Skip to main content
Log in

Principles of Drug Administration in Renal Insufficiency

  • Review Article
  • Special Populations
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Normal renal function is important for the excretion and metabolism of many drugs. Renal diseases which affect glomerular blood flow and filtration, tubular secretion, reabsorption and renal parenchymal mass alter drug clearances and lead to the need for alterations in dosage regimens to optimise therapeutic outcome and minimise the risk of toxicity. Renal disease is increasing and the cost of care has risen progressively over the past decade. Part of these costs is related to inappropriate drug therapy and excessive drug use.

Although there are a variety of methods for evaluating the various aspects of renal function, the most practical and commonly used clinical measure of renal function is estimated creatinine clearance (CLcr) as a marker for glomerular filtration. This is useful since alterations in drug clearance are proportional to alterations in CLCR, and this relationship is used as the basis for changing doses and dosage intervals for drugs which are largely renally excreted.

Two populations, neonates and the elderly, are at risk of inappropriate drug dosage due to physiological changes in renal function. Estimated CLCR may not be the best method of evaluating renal function in these patients, and dosage regimens should be carefully considered. Renal insufficiency and concurrent drug therapy used in these populations can either increase or decrease drug absorption, depending on the particular agent.

Drug distribution may be altered in renal insufficiency due to pH-dependent protein binding and reduced protein (primarily albumin) levels. Interestingly, renal disease may affect hepatic as well as renal drug metabolism; the exact mechanisms for these changes are not well understood. The most important quantitative pharmacokinetic change is excretion. Glomerular filtration and tubular process may both be affected but not to the same extent, and the type of renal disease may differentially affect filtration and excretion.

Drug removal by dialysis is dependent on a number of factors, including the characteristics of a particular drug and the type of dialysis and equipment used. Therapeutic outcomes may be evaluated using end-points such as plasma concentrations, patient outcomes such as reduction in fever or negative cultures, and system-wide changes such as drug-use or laboratory-use patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Eberhardt MS, Wagener DK, Herman WH, et al. Trends in renal disease morbidity and mortality in the United States, 1979 to 1990. Am J Kidney Dis 1995; 26(2): 308–20

    PubMed  CAS  Google Scholar 

  2. Kochanek KD, Hudson BL. Advance report of final mortality statistics, 1992. Monthly Vital Statistics Report, National Center for Health Statistics, Centers for Disease Control and Prevention 1995 Mar; 43 (6 Suppl.): 1–76

    Google Scholar 

  3. US Renal Disease System: USRDS 1993 Annual Data Report. Bethesda (MD): National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Disorders, 1993

  4. Schusterman N, Strom BL, Murray TG, et al. Risk factors and outcome of hospital-acquired acute renal insufficiency: clinical epidemiology study. Am J Med 1987; 83: 65–71

    Google Scholar 

  5. Ferguson R, Morrissey E. Risk factors for end-stage renal disease among minorities. Transplant Proc 1993 Aug; 24(4): 2415–20

    Google Scholar 

  6. Smith SR, Svetkey LP, Dennis VW. Racial differences in renal disease. Kidney Int 1991; 40: 815–22

    PubMed  CAS  Google Scholar 

  7. Klag MJ, Whelton PK, Randall BL, et al. Blood pressure and end-stage renal disease in men. N Engl J Med 1996 Jun; 334: 13–8

    PubMed  CAS  Google Scholar 

  8. Cantu TG, Ellerbeck ED, Yun SW, et al. Drug prescribing for patients with changing renal function. Am J Hosp Pharm 1992; 49: 2944–8

    PubMed  CAS  Google Scholar 

  9. Manasse HR. Medication use in an imperfect world: drug misadventuring as an issue of public policy (Pt 1). Am J Hosp Pharm 1989; 46: 929–44

    PubMed  Google Scholar 

  10. Johnson JA, Bootman JL. Drug-related morbidity and mortality. Arch Intern Med 1995; 155: 1949–56

    PubMed  CAS  Google Scholar 

  11. Rind DM, Safran C, Phillips RS, et al. Effect of computer-based alerts on the treatment and outcomes of hospitalized patients. Arch Intern Med 1994; 154: 1511–7

