Skip to main content
Log in

Therapeutic Drug Monitoring in Saliva

An Update

  • Review Article
  • Drug Concentration Monitoring
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

This article re-examines the issue of salivary therapeutic drug monitoring (STDM). The anatomy and physiology of saliva and the salivary glands, as well as the effects of disease and drugs on salivary secretion and composition, are discussed briefly. Drugs for which therapeutic drug monitoring (TDM) has been shown useful are individually considered to determine if salivary drug concentrations (Csal) are reflective of plasma free drug concentrations (Cup). That is, is the Csal/Cup ratio time- and concentration-independent, as supported by a review of literature data? The primary determinant which appears to govern the potential utility of STDM for many of the drugs is the pKa of the drug. Drugs which are not ionisable or are un-ionised within the salivary pH range (phenytoin, carbamazepine, theophylline) are candidates for STDM based on current literature data. Digoxin and cyclosporin are potential candidates for STDM; however, further studies are necessary to confirm these preliminary findings. On the basis of current literature data, STDM does not appear to be useful for other drugs therapeutically monitored in serum/plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aitio M-L, Virtanen R, Lammintausta R. Disopyramide concentrations in saliva. International Journal of Clinical Pharmacology, Therapy and Toxicology 20: 68–72, 1982

    CAS  Google Scholar 

  • Allen MA, Wrenn JM, Putney JW, Borzelleca JF. A study of the mechanism of transport of diphenylhydantoin in the rat submaxillary gland in vitro. Journal of Pharmacology and Experimental Therapeutics 197: 408–413, 1976

    PubMed  CAS  Google Scholar 

  • Allen UD, Guerriere M, Read SE, Detsky AS. Percutaneous injuries among health care workers. Archives of Internal Medicine 151: 2033–2040, 1991

    Article  PubMed  CAS  Google Scholar 

  • Amberson WR, Hober R. The permeability of mammalian salivary glands for organic non-electrolytes. Journal of Cellular and Comparative Physiology 2: 201–221, 1932

    Article  CAS  Google Scholar 

  • Bachmann K, Forney Jr RB, Voeller K. Monitoring phenytoin in salivary and plasma ultrafiltrates of pediatric patients. Therapeutic Drug Monitoring 5: 325–329, 1983

    Article  PubMed  CAS  Google Scholar 

  • Bailey M. Occupational HIV infection risk. Lancet 335: 1104–1105, 1990

    Article  PubMed  CAS  Google Scholar 

  • Barchowsky A, Stargel WW, Shand DG, Routledge PA. Saliva concentrations of lidocaine and its metabolites in man. Therapeutic Drug Monitoring 4: 335–339, 1982

    Article  PubMed  CAS  Google Scholar 

  • Bartels H, Gunther E, Wallis S. Flow-dependent salivary primidone levels in epileptic children. Epilepsia 20: 431–436, 1979

    Article  PubMed  CAS  Google Scholar 

  • Baum BJ. Salivary gland fluid secretion during aging. Journal of the American Geriatric Society 37: 453–458, 1989

    CAS  Google Scholar 

  • Baumann P, Tinguely D, Koeb L, Schopf J, Le PK. On the relationship between free plasma and saliva amitriptyline and nortriptyline. International Pharmacopsychiatry 17: 136–146, 1982

    PubMed  CAS  Google Scholar 

  • Blanchard J, Harvey S, Morgan WJ. Serum/saliva correlations for theophylline in asthmatics. Journal of Clinical Pharmacology 31: 565–570, 1991

    PubMed  CAS  Google Scholar 

  • Blitzer A. Inflammatory and obstructive disorders of salivary glands. Journal of Dental Research 66 (Special issue): 675–679, 1987

    PubMed  Google Scholar 

  • Bochner F, Hooper WD, Sutherland JM, Eadie MJ, Tyrer JH. Diphenylhydantoin concentrations in saliva. Archives of Neurology 31: 57–59, 1974

    Article  PubMed  CAS  Google Scholar 

  • Boobis S, Trembath PW, Chambers RE, Edmunds AT, Carswell F. Salivary theophylline estimates: are they valid substitutes for plasma levels? Therapeutic Drug Monitoring 1: 485–493, 1979

    Article  Google Scholar 

  • Borzelleca JF, Cherrick HM. The excretion of drugs in saliva: antibiotics. Journal of Oral Therapeutics and Pharmacology 2: 180–187, 1965

