Nagashima S, Niwa M, et al. Effect of dietary fat content on oral bioavailability of menatetrenone in humans. J Pharm Sci 1996; 85: 1012–6.

    Article  PubMed  CAS  Google Scholar 

  245. Simon JA, Robinson DE, Andrews MC, et al. The absorption of oral micronized progesterone: the effect of food, dose proportionality, and comparison with intramuscular progesterone. Fertil Steril 1993; 60: 26–33.

    PubMed  CAS  Google Scholar 

  246. Trautner K. Influence of food on relative bioavailability of fluoride in man from Na2FPO3-containing tablets for the treatment of osteoporosis. Int J Clin Pharmacol Ther Toxicol 1989; 27: 242–9.

    PubMed  CAS  Google Scholar 

  247. Bullingham R, Shah J, Goldblum R, et al. Effects of food and antacid on the pharmacokinetics of single doses of mycophenolate mofetil in rheumatoid arthritis patients. Br J Clin Pharmacol 1996; 41: 513–6.

    Article  PubMed  CAS  Google Scholar 

  248. Lennernas H, Fager G. Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors. Clin Pharmacokinet 1997 May; 32: 403–25.

    Google Scholar 

  249. Nyberg L, Kennedy BM. Pharmacokinetics of terbutaline given in slow-release tablets. Eur J Respir Dis 1984; 65 Suppl. 134: 119–39.

    Google Scholar 

  250. Hoon TJ, McCollam PL, Beckman KJ, et al. Impact of food on the pharmacokinetics and electrocardiographic effects of sustained release verapamil in normal subjects. Am J Cardiol 1992; 70: 1072–6.

    Article  PubMed  CAS  Google Scholar 

  251. Welling PG. Effects of food on drug absorption. Pharmacol Ther 1989; 43: 425–41.

    Article  PubMed  CAS  Google Scholar 

  252. Reppas C, Eleftheriou G, Macheras P, et al. Effect of elevated viscosity in the upper gastrointestinal tract on drug absorption in dogs. Eur J Pharm Sci 1998; 6: 131–9.

    Article  PubMed  CAS  Google Scholar 

  253. Wilson CG, Washington N. Small intestine: transit and absorption of drugs. In: Rubinstein MH, editor. Physiological pharmaceutics: biological barriers to drug absorption. Chichester: Ellis Horwood, 1989: 71–90.

  254. Greenwood DE. Small intestinal pH and buffer capacity: implications for dissolution of ionizable compounds [Ph.D thesis]. Michigan: The University of Michigan, 1994.

    Google Scholar 

  255. Barnwell SG, Laudanski T, Dwyer M, et al. Reduced bioavailability of atenolol in man: the role of bile acids. Int J Pharm 1993; 89: 245–50.

    Article  CAS  Google Scholar 

  256. Yamaguchi T, Ikeda C, Sekine Y Intestinal absorption of a β-adrenergic blocking agent Nadolol: II. Mechanism of the inhibitory effect on the intestinal absorption of nadolol by sodium cholate in rats. Chem Pharm Bull 1986; 34: 3836–43.

    Article  PubMed  CAS  Google Scholar 

  257. Yamaguchi T, Oida T, Ikeda C. Intestinal absorption of a β-adrenergic blocking agent nadolol: III. Nuclear magnetic resonance spectroscopic study on nadolol-sodium cholate micellar complex and intestinal absorption of nadolol derivatives in rats. Chem Pharm Bull 1986; 34: 4259–64.

    Article  PubMed  CAS  Google Scholar 

  258. Dressman JB, Berardi RR, Dermentzoglou LC, et al. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res 1990; 7: 756–61.

    Article  PubMed  CAS  Google Scholar 

  259. Dongowski G, Neubert R, Haase H, et al. Interactions between food components and drugs: part 4. Influence of pectins and bile salts on propranolol absorption. Int J Pharm 1996; 144: 233–9.

    Article  CAS  Google Scholar 

  260. Lindholm A, Henricsson S, Dahlqvist R. The effect of food and bile acid administration on the relative bioavailability of cyclosporin. Br J Clin Pharmacol 1990; 29: 541–8.

    Article  PubMed  CAS  Google Scholar 

  261. Charman WN, Porter CJ, Mithani S, et al. Physicochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J Pharm Sci 1997; 86: 269–82.

    Article  PubMed  CAS  Google Scholar 

  262. Barry M, Gibbons S, Back D, et al. Protease inhibitors in patients with HIV disease. Clinically important pharmacokinetic considerations. Clin Pharmacokinet 1997 Mar; 32: 194–209.

    Google Scholar 

  263. Tam YK. Individual variation in first-pass metabolism. Clin Pharmacokinet 1993 Oct; 25: 300–28.

    Google Scholar 

  264. Drug-nutrient interaction. In: Basu TK, editor. Drug-food interaction. New York: Croom Helm, 1988: 107–14.

    Google Scholar 

  265. Mao CC, Jacobson ED. Intestinal absorption and blood flow. Am J Clin Nutr 1970; 23: 820–3.

    PubMed  CAS  Google Scholar 

  266. McLean AJ, McNamara PJ, DuSouich P, et al. Food, splanchnic blood flow, and bioavailability of drugs subject to first-pass metabolism. Clin Pharmacol Ther 1978; 24: 5–10.

    PubMed  CAS  Google Scholar 

  267. McLean AJ, Isbister C, Bobik A, et al. Reduction of first-pass hepatic clearance of propranolol by food. Clin Pharmacol Ther 1981; 30: 31–4.

    Article  PubMed  CAS  Google Scholar 

  268. Power JM, Morgan DJ, McLean AJ. Effects of sensory (teasing) exposure to food on oral propranolol bioavailability. Biopharm Drug Dispos 1995; 16: 579–89.

    Article  PubMed  CAS  Google Scholar 

  269. Gidal BE, Maly MM, Budde J, et al. Effect of a high-protein meal on gabapentin pharmacokinetics. Epilepsy Res 1996; 23: 71–6.

    Article  PubMed  CAS  Google Scholar 

  270. Jonkman JH. Food interactions with sustained-release theophylline preparations: areview. Clin Pharmacokinet 1989 Mar; 16: 162–79.

    Google Scholar 

  271. Alderman DA. A review of cellulose ethers in hydrophilic matrices for oral controlled-release dosage forms. Int J Pharm Tech Prod Manufact 1984; 5: 1–9.

    CAS  Google Scholar 

  272. Shameem M, Katori LN, Aoyagi N, et al. Oral solid controlled release dosage forms: role of GI-mechanical destructive forces and colonic release in drug absorption under fasted and fed conditions in humans. Pharm Res 1995; 12: 1049–54.

    Article  PubMed  CAS  Google Scholar 

  273. Katori N, Ma W-S, Aoyagi N, et al. Effect of destructive force on drug release from multiple unit controlled release dosage forms in humans. Pharm Res 1996; 13: 1541–6.

    Article  PubMed  CAS  Google Scholar 

  274. Sako K, Mizumoto T, Kajiyama A, et al. Influence of physical factors in gastrointestinal tract on acetaminophen release from controlled-release tablets in fasted dogs. Int J Pharm 1996; 137: 225–32.

    Article  CAS  Google Scholar 

  275. Aoki S, Ando H, Ishii M, et al. Evaluation of the correlation between in vivo and in vitro release. Effect of the force of contraction and food on drug release. Biol Pharm Bull 1994; 17: 291–5.