    PubMed  CAS  Google Scholar 

  12. The effect of computer-based reminders on the management of hospitalized patients with worsening renal function. Proc Annu Symp Comput Appl Med Care 1991: 28–32

  13. Taylor JW, McLean AJ, Leonard RG, et al. Initial experience of clinical pharmacology and clinical pharmacy interactions in a clinical pharmacokinetics consultation service. J Clin Pharmacol 1979; 19: 1–7

    PubMed  CAS  Google Scholar 

  14. Goldberg DE, Baardsgaard G, Johnson MT, et al. Computer-based program for identifying medication orders requiring dosage modification based on renal function. Am J Hosp Pharm 1991; 48: 1965–9

    PubMed  CAS  Google Scholar 

  15. Bjornson DC, Hiner WO, Potyk RP, et al. Effect of pharmacists on health care outcomes in hospitalized patients. Am J Hosp Pharm 1993; 50: 1875–84

    PubMed  CAS  Google Scholar 

  16. Morton TA, Talbert RL. Reduction in drug charges in hospitalized patients through clinical pharmacy interventions. Pharmacotherapy 1991; 11: 99

    Google Scholar 

  17. Soumerai SB, Lipton HL. Computer-based drug-utilization review: risk, benefit, or boondoggle? N Engl J Med 1995; 332: 1641–5

    PubMed  CAS  Google Scholar 

  18. Comstock TJ. Quantification of renal function. In: Dipiro JT, Talbert RL, Hayes PE, et al., editors. Pharmacotherapy: a pathophysiologic basis. 3nd ed. Norwalk (CT): Appleton-Lange, Inc., 1996: 867–85

    Google Scholar 

  19. Matzke GR, Frey RF. Drug therapy individualization for patients with renal insufficiency. In: Dipiro JT, Talbert RL, Hayes PE, et al., editors. Pharmacotherapy: a pathophysiologic basis. 2nd ed. Norwalk (CT): Appleton-Lange, Inc., 1966: 1083–103

    Google Scholar 

  20. Matzke GR, Millikin SP. Influence of renal function and dialysis on drug disposition. In: Evans WE, Schentag JJ, Jusko WJ, editors. Applied pharmacokinetics: principles of therapeutic drug monitoring. 3rd ed. Vancouver: Applied Therapeutics, Inc., 1992: 8.1–8.49

    Google Scholar 

  21. Mawer CE, Knowles BR, Lucas SB, et al. Computer-assisted prescribing of kanamycin for patients with renal insufficincy. Lancet 1972; I: 12–5

    Google Scholar 

  22. Jelliffe RW. Creatinine clearances: bedside estimate. Ann Intern Med 1973; 79: 604–5

    PubMed  CAS  Google Scholar 

  23. Wagner JG. Fundamentals of clinical pharmacokinetics. Hamilton (IL): Drug Intelligence Publications, 1975: 162

    Google Scholar 

  24. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16: 31–41

    PubMed  CAS  Google Scholar 

  25. Hull JK, Hak LJ, Koch GC, et al. Influence of range of renal function and liver disease on predictability of creatinine clearance. Clin Pharmacol Ther 1981; 29: 516–21

    PubMed  CAS  Google Scholar 

  26. Schwartz GJ. A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr 1984; 104: 849–54

    PubMed  CAS  Google Scholar 

  27. Schwartz GJ. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 1976; 58: 259–63

    PubMed  CAS  Google Scholar 

  28. Dechaux M, Gonzalez G, Broyer M. Plasma creatinine, and clearance and urinary excretion of creatinine in children. Arch Fr Pediatr 1978; 35: 53–62

    PubMed  CAS  Google Scholar 

  29. Tozer TN. Nomogram for modification of dosage regimens in patients with chronic renal impairment. J Pharmacokinet Biopharm 1974; 2: 13–28