    PubMed  CAS  Google Scholar 

  • Brugmann G, Kleinau E, Nolte R, Petruch F. Comparison of phenytoin determinations in plasma, plasma dialysate and saliva for control of antiepileptic therapy in children. Klinische Wochenschrift 57: 93–94, 1979

    Article  PubMed  CAS  Google Scholar 

  • Burgen ASV. The secretion of non-electrolytes in the parotid saliva. Journal of Cellular Physiology 48: 113–138, 1956

    Article  PubMed  CAS  Google Scholar 

  • Chang K, Chiou WL. Interactions between drug and saliva-stimulating parafilm and their implications in measurements of saliva drug levels. Research Communications in Chemical Pathology and Pharmacology 13: 357–360, 1976

    PubMed  CAS  Google Scholar 

  • Chiou WL, Chang K, Peng GW. Precaution in the monitoring of drug levels in saliva: abnormal salicylate levels after oral dosing. Journal of Clinical Pharmacology 16: 158–160, 1976

    PubMed  CAS  Google Scholar 

  • Coates JE, Lam SF, McGaw WT. Radioimmunoassay of salivary cyclosporin with use of 125I-labeled cyclosporin. Clinical Chemistry 34: 1545–1551, 1988

    PubMed  CAS  Google Scholar 

  • Cooper TB, Bark N, Simpson GM. Prediction of steady state plasma and saliva levels of desmethylimipramine using a single dose, single time point procedure. Psychopharmacology 74: 115–121, 1981

    Article  PubMed  CAS  Google Scholar 

  • Cordonnier J, Van den Heede M, Heyndrickx A. Saliva concentrations of disopyramide cannot substitute the drug’s plasma concentrations. Journal of Analytical Toxicology 11: 179–181, 1987

    PubMed  CAS  Google Scholar 

  • Coudert JL, Lissac M, Parret J. A new appliance for the collection of human submandibular saliva. Archives of Oral Biology 31: 411–413, 1986

    Article  PubMed  CAS  Google Scholar 

  • Coyle JD, Lima JJ. Procainamide. In Evans et al. (Eds) Applied pharmacokinetics: principles of therapeutic drug monitoring, 2nd ed., pp. 682–711, Applied Therapeutics Inc., Spokane, 1986

    Google Scholar 

  • Danhof M, Breimer DD. Therapeutic drug monitoring in saliva. Clinical Pharmacokinetics 3: 39–57, 1978

    Article  PubMed  CAS  Google Scholar 

  • Dawes C. Circadian rhythms in human salivary flow rate and composition. Journal of Physiology 220: 529–545, 1972

    PubMed  CAS  Google Scholar 

  • DeVane CL. Cyclic antidepressants. In Evans et al. (Eds) Applied pharmacokinetics: principles of therapeutic drug monitoring, 2nd ed., pp. 852–907, Applied Therapeutics Inc., Spokane, 1986

    Google Scholar 

  • Dutta SK, Dukehart M, Narang A, Latham PS. Functional and structural changes in parotid glands of alcoholic cirrhotic patients. Gastroenterology 96: 510–518, 1989

    PubMed  CAS  Google Scholar 

  • Dvorchik BH, Vesell ES. Pharmacokinetic interpretation of data gathered during therapeutic drug monitoring. Clinical Chemistry 22: 868–878, 1976

    PubMed  CAS  Google Scholar 

  • Eadie MJ. Plasma level monitoring of anticonvulsants. Clinical Pharmacokinetics 1: 52–66, 1976

    Article  PubMed  CAS  Google Scholar 

  • Ebden P, Leopold D, Buss D, Smith AP, Routledge PA. Relationship between saliva and free total plasma theophylline concentrations in patients with chronic airflow obstruction. Thorax 40: 526–529, 1985

    Article  PubMed  CAS  Google Scholar 

  • Eeg-Olofsson O, Nilsson H, Tonnby B, Arvidsson J, Grahn P-A, et al. Diurnal variation of carbamazepine and carbamazepine-10,11-epoxide in plasma and saliva in children with epilepsy: a comparison between conventional and slow-release formulations. Journal of Child Neurology 5: 159–165, 1990

    Article  PubMed  CAS  Google Scholar 

  • Frauendienst-Egger G, Bartels H, Pfuller H, Luther I, Beck I. Methotrexate concentrations in serum and saliva in children treated with high doses of methotrexate. Journal of Clinical Chemistry and Clinical Biochemistry 27: 228–229, 1989

