Skip to main content
Log in

Clinical Pharmacokinetics of Alfentanil, Fentanyl and Sufentanil

An Update

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Alfentanil, fentanyl and sufentanil are synthetic opioid analgesics acting at specific opioid receptors. These opioids are widely used as analgesics to supplement general anaesthesia for various surgical procedures or as primary anaesthetic agents in very high doses during cardiac surgery. Fentanyl and sufentanil especially are administered via infusion for long term analgesia and sedation in intensive care patients.

Opioid analgesics are mainly administered using the intravenous route. However, other techniques of administration, including epidural, intrathecal, transdermal and intranasal applications, have been demonstrated.

Important pharmacokinetic differences between alfentanil, fentanyl and sufentanil have been shown in many reports. Alfentanil has the most rapid analgesic onset and time to peak effect as well as the shortest distribution and elimination half-lives. The volume of distribution and total body clearance of this agent are smaller when compared with those of fentanyl and sufentanil.

The pharmacokinetics of the opioid analgesics can be affected by several factors including patient age, plasma protein content, acid-base status and cardiopulmonary bypass, but not significantly by renal insufficiency or compensated hepatic dysfuntion. In addition, pharmacokinetic properties can be influenced by changes in hepatic blood flow and administration of drug combinations which compete for the same plasma protein carrier or metabolising pathway.

Although comparing specific pharmacokinetic parameters such as half-lives is deeply entrenched in the literature and clinical practice, simply comparing half-lives is not a rational way to select an opioid for specific requirements. Using pharmacokinetic-pharmacodynamic models, computer simulations based on changes in the effect site opioid concentration or context-sensitive half-times seem to be extremely useful for selecting an opioid on a more rational basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evans CJ, Keith DE, Morrison H, et al. Cloning of a delta opioid receptor by functional expression. Science 1992; 258: 1952–5

    PubMed  CAS  Google Scholar 

  2. Kiefer BL, Befort K, Gaveriaux-Ruff C, et al. The delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacologic characterization. Proc Natl Acad Sci USA 1992; 89: 12048–52

    Google Scholar 

  3. Chen Y, Mestek A, Liu J, et al. Molecular cloning and functional expression of a μ-opioid receptor from rat brain. Mol Pharmacol 1993; 44: 8–12

    PubMed  CAS  Google Scholar 

  4. Fakuda K, Kato S, Mori K, et al. Primary structures and expression from cDNAs of rat opioid receptor delta- and μ-subtypes. FEBS Lett 1993; 327: 311–4

    Google Scholar 

  5. Nishi M, Takeshima H, Fukuda K, et al. cDNA cloning and pharmacological characterization of an opioid receptor with high affinities for kappa-subtype-selective ligands. FEBS Lett 1993; 330: 77–80

    PubMed  CAS  Google Scholar 

  6. Yasuda K, Raynor K, Kong H, et al. Cloning and functioning comparison of kappa and delta opioid receptors from mouse brain. Proc Natl Acad Sci USA 1993; 90: 6736–40

    PubMed  CAS  Google Scholar 

  7. Holaday JW, Tortella FC. Multiple opioid receptors: possible physiological functions of μ and delta binding sites in vivo. In: Genazzini AR, Müller EE, editors. Central and peripheral endorphins: basis and clinical aspects. New York: Raven Press, 1984: 237–50

    Google Scholar 

  8. Pleuvry BJ. Opioid receptors and their ligands: natural and unnatural. Br J Anaesth 1991; 66: 370–80

    PubMed  CAS  Google Scholar 

  9. Pasternak GW. Pharmacological mechanisms of opioid analgesics. Clin Neuropharmacol 1993; 16: 1–18

    PubMed  CAS  Google Scholar 

  10. Soudijn W. The pharmacology and pharmacokinetics of fentanyl. In: Wood TD, editor. Stress-free anaesthesia. London: Royal Society of Medicine, 1978: 4–10

    Google Scholar 

  11. Hug Jr CC. Pharmacokinetics of new synthetic narcotic analgesics. In: Estafanous F, editor. Opioids in anesthesia. Boston: Butterworth, 1984: 55–60