    Google Scholar 

  30. Jelliffe RW, Jeliffe SW. A computer program for estimation of creatinine clearance from unstable serum creatinine concentration. Math Biosci 1972; 14: 17–24

    Google Scholar 

  31. Chiou WL, Hsu FH. A new simple rapid method to monitor renal function based on pharmacokinetic considerations of endogenous creatinine. Res Comm Chem Path Pharmacol 1975; 10: 15

    Google Scholar 

  32. Brater DC. Handbook of drug use in patients with renal disease. 2nd ed. Lancaster: Improved Therapeutics, 1982

    Google Scholar 

  33. DeSanto NG, Anastasio P, Loguercio C, et al. Creatinine clearance: an inadequate marker of renal filtration in patients with early posthepatitic cirrhosis (Child A) without fluid retention and muscle wasting. Nephron 1995; 70: 421–4

    PubMed  CAS  Google Scholar 

  34. DeSanto NG, Anastasio P, Cirrillo M, et al. Sequential analysis of variation in glomerular filtration rate to calculate the haemodynamic response to a meat meal. Nephrol Dial Transplant 1995; 10: 1629–36

    CAS  Google Scholar 

  35. Lesar TS, et al. Gentamicin dosage errors with four commonly used nomograms. JAMA 1982: 248: 1190–3

    PubMed  CAS  Google Scholar 

  36. Zokufa HZ, et al. Simulation of vancomycin peak and trough concentrations using five dosing methods in 37 patients. Pharmacotherapy 1989; 9: 10

    PubMed  CAS  Google Scholar 

  37. Guay DR, Vance-Bryan K, Gilliland S, et al. Comparison of vancomycin pharmacokinetics in hospitalized elderly and young patients using a Bayesian forecaster. J Clin Pharmacol 1993; 33: 918–22

    PubMed  CAS  Google Scholar 

  38. Davis BD. Mechanism of the bactericidal action of the aminoglycosides. Microbiol Rev 1987; 51: 341–50

    PubMed  CAS  Google Scholar 

  39. Zhanel GG, Hoban DJ, Harding GKM. The postantibiotic effect: a review of in vitro and in vivo data. DICP 1991; 25: 153–62

    PubMed  CAS  Google Scholar 

  40. Sloan RW. Principles of drug therapy in geriatric patients. Am Fam Physician 1992; 45: 2709–18

    PubMed  CAS  Google Scholar 

  41. Skaer TL. Drug dosing considerations in the pediatric patient. Clin Ther 1991; 13: 526–44

    PubMed  CAS  Google Scholar 

  42. Arant BS. Developmental patterns of renal function maturation compared in the human neonate. J Pediatr 1978; 92: 705–12

    PubMed  CAS  Google Scholar 

  43. Crom WR. Pharmacokinetics in the child. Environ Health Perspect 1994; 102Suppl. 11: 111–8

    PubMed  Google Scholar 

  44. Linday LA. Developmental changes in renal tubular function. J Adolesc Health 1994; 15: 648–53

    PubMed  CAS  Google Scholar 

  45. Passwell JH, Modan M, Brish M, et al. Fractional excretion of uric acid in infancy and childhood: index of tubular maturation. Arch Dis Childhood 1974; 49: 878–82

    CAS  Google Scholar 

  46. Milsap RL, Jusko WJ. Pharmacokinetics in the infant. Environ Health Perspect 1994; 102Suppl. 11: 107–10

    PubMed  Google Scholar 

  47. Rodman JH. Pharmacokinetic variability in the adolescent: implications of body size and organ function for dosage regimen design. J Adolesc Health 1994; 15: 654–62

    PubMed  CAS  Google Scholar 

  48. Routledge PA. Pharmacokinetics in children. J Antimicrob Chemother 1994; 34Suppl. A: 19–24

    PubMed  Google Scholar 

  49. Chutka DS, Evans JM, Fleming KC, et al. Drug prescribing for elderly patients. Mayo Clin Proc 1995; 70: 685–93

    PubMed  CAS  Google Scholar 

  50. Mayersohn M. Pharmacokinetics in the elderly. Environ Health Perspect 1994; 102Suppl. 11: 119–24

    PubMed  Google Scholar 

  51. Lindeman RD, Tobin J, Shock NW. Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc 1985; 33: 278–85

    PubMed  CAS  Google Scholar 

  52. Rowe JW, Andres R, Tobin JD, et al. The effect of age on creatinine clearance in men: a cross-sectional and longitudinal study. J Gerontol 1976; 31: 155–63