    Article  PubMed  CAS  Google Scholar 

  276. Hooper WD, Dickinson RG, Eadie MJ. Effect of food on absorption of lomefloxacin. Antimicrob Agents Chemother 1990; 34: 1797–9.

    Article  PubMed  CAS  Google Scholar 

  277. Sorgel F, Kinzig M. Phannacokinetics of gyrase inhibitors: part 1. Basic chemistry and gastrointestinal disposition. Am J Med 1993; 94 Suppl. 3A: 44–55.

    Google Scholar 

  278. Kottke MK, Stetsko G, Rosenbaum SE, et al. Problems encountered by the elderly in the use of conventional dosage forms. J Geriatr Drug Ther 1990; 5: 77–92.

    Google Scholar 

  279. Shinkuma D, Hamaguchi T, Kobayashi M, et al. Effects of food intake on the bioavailability of sulpiride from AEA film-coated tablet having a pH-dependent dissolution characteristics in normal or drug-induced achlorhydric subjects. Int J Clin Pharmacol Ther Toxicol 1991; 29: 303–9.

    PubMed  CAS  Google Scholar 

  280. Shionoiri H. Pharmacokinetic drug interactions with ACE inhibitors. Clin Pharmacokinet 1993 Jul; 25: 20–58.

    Google Scholar 

  281. McBurney A, Farrow PR, Ward JW. Effects of food on the bioavailability of sustained-release pinacidil in humans. J Phann Sci 1988; 77: 68–9.

    Article  CAS  Google Scholar 

  282. TenHoor CN, Bakatselou V, Dressman J. Solubility of mefenamic acid under simulated fed- and fasted-state conditions. Phann Res 1991; 8: 1203–5.

    Article  CAS  Google Scholar 

  283. Luner PE, Babu SR, Radebaugh GW. The effects of bile salts and lipids on the physicochemical behavior of gemfibrozil. Phann Res 1994; 11: 1755–60.

    Article  CAS  Google Scholar 

  284. Williams L, Davis JA, Lowenthal DT. The influence of food on the absorption and metabolism of drugs. Med Clin North Am 1993; 77: 815–29.

    PubMed  CAS  Google Scholar 

  285. Prescott LF, Yoovathaworn K, Makarananda K, et al. Impaired absorption of paracetamol in vegetarians. Br J Clin Pharmacol 1993; 36: 237–40.

    Article  PubMed  CAS  Google Scholar 

  286. Yamaguchi T, Ikeda C, Sekine Y Intestinal absorption of a β-adrenergic blocking agent nadolol: I. Comparison of absorption behavior of nadolol with those of other β-blocking agents in the rats. Chem Pharm Bull 1986; 24: 3362–9.

    Article  Google Scholar 

  287. Siemon D, de Vries JX, Stotzer F, et al. Fasting and postprandial disposition of R-(−)- and S-(+)- ibuprofen following oral administration of racemic drug in healthy individuals. Eur J Med Res 1997; 2: 215–9.

    PubMed  CAS  Google Scholar 

  288. Waldman SA, Morganroth J. Effects of food on the bioequivalence of different verapamil sustained-release fonnulations. J Clin Phannacol 1995; 35: 163–9.

    CAS  Google Scholar 

  289. Holmes DG, Kutz K. Bioequivalence of a slow-release and a non-retard formulation of isradipine. Am J Hypertens 1993; 6 Suppl.: 70–3.

    CAS  Google Scholar 

  290. Hosny EA, El-Sayed YM, Al-Meshal MA, et al. Effect of food on bioavailability of bioadhesive-containing indomethacin tablets in dogs. Int J Pharm 1994; 112: 87–91.

    Article  CAS  Google Scholar 

  291. Schall R, Muller FR, Muller FO, et al. Bioequivalence of controlled release calcium antagonists. Clin Phannacokinet 1997 Jan; 32: 75–89.

    Google Scholar 

  292. Melander A, McLean A. Influence of food intake on presystemic clearance of drugs. Clin Pharmacokinet 1983; 8: 286–96.

    Article  PubMed  CAS  Google Scholar 

  293. Follonier N, Doelker E. Biopharmaceutical comparison of oral multiple-unit and single-unit sustained-release dosage fonns. STPPhanna Sci 1992; 2: 141–58.

    CAS  Google Scholar 

  294. Hoener B-A, Benet LZ. Factors influencing drug absorption and drug availability. In: Banker GS, Rhodes CT, editors. Modern phannaceutics. New York: Marcel Dekker, Inc., 1990: 143–80.

    Google Scholar 

  295. Massarella JW, Blumenthal HP, Silvestri T, et al. Effect of food on cibenzoline bioavailability. Eur J Phannacol 1986; 30: 367–9.

    CAS  Google Scholar 

  296. Dunselman PH, Edgar B. Felodipine clinical phannacokinetics. Clin Phannacokinet 1991; 21: 418–30.

    Article  CAS  Google Scholar 

  297. Lundahl J, Regardh CG, Edgar B, et al. Relationship between time of intake of grapefruit juice and its effect on phannacokinetics and phannacodynamics of felodipine in healthy subjects. Eur J Clin Pharmacol 1995; 49: 61–7.

    Article  PubMed  CAS  Google Scholar 

  298. Tam YK, Kneer J, Dubach UC, et al. Effect of timing of food and fluid volume on cefetamet pivoxil absorption in healthy nonnal volunteers. Antimicrob Agents Chemother 1990; 34: 1556–9.

    Article  PubMed  CAS  Google Scholar 

  299. Melander A, Liedholm H, McLean A. Concomitant food intake does enhance the bioavailability and effect of hydralazine. Clin Phannacol Ther 1985; 38: 475–6.

    Article  CAS  Google Scholar 

  300. Gertz BJ, Holland SD, Kline WF, et al. Clinical phannacology of alendronate sodium. Osteoporosis Int 1993; 3 Suppl. 3: 13–6.

    Article  Google Scholar 

  301. Samanta A, Jones GR, Burden AC, et al. Improved effect of tolbutamide when given before food in patients on long-term therapy. Br J Clin Pharmacol 1984; 18: 647–8.

    Article  PubMed  CAS  Google Scholar 

  302. Antal EJ, Gillespie WR, Phillips JP, et al. The effect of food on the bioavailability and pharmacodynamics of tolbutamide in diabetic patients. Eur J Clin Pharmacol 1982; 22: 459–62.

    Article  PubMed  CAS  Google Scholar 

  303. Hartshorn EA. Food and drug interactions. J Am Diet Assoc 1977; 70: 15–9.

    PubMed  CAS  Google Scholar 

  304. Shively CA, Simons RJ, Passananti GT, et al. Dietary patterns and diurnal variations in aminopyrine disposition. Clin Pharmacol Ther 1981; 29: 65–73.

    Article  PubMed  CAS  Google Scholar 

  305. Lau DT, Kalafsky G, Aun RL, et al. The effect of the fat content of food on the pharmacokinetics and pharmacodynamics of SDZ FOX 988, an antidiabetic agent, in the dog. Biopharm Drug Dispos 1995; 16: 137–50.

    Article  PubMed  CAS  Google Scholar 

  306. Pan HY, DeVault AR, Brescia D, et al. Effect of food on pravastatin pharmacokinetics and pharmacodynamics. Int J Clin Pharmacol Ther Toxicol 1993; 31: 291–4.