    Google Scholar 

  12. Freye E. Opioide in der Medizin. Wirkung und Einsatzgebiete zentraler Analgetika, 3. Auflage. Berlin: Springer 1995: 181–6

    Google Scholar 

  13. Olkkola KT, Hamunen K, Maunuksela EL. Clinical pharmacokinetics and pharmacodynamics of opioid analgesics in infants and children. Clin Pharmacokinet 1995; 28: 385–404

    PubMed  CAS  Google Scholar 

  14. Freye E. Opioide — Zentrale Analgetika. Ihre Wirkweise beim Menschen. DIAGM 1991; 12: 1105–18

    Google Scholar 

  15. Yun CH, Wood M, Wood AJ, et al. Identification of the pharmacogenetic determinants of alfentanil metabolism: cytochrome P-450 3A4. An explanation of the variable elimination clearance. Anesthesiolgy 1992; 77: 467–74

    CAS  Google Scholar 

  16. Kharasch ED, Thummel KE. Human alfentanil metabolism by cytochrome P450 3A3/4: an explanation for the interindividual variability in alfentanil clearance? Anesth Analg 1993; 76: 1033–9

    PubMed  CAS  Google Scholar 

  17. McClain DA, Hug Jr CC. Intravenous fentanyl kinetics. Clin Pharmacol Ther 1980; 28: 106–14

    PubMed  CAS  Google Scholar 

  18. Meuldermans W, Hendrick J, Lauwers W. Excretion and biotransformation of alfentanil and sufentanil in rats and dogs. Drug Metab Dispos 1987; 15: 905–13

    PubMed  CAS  Google Scholar 

  19. Gupta SK, Southam MA, Hwang SS. Evaluation of diurnal variation in fentanyl clearance. J Clin Pharmacol 1995; 35: 159–62

    PubMed  CAS  Google Scholar 

  20. Lehmann KA, Sipakis K, Gasparini R, et al. Pharmacokinetics of sufentanil in general surgical patients under different conditions of anaesthesia. Acta Anaesthesiol Scand 1993; 37: 176–80

    PubMed  CAS  Google Scholar 

  21. Burm AGL, Ausems MEM, Spierdijk J, et al. Pharmacokinetics of alfentanil administered at a variable rate during three types of surgery. Eur J Anaesthesiol 1993; 10: 241–51

    PubMed  CAS  Google Scholar 

  22. Scholz J, Bause H, Schulz M, et al. Pharmacokinetics and effects on intracranial pressure of sufentanil in head trauma patients. Br J Clin Pharmacol 1994; 38: 369–72

    PubMed  CAS  Google Scholar 

  23. Monk JP, Beresford R, Ward A. Sufentanil: a review of its pharmacological properties and therapeutic use. Drugs 1988; 36: 286–313

    PubMed  CAS  Google Scholar 

  24. Clotz MA, Nahata MC. Clinical uses of fentanyl, sufentanil, and alfentanil. Clin Pharm 1991; 10: 581–93

    PubMed  CAS  Google Scholar 

  25. Bovill JG, Sebel PS, Blackborn CL, et al. The pharmacokinetics of sufentanil in surgical patients. Anesthesiology 1984; 61: 502–6

    PubMed  CAS  Google Scholar 

  26. Davis JP, Cook DR, Stiller PL, et al. Pharmacodynamics and pharmacokinetics of high-dose sufentanil in infants and children undergoing cardiac surgery. Anesth Analg 1987; 66: 203–8

    PubMed  CAS  Google Scholar 

  27. Greeley WJ, de Bruijn NP, Davis DP. Sufentanil pharmacokinetics in pediatric cardiovascular patients. Anesth Analg 1987; 66: 1067–72

    PubMed  CAS  Google Scholar 

  28. Hudson RJ, Bergstrom RG, Thomson IR, et al. Pharmacokinetics of sufentanil in patients undergoing abdominal aortic surgery. Anesthesiology 1989; 70: 426–31

    PubMed  CAS  Google Scholar 

  29. Davis JP, Stiller RL, Cook DR, et al. Pharmacokinetics of sufentanil in adolescent patients with chronic renal failure. Anesth Analg 1988; 67: 268–71