    PubMed  CAS  Google Scholar 

  53. Swift CG. Pharmacokinetics and prescribing in the elderly. J Antimicrob Chemother 1994; 34Suppl. A: 25–32

    PubMed  Google Scholar 

  54. Friedman SA, Faizner AE, Rosen H, et al. Functional defects in the ageing kidney. Ann Intern Med 1972; 76: 41–5

    PubMed  CAS  Google Scholar 

  55. Dontas AS, Papanayiotou P, Markitos SG, et al. the effects of bacteriuria on renal function patterns in old age. Clin Sci 1968; 34: 73–81

    PubMed  CAS  Google Scholar 

  56. Rius F, Pizarro E, Salinas I, et al. Age as a determinant of glomerular filtration rate in non-insulin-dependent diabetes mellitus. Nephrol Dial Transplant 1995; 10: 1644–7

    PubMed  CAS  Google Scholar 

  57. Winters ME. Basic clinical pharmacokinetics. 3rd ed. Vancouver (WA): Applied Therapeutics, Inc., 1994: 198–235

    Google Scholar 

  58. Fletcher CV, Acosta EP, Strykowski JM. Gender differences in human pharmacokinetics and pharmacodynamics. J Adolesc Health 1994; 15: 619–29

    PubMed  CAS  Google Scholar 

  59. Davison JM, Noble MCB. Serial changes in 24 hour creatinine clearance during nornal menstrual cycle annd the first trimester of pregnancy. Br J Obstet Gynecol 1981; 88: 10–7

    CAS  Google Scholar 

  60. Nafziger AN, Schwartzman MS, Bertino JS. Absence of tobramycin pharmacokinetics and creatinine clearance variation during the menstrual cycle: implied absence of variation in flomerular filtration rate. J Clin Pharmacol 1989; 29: 757–63

    PubMed  CAS  Google Scholar 

  61. Gambertoglio JG. Effects of renal disease: altered pharmacokinetics. In: Benet LZ, Massoud N, Gambertoglio JG, editors. Pharmacokinetic basis for drug treatment. New York: Raven, 1984: 149–71

    Google Scholar 

  62. Bianchetti G, Graziani G, Brancacci D, et al. Pharmacokinetics and effects of propranolol in terminal uremic patients and in patients undergoing regular dialysis treatment. Clin Pharmacokinet 1976; 1: 373–84

    PubMed  CAS  Google Scholar 

  63. Balant LP, Dayer P, Fabre J. Consequenes of renal insufficiency on the hepatic clearance of some drugs. Int J Clin Pharmacol Res 1983; 3: 459–74

    PubMed  CAS  Google Scholar 

  64. Barnes JN, Williams AJ, Tomson MJF, et al. Dihydrocodeine in renal insufficiency: further evidence for an important role of the kidney in the handling of ovoid drugs. BMJ 1985; 290: 740–2

    PubMed  CAS  Google Scholar 

  65. Gibson TP, Giacomini KM, Briggs WA, et al. Propoxyphene and norpropoxyphene plasma concentrations in the anephric patient. Clin Pharmacol Ther 1980; 27: 665–70

    PubMed  CAS  Google Scholar 

  66. Barnes JN, Goodwin FJ. Dihydrocodeine narcosis in renal insufficiency. BMJ 1983; 286: 438

    PubMed  CAS  Google Scholar 

  67. Redfern N. Dihydrocodeine overdose treated with naloxone infusion. BMJ 1983; 287: 751–2

    PubMed  CAS  Google Scholar 

  68. Plaisance KI, Drusano GL, Forrest A, et al. Effect of renal function on the bioavailability of ciprofloxacin. Antimicrob Agents Chemother 1990; 34: 1031–4