    PubMed  CAS  Google Scholar 

  307. Gai MN, Isla A, Andonaegui MT, et al. Evaluation of the effect of 3 different diets on the bioavailability of 2 sustained release theophylline matrix tablets. Int J Clin Pharmacol Ther 1997; 35: 565–71.

    PubMed  CAS  Google Scholar 

  308. Smith HT, Jokubaitis LA, Troendle AJ, et al. Pharmacokinetics of fluvastatin and specific drug interactions. Am J Hypertens 1993; 6 Suppl.: 375–82.

    Google Scholar 

  309. Hunt JN, Stubbs DF. The volume and energy content of meals as determinants of gastric emptying. J Physiol 1975; 245: 209–25.

    PubMed  CAS  Google Scholar 

  310. Zhi J, Rakhit A, Patel IH. Effects of dietary fat on drug absorption. Clin Pharmacol Ther 1995; 58: 487–91.

    Article  PubMed  CAS  Google Scholar 

  311. Richter WO, Jacob BG, Schwandt P. Interaction between fiber and lovastatin [letter]. Lancet 1991; 338: 706.

    Article  PubMed  CAS  Google Scholar 

  312. Davidson MH, Dugan LD, Burns JH, et al. The hypocholesterolemic effects of β-glucan in oatmeal and oat bran. JAMA 1991; 265: 1833–9.

    Article  PubMed  CAS  Google Scholar 

  313. Bell LP, Hectorn KJ, Reynolds H, et al. Cholesterol-lowering effects of soluble-fiber cereals as part of a prudent diet for patients with mild to moderate hypercholesterolemia. Am J Clin Nutr 1990; 52: 1020–6.

    PubMed  CAS  Google Scholar 

  314. Liel Y, Harman-Boehm I, Shany S. Evidence for a clinically important adverse effect of fiber-enriched diet on the bioavailability of levothyroxine in adult hypothyroid patients. J Clin Endocrinol Metab 1996; 81: 857–9.

    Article  PubMed  CAS  Google Scholar 

  315. Huupponen R, Seppala P, Iisalo E. Effect of guar gum, a fibre preparation, on digoxin and penicillin absorption in man. Eur J Clin Pharmacol 1984; 26: 279–81.

    Article  PubMed  CAS  Google Scholar 

  316. Gin H, Orgerie MB, Aubertin J. The influence of Guar gum on absorption of metformin from the gut in healthy volunteers. Horm Metab Res 1989; 21: 81–3.

    Article  PubMed  CAS  Google Scholar 

  317. Huupponen R, Karhuvaara S, Seppala P. Effect of guar gum on glipizide absorption in man. Eur J Clin Pharmacol 1985; 28: 717–9.

    Article  PubMed  CAS  Google Scholar 

  318. Montani A, Vimercati ME. Control of glucose and lipid metabolism by gel-forming fiber in diabetes: medium term effects of guar-gum. In: Piemonte G, Tagliaro F, Marigo M, et al., editors. Developments in analytical methods in pharmaceutical, biomédical, and forensic sciences. New York: Plenum Press, 1987: 315–9.

    Google Scholar 

  319. Vahouny GV, Kritchevsky D, editors. Dietary fiber, basic and clinical aspects. New York: Plenum Press, 1986.

    Google Scholar 

  320. Kritchevsky D, Bonfield C, editors. Dietary fiber in health and disease. St Paul (MN): Eagan Press, 1995.

    Google Scholar 

  321. Tew BY, Xu X, Wang HJ, et al. A diet high in wheat fiber decreases the bioavailability of soybean isoflavones in a single meal fed to women. J Nutr 1996; 126: 871–7.

    PubMed  CAS  Google Scholar 

  322. Lin Y-J, Weidler DJ, Garg DC, et al. Effects of solid food on blood levels of alcohol in man. Res Commun Chem Pathol Pharmacol 1976; 13: 713–22.

    PubMed  CAS  Google Scholar 

  323. Shinkuma D, Hamaguchi T, Kobayashi M, et al. Effect of food intake and meal size on the bioavailability of sulpiride in two dosage forms. Int JClin Pharmacol Ther Toxicol 1990; 28: 440–2.

    CAS  Google Scholar 

  324. Nievel JG, Havard CWH, Mitchell P, et al. Effect of meal size and composition on the bioavailability of ketoprofen (Oruvail). Xenobiotica 1987; 17: 487–92.

    Article  PubMed  CAS  Google Scholar 

  325. Wills RJ. Influence of food on the bioavailability of trimoprostil: an overview. J Clin Pharmacol 1984; 24: 194–201.

    PubMed  CAS  Google Scholar 

  326. Lecaillon JB, Dubois JP, Soula G, et al. The influence of food on the pharmacokinetics of CGP6140 (amocarzine) after oral administration of a 1200mg single dose to patients with onchocerciasis. Br J Clin Pharmacol 1990; 30: 629–33.

    Article  PubMed  CAS  Google Scholar 

  327. Al-Gohary OMN, Hosny EA. Effect of antacid megaldrate oral suspension on in-vitro and in-vivo availability of indomethacin in dogs. Pharm Acta Helv 1997; 72: 81–6.

    Article  PubMed  CAS  Google Scholar 

  328. Ismail FA, Khalafallah N, Khalil SA. Adsorption of ketoprofen and bumadizone calcium on aluminum containing antacids and its effect on ketoprofen bioavailability in man. Int J Pharm 1987; 34: 189–96.

    Article  CAS  Google Scholar 

  329. Fann WE, Davis JM, Janowsky DS, et al. Chlorpromazine: effects of antacids on its gastrointestinal absorption. J Clin Pharmacol 1973; 13: 388–90.

    PubMed  CAS  Google Scholar 

  330. Nix DE, Wilton JH, Ronald B, et al. Inhibition of norfloxacin absorption by antacids. Antimicrob Agents Chemother 1990; 34: 432–5.

    Article  PubMed  CAS  Google Scholar 

  331. Lucarotti RL, Colaizzi JL, Barry H III, et al. Enhanced pseudoephedrine absorption by concurrent administration of aluminum hydroxide gel in humans. J Pharm Sci 1972; 61: 903–5.

    Article  PubMed  CAS  Google Scholar 

  332. Hurwitz A, Sheehan MB. The effects of antacids on the absorption of orally administered pentobarbital in the rat. J Pharmacol Exp Ther 1971; 179: 124–31.

    PubMed  CAS  Google Scholar 

  333. Neuvonen PJ, Kivisto KT. Enhancement of drug absorption by antacids: an unrecognized drug interaction. Clin Pharmacokinet 1994 Aug; 27: 120–8.

    Google Scholar 

  334. Tett SE. Clinical pharmacokinetics of slow-acting antirheumatic drugs. Clin Pharmacokinet 1993 Nov; 25: 392–407.

    Google Scholar 

  335. Lehto P, Kivisto KT. Different effects of products containing metal ions on the absorption of lomefloxacin. Clin Pharmacol Ther 1994; 56: 477–82.

    Article  PubMed  CAS  Google Scholar 

  336. Lehto P, Kivisto KT, Neuvonen PJ. The effect of ferrous sulfate on the absorption of norfloxacin, ciprofloxacin and ofloxacin. Br J Clin Pharmacol 1994; 37: 82–5.