    PubMed  CAS  Google Scholar 

  30. Fyman PN, Reynolds JR, Moser F, et al. Pharmacokinetics of sufentanil in patients undergoing renal transplantation. Can J Anaesth 1988; 35: 312–5

    PubMed  CAS  Google Scholar 

  31. Matteo RS, Schwartz AE, Ornstein E, et al. Pharmacokinetics of sufentanil in the elderly surgical patient. Can J Anaesth 1990; 37: 852–6

    PubMed  CAS  Google Scholar 

  32. Guay J, Gaudreault P, Tang A, et al. Pharmacokinetics of sufentanil in normal children. Can J Anaesth 1992; 39: 14–20

    PubMed  CAS  Google Scholar 

  33. Alazia M, Albanese J, Martin C, et al. Pharmacokinetics of long-term sufentanil infusion (72 hours) used for sedation in ICU patients [abstract]. Anesthesiology 1992; 77: A364

    Google Scholar 

  34. Bodenham A, Park GR. Alfentanil infusions in patients requiring intensive care. Clin Pharmacokinet 1988; 15: 216–26

    PubMed  CAS  Google Scholar 

  35. Willens JS, Myslinski NR. Pharmacodynamics, pharmacokinetics, and clinical uses of fentanyl, sufentanil, and alfentanil. Heart Lung 1993; 22: 239–51

    PubMed  CAS  Google Scholar 

  36. Sawchuk CWT, Ong B, Unruh HW, et al. Thoracic versus lumbar epidural fentanyl for postthoracotomy pain. Ann Thorac Surg 1993; 55: 1472–6

    PubMed  CAS  Google Scholar 

  37. Baxter AD, Laganiere S, Samon B, et al. A comparison of lumbar epidural and intravenous fentanyl infusions for post-thoracotomy analgesia. Can J Anaesth 1994; 41: 184–91

    PubMed  CAS  Google Scholar 

  38. Salomaki TE, Laitinen JO, Nuutinen LS. A randomized double-blind comparison of epidural versus intravenous fentanyl infusion for analgesia after thoracotomy. Anesthesiology 1991; 75: 790–5

    PubMed  CAS  Google Scholar 

  39. Sandier AN, Stringer D, Panos L, et al. A randomized double-blind comparison of lumbar epidural and intravenous fentanyl infusions for post-thoracotomy pain relief. Anesthesiology 1992; 77: 626–34

    Google Scholar 

  40. Guinard JP, Mavrocordatos P, Chiolero R, et al. A randomized comparison of intravenous versus lumbar and thoracic epidural fentanyl for analgesia after thoracotomy. Anesthesiology 1992; 77: 1108–15

    PubMed  CAS  Google Scholar 

  41. Camu F, Debucquoy F. Alfentanil infusion for postoperative pain: a comparison of epidural and intravenous routes. Anesthesiology 1991; 75: 171–8

    PubMed  CAS  Google Scholar 

  42. Chauvin M, Hongnat JM, Mourgeon E, et al. Equivalence of postoperative analgesia with patient-controlled intravenous or epidural alfentanil. Anesth Analg 1993; 76: 1251–8

    PubMed  CAS  Google Scholar 

  43. Taverne RHT, Ionescu TI, Nuyten STM. Comparative absorption and distribution pharmacokinetics of intravenous and epidural sufentanil for major abdominal surgery. Clin Pharmacokinet 1992; 23: 231–7

    PubMed  CAS  Google Scholar 

  44. Geller E, Chrubasik J, Graf R, et al. A randomized double-blind comparison of epidural sufentanil versus intravenous sufentanil or epidural fentanyl analgesia after major abdominal surgery. Anesth Analg 1993; 76: 1243–50

    PubMed  CAS  Google Scholar 

  45. Camann WR, Denney RA, Holby ED, et al. A comparison of intrathecal, epidural, and intravenous sufentanil for labor analgesia. Anesthesiology 1992; 77: 884–7

    PubMed  CAS  Google Scholar 

  46. Naulty JS, Barnes D, Becker R, Pate A. Continuous subarachnoid sufentanil for labor analgesia [abstract]. Anesthesiology 1990; 73: A964