    PubMed  CAS  Google Scholar 

  69. Guay DRP, Matzke GR, Bockbrader HN, et al. Comparison of bioavailability and pharmacokinetics of Cimetidine in subjects with normal and impaired renal function. Clin Pharm 1983; 2: 157–62

    PubMed  CAS  Google Scholar 

  70. Jusko WJ, Szefier SJ, Goldfarb AL. Pharmacokinetic design of digoxin dosage regimens in relation to renal function. J Clin Pharmacol 1974; 14: 525–35

    PubMed  CAS  Google Scholar 

  71. Pritchard JR, O’Neill PJ, Affirme MB, et al. Influence of uremia, hemodialysis, and nonesterified fatty acids on zomepirac plasma protein binding. Clin Pharmacol Ther 1983; 34: 681–8

    PubMed  CAS  Google Scholar 

  72. Matzke GR, Sawchuk RJ. Protein binding of phenytoin, p-hydroxyphenytoin (HPPH) and HPPH glucuronide in patients with end-stage renal disease. Drug Intell Clin Pharm 1983; 1: 443–4

    Google Scholar 

  73. Vanholder R, Van Landschoot N, De Smet R, et al. Drug protein binding in chronic renal insufficiency: evaluation of nine drugs. Kidney Int 1988; 33: 996–1004

    PubMed  CAS  Google Scholar 

  74. Haughey DB, Kraft CJ, Matzke GR, et al. Protein binding of disopyramide and elevated alpha-1-acid glycoprotein concentrations in serum obtained from dialysis patients and renal transplant recipients. Am J Nephrol 1985; 5: 35–9

    PubMed  CAS  Google Scholar 

  75. Patterson SE, Cohn VH. Hepatic drug metabolism in rats with experimental long-term renal insufficiency. Biochem Pharmacol 1984; 35: 711–6

    Google Scholar 

  76. Gibson TP. Renal disease and drug metabolism. Am J Kidney Dis 1986; 8: 7–17

    PubMed  CAS  Google Scholar 

  77. Fillastre JP, Leroy A, Moulin B, et al. Pharmacokinetics of quinolones in renal insuffieiency. J Antimicrob Chemother 1990; 26Suppl. B: 51–60

    PubMed  Google Scholar 

  78. Ahmed JH, Grant AC, Rodger RSC, et al. Inhibitory effect of uremia on the hepatic clearance and metabolism of nicardipine. Br J Clin Pharmacol 1991; 32: 57–72

    PubMed  CAS  Google Scholar 

  79. Lam YWF, Flaherty JF, Yumena L, et al. Roxithromycin disposition in patients on continuous ambulatory peritoneal dialysis. J Antimicrob Chemother 1995; 36: 157–63

    PubMed  CAS  Google Scholar 

  80. Halstenson CE, Opsahl JA, Schwenk MH, et al. Disposition of roxithromycin in patients with normal and severely impaired renal function. Antimicorb Agents Chemother 1990; 34: 385–9

    CAS  Google Scholar 

  81. Kroboth PD, McNeil MA, Kreeger A, et al. Hearing loss and erythromycin pharmacokinetics in a patient receiving hemodialysis. Arch Intern Med 1983; 143: 1263–5

    PubMed  CAS  Google Scholar 

  82. Teunissen MWE, Kampf D, Roots I, et al. Antipyrine metabolite formation and excretion in patients with chronic renal insufficiency. Eur J Clin Pharmacol 1985; 28: 589–95

    PubMed  CAS  Google Scholar 

  83. Terao N, Shen DD. Reduced extraction of 1-propranolol by perfused rat liver in the presence of uremic blood. J Pharmacol Exp Ther 1985; 233: 277–84