    CAS  Google Scholar 

  • Galeazzi RL, Benet LZ, Sheiner LB. Relationship between the pharmacokinetics and pharmacodynamics of procainamide. Clinical Pharmacology and Therapeutics 20: 278–289, 1976

    PubMed  CAS  Google Scholar 

  • Gelenberg AJ, Wojcik JD, Falk WE, Spring B, Brotman AW, et al. Clovoxamine in the treatment of depressed outpatients: a double-blind, parallel-group comparison against amitriptyline and placebo. Comprehensive Psychiatry 31: 307–314, 1990

    Article  PubMed  CAS  Google Scholar 

  • Glass BJ. Drug-induced xerostomia as a cause of glossodynia. Ear, Nose and Throat Journal 68: 779–781, 1989

    Google Scholar 

  • Goldsmith RF, Ouvrier RA. Salivary anticonvulsant levels in children: a comparison of methods. Therapeutic Drug Monitoring 3: 151–157, 1981

    Article  PubMed  CAS  Google Scholar 

  • Groth U, Prellwitz, Jahnchen E. Estimation of pharmacokinetic parameters of lithium from saliva and urine. Clinical Pharmacology and Therapeutics 16: 490–498, 1974

    PubMed  CAS  Google Scholar 

  • Haeckel R. Interpretation of salivary drug concentrations. Journal of Clinical Chemistry and Clinical Biochemistry 27: 223–226, 1989a

    CAS  Google Scholar 

  • Haeckel R. Procedures for saliva sampling. Journal of Clinical Chemistry and Clinical Biochemistry 27: 246–247, 1989b

    CAS  Google Scholar 

  • Haeckel R, Bucklitsch I. The comparability of ethanol concentrations in peripheral blood and saliva: the phenomenon of variation in saliva to blood concentration ratio. Journal of Clinical Chemistry and Clinical Biochemistry 25: 199–204, 1987

    CAS  Google Scholar 

  • Haeckel R, Muhlenfeld HM. Reasons for intraindividual inconsistency of the digoxin saliva to serum concentration ratio. Journal of Clinical Chemistry and Clinical Biochemistry 27: 653–658, 1989

    CAS  Google Scholar 

  • Hoeprich PD, Warshauer DM. Entry of four tetracyclines in saliva and tears. Antimicrobial Agents and Chemotherapy 5: 330–336, 1974

    Article  PubMed  CAS  Google Scholar 

  • Horning MG, Brown L, Mowlin J, Lertratanangkoon K, Kellaway P, et al. Use of saliva in therapeutic drug monitoring. Clinical Chemistry 23: 157–164, 1977

    PubMed  CAS  Google Scholar 

  • Hvidberg EF, Dam M. Clinical pharmacokinetics of anticonvulsants. Clinical Pharmacokinetics 1: 161–188, 1976

    Article  PubMed  CAS  Google Scholar 

  • Inaba T, Kalow W. Salivary excretion of amobarbital in man. Clinical Pharmacology and Therapeutics 18: 558–562, 1975

    PubMed  CAS  Google Scholar 

  • Iisalo E. Clinical pharmacokinetics of digoxin. Clinical Pharmacokinetics 2: 1–16, 1977

    Article  PubMed  CAS  Google Scholar 

  • Jacobson ED. Salivary secretion. In Johnson LR (Ed.) Gastrointestinal physiology, 2nd ed., pp. 46–54, CV Mosby, St Louis, 1981

    Google Scholar 

  • Joubert PH, Aucamp BN, Muller FO. Digoxin concentrations in serum and saliva: relationship to ECG changes and dosage in healthy volunteers. British Journal of Clinical Pharmacology 3: 1053–1056, 1976

    Article  PubMed  CAS  Google Scholar 

  • Jusko WJ, Gerbracht L, Golden LH, Koup JR. Digoxin concentrations in serum and saliva. Research Communications in Chemical Pathology and Pharmacology 10: 189–192, 1975

    PubMed  CAS  Google Scholar 

  • Kanto J, Sellman R, Laurikainen E. Saliva concentrations of lignocaine in healthy volunteers. British Journal of Clinical Pharmacology 13: 736–737, 1982