    Google Scholar 

  47. Honet JE, Arkoosh VA, Huffnagle HJ, et al. Comparison of fentanyl, meperidine, and sufentanil for labor analgesia [abstract]. Anesthesiology 1991; 75: A839

    Google Scholar 

  48. Coda BA, Brown MC, Schaffer R, et al. Pharmacology of epidural fentanyl, alfentanil, and sufentanil in volunteers. Anesthesiology 1994; 81: 1149–61

    PubMed  CAS  Google Scholar 

  49. Cooper DW, Ryall DM, Desira WR. Extradural fentanyl for postoperative analgesia: predominant spinal or systemic action? Br J Anaesth 1995; 74: 184–7

    PubMed  CAS  Google Scholar 

  50. Hansdottir V, Woestenborghs R, Nordberg G. The cerebrospinal fluid and plasma pharmacokinetics of sufentanil after thoracic or lumbar epidural administration. Anesth Analg 1995; 80: 724–9

    PubMed  CAS  Google Scholar 

  51. Swenson JD, Hullander M, Bready RJ. A comparison of patient controlled epidural analgesia with sufentanil by the lumbar versus thoracic route after thoracotomy. Anesth Analg 1994; 78: 215–8

    PubMed  CAS  Google Scholar 

  52. Verborgh C, Claeys M, Vanlersberghs C, et al. Postoperative pain treatment after cholecystectomy with epidural sufentanil at lumbar or thoracic level. Acta Anaesthesiol Scand 1994; 38: 218–22

    PubMed  CAS  Google Scholar 

  53. Sandler AN. Transdermal fentanyl: acute analgesic studies. J Pain Symptom Manage 1992; 7: S27–S35

    PubMed  CAS  Google Scholar 

  54. Sandier AN, Baxter AD, Samson B, et al. Postoperative analgesia with transdermal fentanyl: analgesic and respiratory effects [abstract]. Can J Anaesth 1993; 40: A51

    Google Scholar 

  55. Fiset P, Cohane C, Browne S, et al. Biopharmaceutics of a transdermal fentanyl device. Anesthesiology 1995; 83: 459–69

    PubMed  CAS  Google Scholar 

  56. Varvel JR, Shafer SL, Hwang S, et al. Bioavailability and absorption of transdermal fentanyl. Anesthesiology 1989; 70: 928–34

    PubMed  CAS  Google Scholar 

  57. Sebel PS, Barrett CW, Kirk CJC, et al. Transdermal absorption of fentanyl and sufentanil in man. Eur J Clin Pharmacol 1987; 32: 529–31

    PubMed  CAS  Google Scholar 

  58. Calis KA, Kohler DR, Corso DM. Transdermally administered fentanyl for pain management. Clin Pharm 1992; 11: 22–36

    PubMed  CAS  Google Scholar 

  59. Haynes G, Brahen NH, Hill HF. Plasma sufentanil concentration after intranasal administration in paediatric outpatients [letter]. Can J Anaesth 1993; 40: 286

    PubMed  CAS  Google Scholar 

  60. Davis JP, Stiller RL, Cook DR, et al. Effects of cholestatic hepatic disease and chronic renal failure on alfentanil pharmacokinetics in children. Anesth Analg 1989; 68: 579–83

    PubMed  CAS  Google Scholar 

  61. Davis PJ, Killian A, Stiller RL, et al. Alfentanil pharmacokinetics in premature infants and older children [abstract]. Anesthesiology 1988; 69: A758

    Google Scholar 

  62. Collins C, Koren G, Crean P, et al. Fentanyl pharmacokinetics and hemodynamic effects in preterm infants during ligation of patent ductus arteriosus. Anesth Analg 1985; 64: 1078–80

    PubMed  CAS  Google Scholar 

  63. Koehntop DE, Rodman JH, Brundage DM, et al. Pharmacokinetics of fentanyl in neonates. Anesth Analg 1986; 65: 227–32

    PubMed  CAS  Google Scholar 

  64. Mannering FJ. Drug metabolism in the newborn. FASEB J 1985; 44: 2302

    CAS  Google Scholar 

  65. Killian A, Davis PJ, Stiller RL, et al. Influence of gestational age on pharmacokinetics of alfentanil in neonates. Dev Pharmacol Ther 1990; 15: 82–6