    PubMed  CAS  Google Scholar 

  84. Anders MW. Metabolism of drugs by the kidney. Kidney Int 1980; 18: 636–47

    PubMed  CAS  Google Scholar 

  85. DeLuca HF, Schnoes HK. Metabolism and mechanism of action of vitamin D. Ann Rev Biochem 1976; 45: 631–66

    PubMed  CAS  Google Scholar 

  86. Duckworth WC. Insulin degradation: mechanisms, products and significance. Endocr Rev 1988; 9: 319–45

    PubMed  CAS  Google Scholar 

  87. Rabkin R, Ryan MP, Duckworth WC. The renal metabolism of insulin. Diabetologia 1984; 27: 351–7

    PubMed  CAS  Google Scholar 

  88. Osborne R, Joel SP, Slevin ML. Morphine intoxication in renal insufficiency: the role of morphine-6-glucuronide. BMJ 1986; 292: 1548–9

    PubMed  CAS  Google Scholar 

  89. Milne RW, Nation RL, Somogyi AA, et al. The influence of renal function on the renal clearance of morphine and its glucuronide metabolites in intensive-care patients. Br J Clin Pharmacol 1992; 34: 53–9

    PubMed  CAS  Google Scholar 

  90. Osborne R, Thompson P, Joel S, et al. The analgesic activity of morphine-6-glucuronide. Br J Clin Pharmacol 1992; 34: 130–8

    PubMed  CAS  Google Scholar 

  91. Gloff CA, Benet LZ. Differential effects of the degree of renal damage on p-aminohippuric acid and inulin clearances in rats. J Pharmacokinet Biopharm 1989; 17: 169–77

    PubMed  CAS  Google Scholar 

  92. Miura K, Goldstein RS, Morgan DC, et al. Age-related differences in susceptibility to renal ischemia in rats. Toxicol Appl Pharmacol 1987; 86: 284–96

    Google Scholar 

  93. Fleck C, Heller J. Age-dependent differences in the effect of ischemia on the rat kidney: prevention of the postischemic damage by different drugs. Exp Toxicol Pathol 1993; 45: 381–7

    PubMed  CAS  Google Scholar 

  94. Maiza A, Waldek S, Ballardie FW, et al. Estimation of renal tubular secretion in man, in health and disease, using endogenous N-1-methylnicotinamide. Nephron 1992; 60: 12–6

    PubMed  CAS  Google Scholar 

  95. Reidenberg MM, Camacho M, Kluger J, et al. Aging and renal clearance of procainamide and acetylprocainamide. Clin Pharmacol Ther 1980; 28: 732–5

    PubMed  CAS  Google Scholar 

  96. Lin JH, Chremos AN, Yek KC, et al. Effect of age and chronic renal insufficiency on the urinary excretion and kinetics of famotidine in man. Eur J Clin Pharmacol 1988; 34: 41–6

    PubMed  CAS  Google Scholar 

  97. Hori R, Okumura K, Kamiya A, et al. Ampicillin and cephalexin in renal insufficiency. Clin Pharmacol Ther 1983; 34: 792–8

    PubMed  CAS  Google Scholar 

  98. Lam YWF, Boyd RA, Chin SK, et al. Effect of probenecid on the pharmacokinetics and pharmacodynamics of procainamide. J Clin Pharmacol 1991; 31: 429–32

    PubMed  CAS  Google Scholar 

  99. Hardman JG, Limbird LE, Molinoff PB, et al. editors. Goodman & Gilman’s the pharmacological basis of therapeutics. 9th ed. New York: McGraw-Hill, 1996: 1712–91

    Google Scholar 

  100. Lee CC, Marbury TC. Drug therapy in patients undergoing haemodialysis: clinical pharmacokinetic considerations. Clin Pharmacokinet 1984; 9: 42–66

    PubMed  CAS  Google Scholar 

  101. Paton TW, Cornish WR, Manuel MA, et al. Drug therapy in patients undergoing peritoneal dialysis: clinical pharmacokinetic considerations. Clin Pharmacokinet 1985; 10: 404–26

    PubMed  CAS  Google Scholar 

  102. Bastani B, Spyker DA, Minocha A, et al. In vivo comparison of three different hemodialysis membranes for vancomycin clearance: cuprophane, cellulose acetate, and polyacrylonitrile. Dial Transplant 1988; 17: 527–8