    Article  PubMed  CAS  Google Scholar 

  337. Brouwers JR, Van der Kam HJ, Sijtsma J, et al. Decreased ciprofloxacin absorption with concomitant administration of ferrous fumarate. Pharm Weekbl Sci 1990; 12: 182–3.

    Article  PubMed  CAS  Google Scholar 

  338. Brown DD, Juhl RP. Decreased bioavailability of digoxin due to antacids and kaolin-pectin. N Engl J Med 1976; 295: 1034–7.

    Article  PubMed  CAS  Google Scholar 

  339. Khalil SAH, Mortada LM, El-Khawas M. Decreased bioavailability of ampicillin and amoxicillin in presence of kaolin. Int J Pharm 1984; 19: 233–8.

    Article  CAS  Google Scholar 

  340. Moustafa MA, Gouda MW, Tariq M. Decreased bioavailability of propranolol due to interactions with adsorbents, antacids and antidiarrheal mixtures. Int J Pharm 1986; 30: 225–8.

    Article  CAS  Google Scholar 

  341. Molokhia AM, Al-Rahman S. Effect of concomitant oral administration of some adsorbing drugs on the bioavailability of metronidazole. Drug Dev Ind Pharm 1987; 13: 1229–37.

    Article  CAS  Google Scholar 

  342. Moustafa MA, Al-Shora HI, Gaber M, et al. Decreased bioavailability of quinidine sulfate due to interactions with adsorbent antacids and antidiarrheal mixtures. Int J Pharm 1987; 34: 207–11.

    Article  CAS  Google Scholar 

  343. Moustafa MA, Babhair SA, Kouta HI. Decreased bioavailability of some antipsychotic phenothiazines due to interactions with adsorbent antacid and antidiarrheal mixtures. Int J Pharm 1987; 36: 185–9.

    Article  CAS  Google Scholar 

  344. Gouda MW. Effect of an antidiarrheal mixture on the bioavail-ability of tetracycline. Int J Pharm 1993; 89: 75–7.

    Article  CAS  Google Scholar 

  345. Al-Gohary OMN. In-vitro adsorption of mebeverine hydrochloride onto kaolin and its relationship to pharmacological effects of the drug in vivo. Pharm Acta Helv 1997; 72: 11–21.

    Article  PubMed  CAS  Google Scholar 

  346. Jung H, Peregrina AA, Rodriquez JM, et al. The influence of coffee with milk and tea with milk on the bioavailability of tetracycline. Biopharm Drug Dispos 1997; 18: 459–63.

    Article  PubMed  CAS  Google Scholar 

  347. Minami R, Inotsume N, Nakano M, et al. Effect of milk on absorption of norfloxacin in healthy volunteers. J Clin Pharmacol 1993; 33: 1238–40.

    PubMed  CAS  Google Scholar 

  348. Neuvonen PJ, Kivisto KT, Lehto P. Interference of dairy products with the absorption of ciprofloxacin. Clin Pharmacol Ther 1991; 50: 498–502.

    Article  PubMed  CAS  Google Scholar 

  349. Leahy DE, Lynch J, Finney RE, et al. Estimation of sieving coefficients of convective absorption of drugs in perfused rat jejunum. J Pharmacokinet Biopharm 1994; 22: 411–29.

    PubMed  CAS  Google Scholar 

  350. Liguori A, Hughes JR, Grass JA. Absorption and subjective effects of caffeine from coffee, cola and capsules. Pharmacol Biochem Behav 1997; 58: 721–6.

    Article  PubMed  CAS  Google Scholar 

  351. Mumford GK, Benowitz NL, Evans SM, et al. Absorption rate of methylxanthines following capsules, cola and chocolate. Eur J Clin Pharmacol 1996; 51: 319–25.

    Article  PubMed  CAS  Google Scholar 

  352. Chvasta TE, Cooke AR. Emptying and absorption of caffeine from the human stomach. Gastroenterology 1971; 61: 838–43.

    PubMed  CAS  Google Scholar 

  353. Bonati M, Latini R, Galletti F, et al. Caffeine disposition after oral doses. Clin Pharmacol Ther 1982; 32: 98–106.

    Article  PubMed  CAS  Google Scholar 

  354. Disler PB, Lynch SR, Torrence JD, et al. The mechanism of the inhibition of iron absorption by tea. S Afr J Med Sci 1975; 40: 109–16.

    PubMed  CAS  Google Scholar 

  355. Tea and iron. Lipton® Tea and Health Information. Englewood Cliffs (NJ), Lipton, 1998.

  356. Tukker JJ, Sitsen JM, Gusdorf CF. Bioavailability of paracetamol after oral administration to healthy volunteers. Influence of caffeine on rate and extent of absorption. Pharm Weekbl Sci 1986; 8: 239–43.

    Article  PubMed  CAS  Google Scholar 

  357. Monks TJ, Caldwell J, Smith RL. Influence of methylxanthine-containing foods on theophylline metabolism and kinetics. Clin Pharmacol Ther 1979; 26: 513–24.

    PubMed  CAS  Google Scholar 

  358. Rubinstein E, Hauge C, Sommer P, et al. Oesophageal and gastric potential difference and pH in healthy volunteers following intake of coca-cola, red wine, and alcohol. Pharmacol Toxicol 1993; 72: 61–5.

    Article  PubMed  CAS  Google Scholar 

  359. Lange D, Pavao JH, Wu J, et al. Effect of a cola beverage on the bioavailability of itraconazole in the presence of H2 blockers. J Clin Pharmacol 1997; 37: 535–40.

    PubMed  CAS  Google Scholar 

  360. Jaruratanasirikul S, Kleepkaew A. Influence of an acidic beverage (Coca-Cola) on the absorption of itraconazole. Eur J Clin Pharmacol 1997; 52: 235–7.

    Article  PubMed  CAS  Google Scholar 

  361. Chin TW, Loeb M, Fong IW. Effects of an acidic beverage (Coca-Cola) on absorption of ketoconazole. Antimicrob Agents Chemother 1995; 39: 1671–5.

    Article  PubMed  CAS  Google Scholar 

  362. Lange D, Pavao JH, Jacqmin P, et al. The effect of coadministration of a cola beverage on the bioavailability of itraconazole in patients with acquired immunodeficiency syndrome. Curr Ther Res Clin Exp 1997; 58: 202–12.

    Article  CAS  Google Scholar 

  363. Houston JB, Levy G. Effect of buffered carbohydrate solutions (Coca-Cola and Emetrol) on bioavailability of riboflavin in man [abstract no. 36]. 17 National Meeting of the Academy of Pharmaceutical Sciences; 1974 Nov 10–14; New Orleans, 128.

  364. de Vries EG, Meyer C, Strubbe M, et al. Influence of various beverages on urine acid output. Cancer Res 1986; 41: 430–2.

    Google Scholar 

  365. Hunt JN, Knox MT. The slowing of gastric emptying by nine acids. J Physiol 1969; 201: 161–79.

    PubMed  CAS  Google Scholar 

  366. Gilbert RM. Caffeine as a drug of abuse. In: Gibbins RJ, Israel Y, Kalant H, et al., editors. Recent advances in alcohol and drug problems. New York: Wiley, 1976: 49–176.

    Google Scholar 

  367. Fundamentals of clinical pharmacokinetics. In: Wagner JG, editor. Effect of normal and pathologic physiology on pharmacokinetics. Hamilton (IL): Drug Intelligence Publications, Inc., 1975: 359–95.