    PubMed  CAS  Google Scholar 

  66. Roure P, Jean N, Leclerc AC, et al. Pharmacokinetics of alfentanil in children undergoing surgery. Br J Anaesth 1987; 59: 1437–40

    PubMed  CAS  Google Scholar 

  67. Singleton MA, Rosen JI, Fisher DM. Pharmacokinetics of fentanyl for infants and adults [abstract]. Anesthesiology 1984; 61: A440

    Google Scholar 

  68. Meistelman C, Saint-Maurice C, Lepaul M, et al. A comparison of alfentanil pharmacokinetics in children and adults. Anesthesiology 1987; 66: 13–16

    PubMed  CAS  Google Scholar 

  69. Goresky GV, Koren G, Sabourin MA, et al. The pharmacokinetics of alfentanil in children. Anesthesiology 1987; 67: 654–9

    PubMed  CAS  Google Scholar 

  70. Koren G, Goresky G, Crean P, et al. Pediatric fentanyl dosing based on pharmacokinetics during cardiac surgery. Anesth Analg 1984; 63: 577–82

    PubMed  CAS  Google Scholar 

  71. Greeley WJ, de Bruijn NP. Changes in sufentanil pharmacokinetics within the neonatal period. Anesth Analg 1988; 67: 86–90

    PubMed  CAS  Google Scholar 

  72. Scott JC, Stanski DR. Decreased fentanyl and alfentanil dose requirements with age: a simultaneous pharmacokinetic and pharmacodynamic evaluation. J Pharmacol Exp Ther 1987; 240: 159–63

    PubMed  CAS  Google Scholar 

  73. Helmers JHJH, van Peer A, Noordiun H, et al. Sufentanil kinetics in the elderly [abstract]. Proceedings of the 7th European Congress of Anaesthesiology: 1986; Vienna, 188

  74. Helmers JHJH, van Leeuwen L, Zuurmond WWM. Sufentanil pharmacokinetics in young adult and elderly surgical patients. Eur J Anaesthesiol 1994; 11: 181–5

    PubMed  CAS  Google Scholar 

  75. Hudson RJ, Thomson IR, Burgess PM, et al. Alfentanil pharmacokinetics in patients undergoing abdominal aortic surgery. Can J Anaesth 1991; 38: 61–67

    PubMed  CAS  Google Scholar 

  76. Helmers JHJH, van Peer A, Woestenborghs R, et al. Alfentanil pharmacokinetics in elderly patients. Clin Pharmacol Ther 1984; 36: 239–43

    PubMed  CAS  Google Scholar 

  77. Van Beem H, van Peer A, Gasparini R, et al. Pharmacokinetics of alfentanil during and after a fixed rate infusion. Br J Anaesth 1989; 62: 610–5

    PubMed  Google Scholar 

  78. Bentley JB, Finley JH, Humphrey LR, et al. Obesity and alfentanil pharmacokinetics [abstract]. Anesth Analg 1983; 62: 251

    Google Scholar 

  79. Maitre PO, Ausems ME, Vozeh S, et al. Evaluating the accuracy of using population pharmacokinetic data to predict plasma concentrations of alfentanil. Anesthesiology 1987; 67: 59–67

    Google Scholar 

  80. Bentley JB, Borel JD, Gillespie TJ, et al. Fentanyl pharmacokinetics in obese and nonobese patients [abstract]. Anesthesiology 1981; 55: A177

    Google Scholar 

  81. Schwartz AE, Matteo RS, Ornstein E, et al. Pharmacokinetics of sufentanil in obese patients. Anesth Analg 1991; 73: 790–3

    PubMed  CAS  Google Scholar 

  82. Meuldermans WEG, Hurkmans RMA, Heykants JJP. Plasma protein binding and distribution of fentanyl, sufentanil, alfentanil and lofentanil in blood. Arch Int Pharmacodyn Ther 1982; 257: 4–19