    Article  PubMed  CAS  Google Scholar 

  • Kapil RP, Axelson JE, Mansfield IL, Edwards DJ, McErlane B, et al. Disopyramide pharmacokinetics and metabolism: effect of inducers. British Journal of Clinical Pharmacology 24: 781–791, 1987

    Article  PubMed  CAS  Google Scholar 

  • Kelly HW, Hadley WM, Murphy SA, Skipper BG. Monitoring children on sustained release therapy by salivary theophylline levels. American Journal of Diseases of Children 135: 137–139, 1981

    PubMed  CAS  Google Scholar 

  • Kilpatrick CJ, Wanwimolruk S, Wing LMH. Plasma concentrations of unbound phenytoin in the management of epilepsy. British Journal of Clinical Pharmacology 17: 539–546, 1984

    Article  PubMed  CAS  Google Scholar 

  • Koch-Weser J. Medical intelligence drug therapy disopyramide. New England Journal of Medicine 300: 957–962, 1979

    Article  PubMed  CAS  Google Scholar 

  • Knoebel LK. Secretion and action of digestive juices, absorption. In Selkurt (Ed.) Physiology, pp. 571–602, Little Brown, Boston, 1966

    Google Scholar 

  • Knott C, Bateman M, Reynolds F. Do saliva concentrations predict unbound theophylline concentrations? A problem re-examined. British Journal of Clinical Pharmacology 17: 9–14, 1984

    Article  PubMed  CAS  Google Scholar 

  • Knott C, Hamshaw-Thomas A, Reynolds F. Phenytoin-valproate interaction: importance of saliva monitoring in epilepsy. British Medical Journal 284: 13–16, 1982

    Article  PubMed  CAS  Google Scholar 

  • Knott C, Reynolds F. The place of saliva in antiepileptic drug monitoring. Therapeutic Drug Monitoring 6: 35–41, 1984

    Article  PubMed  CAS  Google Scholar 

  • Knott C, Reynolds F. Citrate and salivary drug measurement. Lancet 1: 97, 1987

    Article  PubMed  CAS  Google Scholar 

  • Knott C, Williams CP, Reynolds F. Phenytoin kinetics during pregnancy and the puerperium. British Journal of Obstetrics and Gynaecology 93: 1030–1037, 1986

    Article  PubMed  CAS  Google Scholar 

  • Koup JR, Jusko WJ, Goldfarb AL. pH-Dependent secretion of procainamide into saliva. Journal of Pharmaceutical Sciences 64: 2008–2010, 1975

    Article  PubMed  CAS  Google Scholar 

  • Koysooko R, Ellis EF, Levy G. Relationship between theophylline concentration in plasma or saliva in man. Clinical Pharmacology and Therapeutics 15: 454–460, 1974

    PubMed  CAS  Google Scholar 

  • Krivoy N, Rogin N, Greif Z, Ben-Aryeh N, Gutman D, et al. Relationship between digoxin concentration in serum and saliva in infants. Journal of Pediatrics 99: 810–811, 1981

    Article  PubMed  CAS  Google Scholar 

  • Legg B, Rowland M. Cyclosporin: measurement of fraction unbound in plasma. Journal of Pharmacy and Pharmacology 39: 599–603, 1987

    Article  PubMed  CAS  Google Scholar 

  • Levy RH, Wilensky AJ, Friel PN. Other antiepileptic drugs. In Evans et al. (Eds) Applied pharmacokinetics: principles of therapeutic drug monitoring, 2nd ed., pp. 540–569, Applied Therapeutics Inc., Spokane, 1986

    Google Scholar 

  • Liftshitz M, Ben-Zvi, Z, Gorodischer R. Monitoring phenytoin therapy using citric acid-stimulated saliva. Therapeutic Drug Monitoring 12: 334–338, 1990

    Article  Google Scholar 

  • Lindahl G, Lonnquist B, Hedfors E. Lymphocytic infiltration and HLA-DR expression of salivary glands in bone marrow transplant recipients: a prospective study. Clinical and Experimental Immunology 72: 267–173, 1988

    PubMed  CAS  Google Scholar 

  • Mackichan JJ, Duffner PK, Cohen ME. Salivary concentrations and plasma protein binding of carbamazepine and carbamazepine 10,11-epoxide in epileptic patients. British Journal of Clinical Pharmacology 12: 31–37, 1981

    Article  PubMed  CAS  Google Scholar 

  • Mandel ID. Relation of saliva and plaque to caries. Journal of Dental Research 53: 246–266, 1974