  368. Diet and drug interactions. In: Roe DA, editor. Effects of food, nutrients, and nutritional status on drug disposition. New York: Van Nostrand Reinhold, 1989: 11–28.

    Google Scholar 

  369. Anderson KE. Influences of diet and nutrition on clinical pharmacokinetics. Clin Pharmacokinet 1988; 14: 325–46.

    Article  PubMed  CAS  Google Scholar 

  370. Krishnaswamy K. Drug metabolism and pharmacokinetics in malnourished children. Clin Pharmacokinet 1989; 17 Suppl. 1: 68–88.

    Article  PubMed  Google Scholar 

  371. Walter-Sack I, Klotz U. Influence of diet and nutritional status on drug metabolism. Clin Pharmacokinet 1996 Jul; 31: 47–64.

    Google Scholar 

  372. Williams L, Hill Jr DP, Davis JA, et al. The influence of food on the absorption and metabolism of drugs: an update. Eur J Drug Metab Pharmacokinet 1996; 21: 201–11.

    Article  PubMed  CAS  Google Scholar 

  373. Wilkinson GR. The effect of diet, aging and disease-states on presystemic elimination and oral drug bioavailability in humans. Adv Drug Del Rev 1997; 27: 129–59.

    Article  CAS  Google Scholar 

  374. Josefsson M, Zackrisson AL, Ahlner J. Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers. Eur J Clin Pharmacol 1996; 51: 189–93.

    Article  PubMed  CAS  Google Scholar 

  375. Lilja JJ, Kivisto KT, Backman JT, et al. Grapefruit juice substantially increases plasma concentrations of buspirone. Clin Pharmacol Ther 1998; 64: 655–60.

    Article  PubMed  CAS  Google Scholar 

  376. Garg SK, Kumar N, Bhargava VK, et al. Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy. Clin Pharmacol Ther 1998; 64: 286–8.

    Article  PubMed  CAS  Google Scholar 

  377. Yee GC, Stanley DL, Pessa LJ, et al. Effect of grapefruit juice on blood cyclosporin concentration. Lancet 1995; 345: 955–6.

    Article  PubMed  CAS  Google Scholar 

  378. Ducharme MP, Warbasse LH, Edwards DJ. Disposition of intravenous and oral cyclosporine after administration with grapefruit juice. Clin Pharmacol Ther 1995; 57: 485–91.

    Article  PubMed  CAS  Google Scholar 

  379. Ducharme MP, Provenzano R, Dehoorne-Smith M, et al. Trough concentrations of cyclosporine in blood following administration with grapefruit juice. Br J Clin Pharmacol 1993; 36: 457–9.

    Article  PubMed  CAS  Google Scholar 

  380. Ozdemir M, Aktan Y, Boydag BS, et al. Interaction between grapefruit juice and diazepam in humans. Eur J Drug Metab Pharmacokinet 1998; 23: 55–9.

    Article  PubMed  CAS  Google Scholar 

  381. Weber A, Jager R, Borner A. Can grapefruit juice influence ethinylestradiol bioavailability? Contraception 1996; 53: 41–7.

    Article  PubMed  CAS  Google Scholar 

  382. Bailey DG, Spence JD, Munoz C, et al. Interaction of citrus juices with felodipine and nifedipine. Lancet 1991; 337: 268–9.

    Article  PubMed  CAS  Google Scholar 

  383. Lundahl J, Regardh CG, Edgar B, et al. Effects of grapefruit juice ingestion — pharmacokinetic and haemodynamics of intravenously and orally administered felodipine in healthy men. Eur J Clin Pharmacol 1997; 52: 139–45.

    Article  PubMed  CAS  Google Scholar 

  384. Edgar B, Bailey D, Bergstrand R, et al. Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics of felodipine, and its potential clinical relevance. Eur J Clin Pharmacol 1992; 42: 313–7.

    Article  PubMed  CAS  Google Scholar 

  385. Bailey DG, Bend JR, Arnold JMO, et al. Erythromycin-felodipine interaction: magnitude, mechanism, and comparison with grapefruit juice. Clin Pharmacol Ther 1996; 60: 25–33.

    Article  PubMed  CAS  Google Scholar 

  386. Lundahl JU, Regardh CG, Edgar B, et al. The interaction effect of grapefruit juice is maximal after the first glass. Eur J Clin Pharmacol 1998; 54: 75–81.

    Article  PubMed  CAS  Google Scholar 

  387. Bailey DG, Arnold JM, Bend JR, et al. Grapefruit juice-felodipine interaction: reproducibility and characterization with the extended release drug formulation. Br J Clin Pharmacol 1995; 40: 135–40.

    PubMed  CAS  Google Scholar 

  388. Kantola T, Kivisto KT, Neuvonen PJ. Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1998; 63: 397–402.

    Article  PubMed  CAS  Google Scholar 

  389. Kupferschmidt HH, Ha HR, Ziegler WH, et al. Interaction between grapefruit juice and midazolam in humans. Clin Pharmacol Ther 1995; 58: 20–8.

    Article  PubMed  CAS  Google Scholar 

  390. Sigusch H, Hippius M, Henschel L, et al. Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation. Pharmazie 1994; 49: 522–4.

    PubMed  CAS  Google Scholar 

  391. Grundy JS, Eliot LA, Kulmatycki KM, et al. Grapefruit juice and orange juice effects on the bioavailability of nifedipine in the rat. Biopharm Drug Dispos 1998; 19: 175–83.

    Article  PubMed  CAS  Google Scholar 

  392. Fuhr U, Maier-Bruggemann A, Blume H, et al. Grapefruit juice increases oral nimodipine bioavailability. Int J Clin Pharmacol Ther 1998; 36: 126–32.

    PubMed  CAS  Google Scholar 

  393. Bailey DG, Arnold JM, Strong HA, et al. Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics. Clin Pharmacol Ther 1993; 54: 589–94.

    Article  PubMed  CAS  Google Scholar 

  394. Soons PA, Vogels BAPM, Roosemalen MCM, et al. Grapefruit juice and cimetidine inhibit stereoselective metabolism of nitrendipine in humans. Clin Pharmacol Ther 1991; 50: 394–403.

    Article  PubMed  CAS  Google Scholar 

  395. Hashimoto K, Shirafuji T, Sekino H, et al. Interaction of citrus juices with pranidipine, a new 1,4-dihydropyridine calcium antagonist, in healthy subjects. Eur J Clin Pharmacol 1998; 54: 753–60.

    Article  PubMed  CAS  Google Scholar 

  396. Kupferschmidt HH, Fattinger KE, Ha HR, et al. Grapefruit juice enhances the bioavailability of the protease HIV inhibitor saquinavir in man. Br J Clin Pharmacol 1998; 45: 355–9.

    Article  PubMed  CAS  Google Scholar 

  397. Lilja JJ, Kivisto KT, Neuvonen PJ. Grapefruit juice-simvastatin interaction: effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors. Clin Pharmacol Ther 1998; 64: 477–83.

    Article  PubMed  CAS  Google Scholar 

  398. Benton RE, Honig PK, Zamani K, et al. Grapefruit juice alters terfenadine pharmacokinetics, resulting in prolongation of repolarization on the electrocardiogram. Clin Pharmacol Ther 1996; 59: 383–8.