    Google Scholar 

  103. Lanese DM, Alfrey PS, Molitoas BA. Markedly increased clearance of vancomycin dyring hemodialysis using polysulfone dialyzers. Kidney Int 1989; 35: 1409–12

    PubMed  CAS  Google Scholar 

  104. Torras J, Cao C, Rivas MC, et al. Pharmacokinetics of vancomycin in patients undergoing hemodialysis with polyacrylonitrile. Clin Nephrol 1991; 36: 35–41

    PubMed  CAS  Google Scholar 

  105. Halstenson CE, Berkseth RO, Mann HJ, et al. Aminoglycoside redistribution phenomenon after hemodialysis: netilmicin and tobramycin. Int J Clin Pharmaocl Ther Toxicol 1987; 25: 50–5

    CAS  Google Scholar 

  106. Bauer LA. Rebound gentamicin levels after hemodialysis. Ther Drug Monitor 1982; 4: 99–101

    CAS  Google Scholar 

  107. Keller F, Offerman G, Scholle J. Kinetics of the redistribution phenomenon after extracorporeal elimination. Int J Artif Organs 1984; 7: 181–8

    PubMed  CAS  Google Scholar 

  108. Paton TW. Drug therapy in patients undergoing peritoneal dialysis: clinical pharmacokientic considerations. Clin Pharmacokinet 1985; 10: 404–26

    PubMed  CAS  Google Scholar 

  109. Maher JF. Influence of continuous ambulatory peritoneal dialysis on elimination of drugs. Perit Dial Bull 1987; 7: 159–67

    Google Scholar 

  110. Keane WF, Everett ED, Golper TA, et al. Peritoneal dialysis-related peritonitis: treatment recommendations. 1993 update. Perit Dial Int 1993; 13: 14–28

    PubMed  CAS  Google Scholar 

  111. Lau AH, Kronfol NO, Jabar N, et al. Determinants of drug removal by continuous arteriovenous hemofiltration. Drug Intell Clin Pharm 1986; 20: 467

    Google Scholar 

  112. Kronfol NO, Lau AH, Barakat MM. Aminoglycoside binding to polyacrylonitrile hemofilter membranes during continuous hemofiltration. Trans Am Soc Artif Int Organs 1987; 33: 300–3

    CAS  Google Scholar 

  113. Bressolle F, Kinowski JM, de la Coussaye JM, et al. Clinical pharmacokinetics during continuous haemofiltration. Clin Pharmacokinet 1994; 26: 457–71

    PubMed  CAS  Google Scholar 

  114. Reetze P, Bohler J, Keller E. Drug dosage in patients during continuous renal replacement therapy: pharmacokientic and therapeutic considerations. Clin Pharmacokinet 1993; 24: 362–79

    Google Scholar 

  115. Barr JT, Schumacher GE. Outcomes assessment of therapeutic drug monitoring: system and patient considerations. In: Schumacher GE, editor. Therapeutic drug monitoring. Norwalk (CT): Appleton and Lange, 1995: 191–236

    Google Scholar 

  116. Bootman JL, Wertheimer AI, Zaske D, et al. Individualized gentamicin dosage regimens in burn patients with Gram-negative septicema: a cost-benefit analysis. J Pharm Sci 1979; 68: 267–72

    PubMed  CAS  Google Scholar 

  117. Burton ME, Ash CL, Hill DP, et al. A controlled trial of the cost benefit of a computerized bayesian aminoglycoside administration. Clin Pharmacol Ther 1991; 49: 1887–93

    Google Scholar 

  118. Destache CJ, Meyer SM, Bittner MJ, et al. Impact of a clinical pharmacokinetic service on patients treated with aminoglycosides: a cost-benefit analysis. Ther Drug Monit 1990; 12: 419–27

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, Y.W.F., Banerji, S., Hatfield, C. et al. Principles of Drug Administration in Renal Insufficiency. Clin. Pharmacokinet. 32, 30–57 (1997). https://doi.org/10.2165/00003088-199732010-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199732010-00002

Keywords

Navigation