    Article  PubMed  CAS  Google Scholar 

  • Matin SB, Wan SH, Karam JH. Pharmacokinetics of tolbutamide: prediction by concentration in saliva. Clinical Pharmacology and Therapeutics 16: 1052–1058, 1974

    PubMed  CAS  Google Scholar 

  • Matthews RW, Bhoola KD, Rasker JJ, Jayson MI. Salivary secretion and connective tissue disease in man. Annals of the Rheumatic Diseases 44: 20–26, 1985

    Article  PubMed  CAS  Google Scholar 

  • McAuliffe JJ, Sherwin AL, Leppik IE, Fayle SA, Pippenger CE. Salivary levels of anticonvulsants: a practical approach to drug monitoring. Neurology 27: 409–413, 1977

    Article  PubMed  CAS  Google Scholar 

  • McKeage MJ, Maling TJB. Saliva lithium: a poor predictor of plasma and erythrocyte levels. New Zealand Medical Journal 102: 559–560, 1989

    PubMed  CAS  Google Scholar 

  • Miles MV, Tennison MB, Greenwood RS, Benoit SE, Thorn MD, et al. Evaluation of the Ames Seralyzer for the determination of carbamazepine, phenobarbital, and phenytoin concentrations in saliva. Therapeutic Drug Monitoring 32: 501–510, 1990

    Article  Google Scholar 

  • Miles MV, Tennison, MB, Greenwood RS. Intraindividual variability of carbamazepine, phenobarbital, and phenytoin concentrations in saliva. Therapeutic Drug Monitoring 13: 166–171, 1991

    Article  PubMed  CAS  Google Scholar 

  • Newton DW, Kluza RB. pKa values of medicinal compounds in pharmacy. Drug Intelligence and Clinical Pharmacy 12: 546–554, 1978

    CAS  Google Scholar 

  • Nishihara K, Uchino K, Saitoh Y, Honda Y, Nakagawa F, et al. Estimation of plasma unbound phenobarbital concentration by using mixed saliva. Epilepsia 20: 37–45, 1979

    Article  PubMed  CAS  Google Scholar 

  • Obach R, Borja J, Prunonosa J, Valles JM, Torrent J, et al. Lack of correlation between lithium pharmacokinetic parameters obtained from plasma and saliva. Therapeutic Drug Monitoring 10: 265–268, 1988

    Article  PubMed  CAS  Google Scholar 

  • Paton RD, Logan RW. Salivary drug measurement: a cautionary tale. Lancet 2: 1340, 1986

    Article  PubMed  CAS  Google Scholar 

  • Paxton JW, Donald RA. Concentrations and kinetics of carbamazepine in whole saliva, parotid saliva, serum ultrafiltrate, and serum. Clinical Pharmacology and Therapeutics 28: 695–702, 1980

    Article  PubMed  CAS  Google Scholar 

  • Paxton JW, Whiting B, Stephen KW. Phenytoin concentrations in mixed, parotid, and submandibular saliva and serum measured by radioimmunoassay. British Journal of Clinical Pharmacology 4: 185–191, 1977

    Article  PubMed  CAS  Google Scholar 

  • Perry R, Campbell M, Greda DM, Anderson L. Saliva lithium levels in children: their use in monitoring serum lithium levels and lithium side effects. Journal of Clinical Psychopharmacology 4: 199–202, 1984

    PubMed  CAS  Google Scholar 

  • Pieper JA, Rodman JH. Lidocaine. In Evans et al. (Eds) Applied pharmacokinetics: principles of therapeutic drug monitoring, 2nd ed., pp. 639–681, Applied Therapeutics Inc., Spokane, 1986

    Google Scholar 

  • Piredda S, Monaco F. Ethosuximide in tears, saliva, and cerebrospinal fluid. Therapeutic Drug Monitoring 3: 321–323, 1981

    Article  PubMed  CAS  Google Scholar 

  • Rashid MU, Bateman DN. Effect of intravenous atropine on gastric emptying, paracetamol absorption, salivary flow and heart rate in young and fit elderly volunteers. British Journal of Clinical Pharmacology 30: 25–34, 1990

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen F. Salivary excretion of sulphonamides and barbiturates by cows and goats. Acta Pharmacologica et Toxicologica 21: 11–19, 1964