    PubMed  CAS  Google Scholar 

  83. Meistelman C, Toubas F, Levron JC, et al. Plasma protein binding in mother and newborn infant of fentanyl and alfentanil [abstract]. Anesthesiology 1985; 63: A373

    Google Scholar 

  84. Meistelman C, Benhamou D, Barre J, et al. Effects of age on plasma protein binding of sufentanil. Anesthesiology 1990; 72: 470–3

    PubMed  CAS  Google Scholar 

  85. Belpaire FM, Bogaert MG. Binding of alfentanil to human α1-acid glycoprotein, albumin and serum. Int J Clin Pharmacol Ther Toxicol 1991; 29: 96–102

    PubMed  CAS  Google Scholar 

  86. Meistelman C, Levron JC, Barre J, et al. Effects of increased alpha 1-acid glycoprotein in cancer patients on pharmacokinetics of alfentanil [abstract]. Anesthesiology 1988; 69: A602

    Google Scholar 

  87. Bailey PL, Stanley TH. Intravenous opioid anesthetics. In: Miller RD, editor. Anesthesia. 4th ed. New York: Churchill Livingstone, 1994: 291–388

    Google Scholar 

  88. Hug Jr CC, Burm AGL, de Lange S, et al. Alfentanil pharmacokinetics and protein binding before and after cardiopulmonary bypass (CPB) [abstract]. Proceedings of the 5th Annual Meeting of the Society of Cardiovascular Anesthesiologists: 1983; San Diego, 76

  89. Hug Jr CC, Burm AGL, de Lange S. Alfentanil pharmacokinetics in cardiac surgical patients. Anesth Analg 1994; 78: 231–9

    PubMed  Google Scholar 

  90. Kumar K, Ballantyne J, Bowie D, Laney G. Effect of cardiopulmonary bypass (CPB) on the plasma protein binding of alfentanil (alf) [abstract]. Pharm Res 1994; 11: S439

    Google Scholar 

  91. Ferner C, Marty J, Bouffard MD, et al. Alfentanil pharmacokinetics in patients with cirrhosis. Anesthesiology 1985; 62: 480–4

    Google Scholar 

  92. Höllt V, Teschemacher H. Hydrophobic interactions responsible for unspecific binding of morphine-like drugs. Naunyn-Schmiedebergs Arch Pharmacol 1975; 288: 163–77

    PubMed  Google Scholar 

  93. Schwartz AE, Matteo RS, Ornstein E, et al. Pharmacokinetics of sufentanil in neurosurgical patients undergoing hyperventilation. Br J Anaesth 1989; 63: 385–8

    PubMed  CAS  Google Scholar 

  94. Lüllmann H, Martins BS, Peters T. pH-dependent accumulation of fentanyl, lofentanil, alfentanil by beating guinea pig atria. Br J Anaesth 1985; 57: 1012–7

    PubMed  Google Scholar 

  95. Williams RL. Drug administration in hepatic disease. New Engl J Med 1984; 309: 1616–22

    Google Scholar 

  96. Lemmens HJM. Pharmacokinetic-pharmacodynamic relationships for opioids in balanced anaesthesia. Clin Pharmacokinet 1995; 29: 231–42

    PubMed  CAS  Google Scholar 

  97. Marshall JS, Williams S. Serum inhibitors of desialylated glycoprotein binding to hepatocyte membranes. Biochem Biophys Acta 1978; 543: 41–52

    PubMed  CAS  Google Scholar 

  98. Williams RL, Benet LZ. Drug pharmacokinetics in cardiac and hepatic disease. Ann Rev Pharmacol Toxicol 1980; 20: 389–413

    CAS  Google Scholar 

  99. Chauvin M, Bonnet F, Montembault C, et al. The influence of hepatic plasma flow on alfentanil plasma concentration plateaus achieved with an infusion model. Anesth Analg 1986; 65: 999–1003

    PubMed  CAS  Google Scholar 

  100. Reitz J, MacKichan JJ, Hoffer L, et al. Reduced plasma clearance of alfentanil associated with prolonged major intra-abdominal surgery. Anesth Analg 1984; 63: 265