    Article  PubMed  CAS  Google Scholar 

  399. Rau SE, Bend JR, Arnold MO, et al. Grapefruit juice-terfenadine single-dose interaction: magnitude, mechanism, and relevance. Clin Pharmacol Ther 1997; 61: 401–9.

    Article  PubMed  CAS  Google Scholar 

  400. Honig PK, Wortham DC, Lazarev A, et al. Grapefruit juice alters the systemic bioavailability and cardiac repolarization of terfenadine in poor metabolizers of terfenadine. J Clin Pharmacol 1996; 36: 345–51.

    PubMed  CAS  Google Scholar 

  401. Clifford CP, Adams DA, Murray S, et al. The cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice. Eur J Clin Pharmacol 1997; 52: 311–5.

    Article  PubMed  CAS  Google Scholar 

  402. Hukkinen SK, Varhe A, Olkolla KT, et al. Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice. Clin Pharmacol Ther 1995; 58: 127–31.

    Article  PubMed  CAS  Google Scholar 

  403. Cheng KL, Nafziger AN, Peloquin CA, et al. Effect of grapefruit juice on clarithromycin pharmacokinetics. Antimicrob Agents Chemother 1998; 42: 927–9.

    PubMed  CAS  Google Scholar 

  404. Sigusch H, Henschel L, Kraul H, et al. Lack of effect of grapefruit juice on diltiazem bioavailability in normal subjects. Pharmazie 1994; 49: 675–9.

    PubMed  CAS  Google Scholar 

  405. Min DI, Ku Y-M, Geraets DR, et al. Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers. J Clin Pharmacol 1996; 36: 469–76.

    PubMed  CAS  Google Scholar 

  406. Fuhr U, Maier A, Keller A, et al. Lacking effect of grapefruit juice on theophylline pharmacokinetics. Int J Clin Pharmacol Ther 1995; 33: 311–4.

    PubMed  CAS  Google Scholar 

  407. Zaidenstein R, Dishi V, Gips M, et al. The effect of grapefruit juice on the pharmacokinetics of orally administered verapamil. Eur J Clin Pharmacol 1998; 54: 337–40.

    Article  PubMed  CAS  Google Scholar 

  408. Chan WK, Nguyen LT, Miller VP, et al. Mechanism-based in-activation of human cytochrome P450 3 A4 by grapefruit juice and red wine. Life Sci 1998; 62: 135–42.

    Google Scholar 

  409. Runkel M, Bourian M, Tegtmeier M, et al. The character of inhibition of the metabolism of 1,2-benzopyrone (coumarin) by grapefruit juice in human. Eur J Clin Pharmacol 1997; 53: 265–9.

    Article  PubMed  CAS  Google Scholar 

  410. Bailey DG, Arnold JMO, Munoz C, et al. Grapefruit juice-felodipine interaction: mechanism, predictability, and effect of naringin. Clin Pharmacol Ther 1993; 53: 637–42.

    Article  PubMed  CAS  Google Scholar 

  411. Rashid J, McKinstry C, Renwick AG, et al. Quercetin, an in vitro inhibitor of CYP3A, does not contribute to the interaction between nifedipine and grapefruit juice. Br J Clin Pharmacol 1993; 36: 460–3.

    Article  PubMed  CAS  Google Scholar 

  412. Edwards DJ, Bernier SM. Naringin and naringenin are not the primary CYP3A inhibitors in grapefruit juice. Life Sci 1996; 59: 1025–30.

    Article  PubMed  CAS  Google Scholar 

  413. Guengerich FP, Kim D. In vitro inhibition of dihydropyridine oxidation and aflatoxin B1 activation in human liver microsomes by naringenin and other flavonoids. Carcinogenesis 1990; 11: 2275–9.

    Article  PubMed  CAS  Google Scholar 

  414. Miniscalco A, Lundahl J, Regardh CG, et al. Inhibition of dihydropyridine metabolism in rat and human liver microsomes by flavonoids found in grapefruit juice. J Pharmacol Exp Ther 1992; 261: 1195–9.

    PubMed  CAS  Google Scholar 

  415. Edwards DJ, Bellevue III FH, Woster PM. Identification of 6′,7′-dihydroxybergamottin, a cytochrome P450 inhibitor, in grapefruit juice. Drug Metab Dispos 1996; 24: 1287–90.

    PubMed  CAS  Google Scholar 

  416. Schmiedlin-Ren P, Edwards DJ, Fitzsimmons ME, et al. Mechanisms of enhanced oral availability of CYP3A4 substrates by grapefruit constituents. Decreased enterocyte concentration and mechanism-based inactivation by furanocoumarins. Drug Metab Dispos 1997; 25: 1228–33.

    PubMed  CAS  Google Scholar 

  417. Fukuda K, Ohta T, Yamazoe Y Grapefruit component interacting with rat and human P450 CYP3A: possible involvement of non-flavonoid components in drug interaction. Biol Pharm Bull 1997; 20: 560–4.

    Article  PubMed  CAS  Google Scholar 

  418. Ameer B, Weintraub RA. Drug interactions with grapefruit juice. Clin Pharmacokinet 1997 Aug; 33: 103–21.

    Google Scholar 

  419. Fuhr U. Drug interactions with grapefruit juice. Extent, probable mechanism and clinical relevance. Drug Saf 1998; 18: 251–72.

    Article  PubMed  CAS  Google Scholar 

  420. Bailey DG, Malcolm J, Arnold O, et al. Grapefruit juice-drug interactions. Br J Clin Pharmacol 1998; 46: 101–10.

    Article  PubMed  CAS  Google Scholar 

  421. Lown KS, Bailey DG, Fontana RJ, et al. Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. J Clin Invest 1997; 99: 2545–53.

    Article  PubMed  CAS  Google Scholar 

  422. Soldner A, Christians U, Susanto M, et al. Grapefruit juice activates P-glycoprotein-mediated drug transport. Pharm Res 1999; 16: 478–85.

    Article  PubMed  CAS  Google Scholar 

  423. El-Arini SK, Shiu GK, Skelly JP. An in vitro study of possible food-drug interactions of the controlled-release propranolol products. Int J Pharm 1989; 55: 25–30.

    Article  CAS  Google Scholar 

  424. El-Arini SK, Shiu GK, Skelly JP. Theophylline-controlled release preparations and fatty food: in vitro study using the rotating dialysis cell method. Pharm Res 1990; 7: 1134–40.

    Article  PubMed  CAS  Google Scholar 

  425. Williams III RO, Sriwongjanya M, Liu J. An in vitro method to investigate food effects on drug release from film-coated beads. Pharm Dev Technol 1997; 2: 1–9.

    Article  PubMed  CAS  Google Scholar 

  426. Cook CS, Hauswald CL, Grahn AY, et al. Suitability of the dog as an animal model for evaluating theophylline absorption and food effects from different formulations. Int J Pharm 1990; 60: 125–32.

    Article  CAS  Google Scholar 

  427. Cook CS, Zhang L, Osis J, et al. Mechanism of compound-and species-specific food effects of structurally related antiarrhythmic drugs, disopyramide and bidisomide. Pharm Res 1998; 15: 429–33.

    Article  PubMed  CAS  Google Scholar 

  428. Semple HA, Tarn YK, Coutts RT. Hydralazine pharmacokinetics and interaction with food: an evaluation of the dog as an animal model. Pharm Res 1990; 7: 274–9.