    Google Scholar 

  101. Haberer JP, Schoeffler P, Couderc E, et al. Fentanyl pharmacokinetics in anaesthetized patients with cirrhosis. Br J Anaesth 1982; 54: 1267–70

    PubMed  CAS  Google Scholar 

  102. Hug Jr CC, Murphy MR, Sampson JF, et al. Biotransformation of morphine and fentanyl in anhepatic dogs [abstract]. Anesthesiology 1981; 55: A261

    Google Scholar 

  103. Chauvin M, Ferrier C, Haberer JP, et al. Sufentanil pharmacokinetics in patients with cirrhosis. Anesth Analg 1989; 68: 1–4

    PubMed  CAS  Google Scholar 

  104. Hudson RJ, Thomson IR, Cannon JE, et al. Pharmacokinetics of fentanyl in patients undergoing abdominal aortic surgery. Anesthesiology 1986; 64: 334–8

    PubMed  CAS  Google Scholar 

  105. Sjoholm I, Kober A, Odar-Cederlof I, et al. Protein binding of drugs in uremic and normal serum: the role of endogenous binding inhibitors. Biochem Pharmacol 1976; 25: 1205–13

    PubMed  CAS  Google Scholar 

  106. Piafsky KM. Disease-induced changes in the plasma binding of basic drugs. Clin Pharmacokinet 1980; 5: 246–62

    PubMed  CAS  Google Scholar 

  107. Van Peer A, Vercauteren M, Noorduin H. Alfentanil kinetics in renal insufficiency. Eur J Clin Pharmacol 1986; 30: 245–9

    PubMed  Google Scholar 

  108. Chauvin M, Lebrault C, Levron JC, et al. Pharmacokinetics of alfentanil in chronic renal failure. Anesth Analg 1987; 66: 53–6

    PubMed  CAS  Google Scholar 

  109. Bower S. Plasma protein binding of fentanyl: the effect of hyperlipoproteinaemia and chronic renal failure. J Pharm Pharmacol 1981; 34: 102–6

    Google Scholar 

  110. Bovill JG, Sebel PS. Pharmacokinetics of high dose fentanyl: a study in patients undergoing cardiac surgery. Br J Anaesth 1980; 52: 795–801

    PubMed  CAS  Google Scholar 

  111. Buylaert WA, Herregods LL, Mortier EP, et al. Cardiopulmonary bypass and the pharmacokinetics of drugs: an update. Clin Pharmacokinet 1989; 17: 10–22

    PubMed  CAS  Google Scholar 

  112. Hall R. The pharmacokinetic behaviour of opioids administered during cardiac surgery. Can J Anaesth 1991; 38: 747–56

    PubMed  CAS  Google Scholar 

  113. Rosen D, Rosen K, Davidson B, et al. Fentanyl uptake by the Scimed membrane oxygenator. J Cardiothorac Vasc Anesth 1988; 2: 619–22

    CAS  Google Scholar 

  114. Durkan W, Lonergan M, Schwartz S, et al. Effect of membrane oxygenators on sufentanil blood levels during cardiopulmonary bypass [abstract]. Anesth Analg 1988; 67: S54

    Google Scholar 

  115. Skacel M, Knott C, Reynolds F, et al. Extracorporeal circuit sequestration of fentanyl and alfentanil. Br J Anaesth 1986; 58: 947–9

    PubMed  CAS  Google Scholar 

  116. Den Hollander J, Hennis PJ, Burm AGL, et al. Pharmacokinetics of alfentanil before and after cardiopulmonary bypass in pediatric patients undergoing cardiac surgery: Part I. J Cardiothorac Vasc Anesth 1992; 6: 308–12

    Google Scholar 

  117. Okutani R, Koski G, Gelb C, et al. High dose sufentanil does not prevent catecholamine responses to hypothermie cardiopulmonary bypass [abstract]. Anesth Analg 1988; 67: S160

    Google Scholar 

  118. Koska III AJ, Romagnoli A, Kramer WG. Effect of cardiopulmonary bypass on fentanyl distribution and elimination. Clin Pharmacol Ther 1981; 29: 100–6

    PubMed  Google Scholar 

  119. Hug Jr CC, Moldenhauer CC. Pharmacokinetics and dynamics of fentanyl infusions in cardiac surgical patients [abstract]. Anesthesiology 1982; 57: A45

    Google Scholar 

  120. Holley FO, Ponganis KV, Stanski R. Effect of cardiopulmonary bypass on the pharmacokinetics of drugs. Clin Pharmacokinet 1982; 7: 234–51

    PubMed  CAS  Google Scholar 

  121. Bentley JB, Cohanan III TJ, Cork RC. Fentanyl sequestration in lungs during cardiopulmonary bypass. Clin Pharmacol Ther 1983; 34: 703–6

    PubMed  CAS  Google Scholar 

  122. Roerig DL, Kotrly KJ, Ahlf SB, et al. Effect of propranolol on the first pass uptake of fentanyl in the human and rat lung. Anesthesiology 1989; 71: 62–8

    PubMed  CAS  Google Scholar 

  123. Boer F, Bovill JG, Burm AGL, et al. Uptake of sufentanil, alfentanil and morphine in the lungs of patients about to undergo coronary artery surgery. Br J Anaesth 1992; 68: 370–5

    PubMed  CAS  Google Scholar 

  124. Janicki PK, James MF, Erskine WA. Propofol inhibits enzymatic degradation of alfentanil and sufentanil by isolated liver microsomes in vitro. Br J Anaesth 1992; 68: 311–2

    PubMed  CAS  Google Scholar 

  125. Kharasch ED, Hill HF, Eddy AC. Influence of dexmedetomidine and clonidine on human liver microsomal alfentanil metabolism. Anesthesiology 1991; 75: 520–4

    PubMed  CAS  Google Scholar 

  126. Nimmo WS, Thompson PG, Prescott LF. Microsomal enzyme induction after halothane anesthesia. Br J Clin Pharmacol 1981; 12: 433–4

    PubMed  CAS  Google Scholar 

  127. Bartkowski RR, Goldberg ME, Huffnagle S, et al. Sufentanil disposition: is it affected by erythromycin administration? Anesthesiology 1993; 78: 260–5

    PubMed  CAS  Google Scholar 

  128. Sedman AJ. Cimetidine: drug interactions. Am J Med 1984; 76: 109–12

    PubMed  CAS  Google Scholar 

  129. Lee HR, Gaudolfi AJ, Sipes IG, et al. Effect of histamine H2-receptors on fentanyl metabolism [abstract]. Pharmacologist 1982; 24: 145

    Google Scholar 

  130. Klotz U, Kroemer HK. The drug interaction potential of ranitidine: an update. Pharmacol Ther 1991; 50: 233–44

    PubMed  CAS  Google Scholar 

  131. Shafer SL, Varvel JR. Pharmacokinetics, pharmacodynamics, and rational opioid selection. Anesthesiology 1991; 74: 53–63

    PubMed  CAS  Google Scholar 

  132. Shafer SL, Stanski DR. Improving the clinical utility of anesthetic drug pharmacokinetics [editorial]. Anesthesiology 1992; 76: 327–30

    PubMed  CAS  Google Scholar 

  133. Youngs EJ, Shafer SL. Pharmacokinetic parameters relevant to recovery from opioids. Anesthesiology 1994; 81: 833–42

    PubMed  CAS  Google Scholar 

  134. Hughes MA, Glass PSA, Jacobs JR. Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology 1992; 76: 334–41

    PubMed  CAS  Google Scholar 

  135. Bailey JM. Technique for quantifying the duration of intravenous anesthetic effect. Anesthesiology 1995; 83: 1095–103

    PubMed  CAS  Google Scholar 

  136. Schnider TW, Shafer SL. Evolving clinically useful predictors of recovery from intravenous anesthetics [editorial]. Anesthesiology 1995; 83: 902–5

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz, J., Steinfath, M. & Schulz, M. Clinical Pharmacokinetics of Alfentanil, Fentanyl and Sufentanil. Clin-Pharmacokinet 31, 275–292 (1996). https://doi.org/10.2165/00003088-199631040-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199631040-00004

Keywords

Navigation