    Article  PubMed  CAS  Google Scholar 

  429. Shiu GK, LeMarchand A, Sager AO, et al. The beagle dog as an animal model for a bioavailability study of controlled-release theophylline under the influence of food. Pharm Res 1989; 6: 1039–42.

    Article  PubMed  CAS  Google Scholar 

  430. Aoyagi N, Ogata H, Kaniwa N, et al. Gastric emptying of tablets and granules in humans, dogs, pigs, and stomach-emptying controlled rabbits. J Pharm Sci 1992; 81: 1170–4.

    Article  PubMed  CAS  Google Scholar 

  431. Sagara K, Kawata M, Mizuta H, et al. Utility of gastrointestinal physiology regulated-dogs: bioavailability study of a commercial sustained-release dosage form of theophylline. Biol Pharm Bull 1994; 17: 931–4.

    Article  PubMed  CAS  Google Scholar 

  432. Wang B, Semple HA. Inhibition of metoprolol metabolism by amino acids in perfused rat livers: insights into the food effect? Drug Metab Dispos 1997; 25: 287–95.

    PubMed  CAS  Google Scholar 

  433. Lee K-H, Xu G-X, Schoenhard GL, et al. Mechanisms of food effects of structurally related antiarrhythmic drugs, disopyramide and bidisomide in the rat. Pharm Res 1997; 14: 1030–8.

    Article  PubMed  CAS  Google Scholar 

  434. Semple HA, Tam YK, Coutts RT. Computer simulation of the food effect: transient changes in hepatic blood flow and Michaelis-Menten parameters as mediators of hepatic first-pass metabolism and bioavailability of propranolol. Biopharm Drug Dispos 1990; 11: 61–76.

    Article  PubMed  CAS  Google Scholar 

  435. Schaefer HG, Heinig R, Ahr G, et al. Pharmacokinetic-pharmacodynamic modelling as a tool to evaluate the clinical relevance of a drug-food interaction for a nisoldipine controlled-release dosage form. Eur J Clin Pharmacol 1997; 51: 473–80.

    Article  PubMed  CAS  Google Scholar 

  436. Cameron-Smith BD, Collier GR, O’Dea K. Effect of soluble dietary fiber on the viscosity of gastrointestinal contents and the acute glycaemic response in the rat. Br J Nutr 1994; 71: 563–71.

    Article  PubMed  CAS  Google Scholar 

  437. Abernethy DR, Azarnoff DL. Pharmacokinetic investigations in elderly patients: clinical and ethical considerations. Clin Pharmacokinet 1990; 19: 89–93.

    Article  PubMed  CAS  Google Scholar 

  438. Spina E. Pharmacokinetics of antidepressants in the elderly. Biol Psychiatry 1997; 42 Suppl.: 3–4.

    Article  Google Scholar 

  439. Hatlebakk JG, Berstad A. Pharmacokinetic optimization in the treatment of gastro-oesophageal reflux disease. Clin Pharmacokinet 1996 Nov; 31: 386–406.

    Google Scholar 

  440. Samal SC, Ramakrishna BS. Gastrointestinal problems in the elderly. Ind J Med Res 1997; 106: 295–301.

    CAS  Google Scholar 

  441. Yuen GJ. Altered pharmacokinetics in the elderly. Clin Geriatr Med 1990; 6: 257–67.

    PubMed  CAS  Google Scholar 

  442. Applied biopharmaceutics and pharmacokinetics. In: Shargel L, Yu ABC, editors. Application of pharmacokinetics in clinical situations. Stamford (CT): Appleton & Lange, 1993: 399–434.

    Google Scholar 

  443. Russell TL, Berardi RR, Barnett JL, et al. Upper gastrointestinal pH in seventy-nine healthy, elderly, North American men and women. Pharm Res 1993; 10: 187–96.

    Article  PubMed  CAS  Google Scholar 

  444. Mojaverian P, Vlasses PH, Kellner PE, et al. Effects of gender, posture, and age on gastric residence time of an indigestible solid: pharmaceutical considerations. Pharm Res 1988; 5: 639–44.

    Article  PubMed  CAS  Google Scholar 

  445. Russell TL, Berardi RR, Barnett JL, et al. pH-related changes in the absorption of dipyridamole in the elderly. Pharm Res 1994; 11: 136–43.

    Article  PubMed  CAS  Google Scholar 

  446. Divoll M, Greenblatt DJ, Ameer B, et al. Effect of food on acetaminophen absorption in young and elderly subjects. J Clin Pharmacol 1982; 22: 571–6.

    PubMed  CAS  Google Scholar 

  447. Viswanathan CT, Welling PG. Food effects on drug absorption in the elderly. In: Roe DA, editor. Drugs and nutrition in the geriatric patient. New York: Churchill Livingston, 1984: 47–70.

    Google Scholar 

  448. Thomas JA, Burns RA. Important drug-nutrient interactions in the elderly. Drugs Aging 1998; 13: 199–209.

    Article  PubMed  CAS  Google Scholar 

  449. Schumucker DL. Aging and drug disposition: an update. Pharmacol Rev 1985; 37: 133–48.

    Google Scholar 

  450. Welling P. Nutrient effects on drug metabolism and action in the elderly. Drug Nutr Interact 1985; 4: 173–207.

    PubMed  CAS  Google Scholar 

  451. Roberts J, Turner N. Age and diet effects on drug action. Pharmacol Ther 1988; 37: 111–49.

    Article  PubMed  CAS  Google Scholar 

  452. Roe DA. Therapeutic effects of drug-nutrient interactions in the elderly. J Am Diet Assoc 1985; 85: 174–8.

    PubMed  CAS  Google Scholar 

  453. McLeod HL, Evans WE. Pediatric pharmacokinetics and therapeutic drug monitoring. Pediatr Rev 1992; 13: 413–21.

    PubMed  CAS  Google Scholar 

  454. Melander A, Wahlin E, Danielson K, et al. Bioavailability of propylthiouracil: interindividual variation and influence of food intake. Acta Med Scand 1977; 201: 41–4.

    Article  PubMed  CAS  Google Scholar 

  455. Nakamura H, Iwai N. Pharmacokinetic study on oral antibiotics in pediatrics: IIIA. Pharmacokinetic study on cefprozil in pediatrics [in Japanese]. Jpn J Antibiot 1992; 45: 1489–504.

    PubMed  CAS  Google Scholar 

  456. Lafolie P, Bjork O, Hayder S, et al. Variability of 6-mercaptopurine pharmacokinetics during oral maintenance therapy of children with acute leukemia. Med Oncol Tumor Pharmacother 1989; 6: 259–65.

    PubMed  CAS  Google Scholar 

  457. Vaughan LM, Milavetz G, Weinberger MM, et al. Oral bioavailability of slow-release theophylline from unencapsulated beads in preschool children with chronic asthma. Ther Drug Monit 1988; 10: 395–400.

    Article  PubMed  CAS  Google Scholar 

  458. Heimann G, Murgescu J, Bergt U. Influence of food intake on bioavailability of theophylline in premature infants. Eur J Clin Pharmacol 1982; 22: 171–3.

    Article  PubMed  CAS  Google Scholar 

  459. Crom WR. Pharmacokinetics in the child. Environ Health Perspect 1994; 102 Suppl. 11: 111–7.

    Article  PubMed  Google Scholar 

  460. Atherton JC, Washington N, Bracewell MA, et al. Scintigraphic assessment of the intragastric distribution and gastric emptying of an encapsulated drug: the effect of feeding and of a proton pump inhibitor. Aliment Pharmacol Ther 1994; 8: 489–94.

    Article  PubMed  CAS  Google Scholar 

  461. Yamreudeewong W, Henan NE, Fazio A, et al. Drug-food interactions in clinical practice. J Fam Pract 1995; 40: 376–84.

    PubMed  CAS  Google Scholar 

  462. Berlin I, Lecrubier Y Food and drug interactions with monoamine oxidase inhibitors: how safe are the newer agents? CNS Drugs 1996; 5: 403–13.

    Article  CAS  Google Scholar 

  463. Morganroth J, Waldman SA. Improved sensitivity in detecting drug-induced alterations in the PR-interval when measured by a single cardiologist compared to computer analysis. Am J Cardiol 1993; 72: 834–6.

    Article  PubMed  CAS  Google Scholar 

  464. Karbwang J, Na Bangchang K. Clinical pharmacokinetics of halofantrine. Clin Pharmacokinet 1994 Aug; 27: 104–19.

    Google Scholar 

  465. Grant SM, Clissold SP. Itraconazole: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in superficial and systemic mycoses. Drugs 1989; 37: 310–44.

    Article  PubMed  CAS  Google Scholar 

  466. Lake-Bakaar G, Tom W, Lake-Bakaar D, et al. Gastropathy and ketoconazole malabsorption in the acquired immunodeficiency syndrome (AIDS). Ann Intern Med 1988; 109: 471–3.

    PubMed  CAS  Google Scholar 

  467. Salmerón J, Manson JE, Stampfer MJ, et al. Dietary fiber, glycemic load, and the risk of non-insulin-dependent diabetes mellitus in women. JAMA 1997; 277: 472–7.

    Article  PubMed  Google Scholar 

  468. Pietinen P, Rimm EB, Korhonen P, et al. Intake of dietary fiber and risk of coronary heart disease in a cohort of Finnish men. The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Circulation 1996; 94: 2720–7.

    Article  PubMed  CAS  Google Scholar 

  469. Trowell HC. Ischaemic heart disease, atheroma and fibrinolysis. In: Burkitt DP, Trowell HC, editors. Refined carbohydrate food and disease. London: Academic Press, 1975.

    Google Scholar 

  470. Holt S, Heading RC, Carter DC, et al. Effect of gel fiber on gastric emptying and absorption of glucose and paracetamol. Lancet 1979; I: 636–9.

    Article  Google Scholar 

  471. Jenkins DJ A, Wolever TMS, Leeds AR, et al. Dietary fibers, fiber analogues, and glucose tolerance: importance of viscosity. BMJ 1978; 1: 1392–4.

    Article  PubMed  CAS  Google Scholar 

  472. Pilch SM, editor. Physiological effects and health consequences of dietary fiber. Bethesda (MD): Life Sciences Research Office, FASEB, 1987.

    Google Scholar 

  473. Van der Meer R, Lapré JA, Govers MJAP, et al. Mechanisms of the intestinal effects of dietary fats and milk products on colon carcinogenesis. Cancer Lett 1997; 114: 75–83.

    Article  PubMed  Google Scholar 

  474. Hollman PCH, van Trijp JMP, Buysman MNCP, et al. Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett 1997; 418: 152–6.

    Article  PubMed  CAS  Google Scholar 

  475. Hollman PCH, van Trijp JMP, Mengelers MJB, et al. Bioavailability of the dietary antioxidant flavonol quercetin in man. Cancer Lett 1997; 114: 139–40.

    Article  PubMed  CAS  Google Scholar 

  476. Dai R, Jacobson KA, Robinson RC, et al. Differential effects of flavonoids on testosterone-metabolizing cytochrome P450s. Life Sci 1997; 61: 75–80.

    Article  Google Scholar 

  477. Barnes S, Sfakianos J, Coward L, et al. Soy isoflavonoids and cancer prevention: underlying biochemical and pharmacological issues. Adv Exp Med Biol 1996; 401: 87–100.

    Article  PubMed  CAS  Google Scholar 

  478. Kurlandsky LE, Bennink MR, Webb PM, et al. The absorption and effect of dietary supplementation with omega-3 fatty acids on serum leukotriene B4 in patients with cystic fibrosis. Pediatr Pulmonol 1994; 18: 211–7.

    Article  PubMed  CAS  Google Scholar 

  479. Kempster PA, Wahlqvist ML. Dietary factors in the management of Parkinson’s disease. Nutr Rev 1994; 52: 51–8.

    PubMed  CAS  Google Scholar 

  480. Astarloa R, Mena MA, Sanchez V, et al. Clinical and pharmacokinetic effects of a diet rich in insoluble fiber on Parkinson disease. Clin Neuropharmacol 1992; 15: 375–80.

    Article  PubMed  CAS  Google Scholar 

  481. Chisholm A, Sutherland W, Ball M. The effect of dietary fat content on plasma noncholesterol sterol concentrations in patients with familial hypercholesterolemia treated with simvastatin. Metabolism 1994; 43: 310–4.

    Article  PubMed  CAS  Google Scholar 

  482. National Cholesterol Education Program. Second report of the expert panel on detection, evaluation, and treatment of high cholesterol in adults (Adult Treatment Panel). Circulation 1994; 89: 1333–445.

    Article  Google Scholar 

  483. Wright N, Scott BB. Dietary treatment of active Crohn’s disease. BMJ 1997; 314: 454–5.

    Article  PubMed  Google Scholar 

  484. Introduction: semi-solid formulations for oral drug delivery. In: Robinson JR, editor. Semi-solid formulations and oral absorption enhancement. Sanit Rémy de Provence: Bulletin Technique Gattefossé 1996 Jun: 11–3.

  485. Technical Dossier: Gelucire®. Pharmaceutical excipients for oral semi-solid formulations, 2nd ed. Westwood (NJ): Gattefossé Corporation, 1996 Oct.

    Google Scholar 

  486. Bioavailability enhancers for oral liquid and capsule formulations. Westwood (NJ): Gattefossé Corporation, 1997.

  487. Lenaerts V, Moussa I, Dumoulin Y, et al. Cross-linked high amylose starch for controlled release of drugs: recent advances. J Control Rel 1998; 53: 225–34.

    Article  CAS  Google Scholar 

  488. Gauthier I, Malone M. Drug-food interactions in hospitalised patients: methods of prevention. Drug Saf 1998; 18: 383–93.

    Article  PubMed  CAS  Google Scholar 

  489. Holdiness MR. Clinical pharmacokinetics of N-acetylcysteine. Clin Pharmacokinet 1991 Feb; 20: 123–34.

    Google Scholar 

  490. Belluzi A, Brignola C, Campieri M, et al. Effect of an entericcoated fish-oil preparation on relapses in Crohn’s disease. N Engl J Med 1996; 334: 1557–60.

    Article  Google Scholar 

  491. Steinijans VW, Hauschke D, Jonkman JHG. Controversies in bioequivalence studies. Clin Pharmacokinet 1992; 22: 247–53.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahma N. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, B.N. Effects of Food on Clinical Pharmacokinetics. Clin Pharmacokinet 37, 213–255 (1999). https://doi.org/10.2165/00003088-199937030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199937030-00003

Keywords

Navigation