    Article  PubMed  CAS  Google Scholar 

  • Reynolds F, Ziroyanis PN, Jones NF, Smith SE. Salivary phenytoin concentrations in epilepsy and in chronic renal failure. Lancet 2: 384–386, 1976

    Article  PubMed  CAS  Google Scholar 

  • Reuning RH, Geraets DR. Digoxin. In Evans et al. (Eds) Applied pharmacokinetics: principles of therapeutic drug monitoring, 2nd ed., pp. 570–623, Applied Therapeutics Inc., Spokane, 1986

    Google Scholar 

  • Sankaranarayanan A, Goel A, Pant VLN. Variation in the relationship between serum and saliva lithium levels. International Journal of Clinical Pharmacology, Therapy and Toxicology 23: 365–366, 1985

    CAS  Google Scholar 

  • Schmidt D, Kupferberg HJ. Diphenylhydantoin, phenobarbital, and primidone in saliva, plasma and cerebrospinal fluid. Epilepsia 16: 735–741, 1975

    Article  PubMed  CAS  Google Scholar 

  • Schramm W, Annesley TM, Siegel GJ, Sackellares JC, Smith RH. Measurement of phenytoin and carbamazepine in an ultrafiltrate of saliva. Therapeutic Drug Monitoring 13: 152–160, 1991

    Article  Google Scholar 

  • Schroder H, Jensen KB, Brandsborg M. Lack of correlation between methotrexate concentrations in serum saliva and sweat after 24h methotrexate infusions. British Journal of Clinical Pharmacology 24: 537–541, 1987

    Article  PubMed  CAS  Google Scholar 

  • Schubert MM, Izutsu KT. Iatrogenic causes of salivary gland dysfunction. Journal of Dental Research 66: 680–688, 1987

    PubMed  Google Scholar 

  • Schubert MM, Sullivan KM, Morton TH, Izutsu KT, Peterson DE, et al. Oral manifestations of chronic graft-v-host disease. Archives of Internal Medicine 144: 1591–1595, 1984

    Article  PubMed  CAS  Google Scholar 

  • Siegel IA, Ben-Aryeh H, Gozal D, Colin AA, Szargel R, et al. Comparison of unbound and total serum theophylline concentrations with those of stimulated and unstimulated saliva in asthmatic children. Therapeutic Drug Monitoring 12: 360–364, 1990

    Article  Google Scholar 

  • Smith TW, Butler VP, Haber E. Determination of therapeutic and toxic serum digoxin concentrations by radioimmunoassay. New England Journal of Medicine 281: 1212–1216, 1969

    Article  PubMed  CAS  Google Scholar 

  • Spector R, Park GD, Johnson GF, Vesell ES. Therapeutic drug monitoring. Clinical Pharmacology and Therapeutics 43: 345–353, 1988

    Article  PubMed  CAS  Google Scholar 

  • Spencer EK, Campbell M, Adams P, Perry R, Choroco MC, et al. Saliva and serum lithium monitoring in hospitalized children. Psychopharmacology Bulletin 26: 239–243, 1990

    PubMed  CAS  Google Scholar 

  • Sreebny LM, Valdini A, Yu A. Xerostomia. Part II: relationship to nonoral symptoms, drugs, and diseases. Oral Surgery Oral Medicine Oral Pathology 68: 419–427, 1989

    Article  CAS  Google Scholar 

  • Steele WH, Stuart JFB, Whiting B, Lawrence JR, Calman KC, et al. Serum, tear and salivary concentrations of methotrexate in man. British Journal of Clinical Pharmacology 7: 207–211, 1979

    Article  PubMed  CAS  Google Scholar 

  • Stephen KW, Speirs CF. Methods for collecting individual components of mixed saliva: the relevance to clinical pharmacology. British Journal of Clinical Pharmacology 3: 315–319, 1976

    Article  PubMed  CAS  Google Scholar 

  • Stoehr GP, Venkataramanan R, Dauber JH. Comparison of methods for determining unbound theophylline concentrations. Therapeutic Drug Monitoring 8: 42–46, 1986

    Article  PubMed  CAS  Google Scholar 

  • Svensson CK. Ethical considerations in the conduct of clinical pharmacokinetic studies. Clinical Pharmacokinetics 17: 217–222, 1989

    Article  PubMed  CAS  Google Scholar 

  • Svensson CK, Woodruff MN, Baxter JG, Lalka D. Free drug concentration monitoring in clinical practice: rationale and current status. Clinical Pharmacokinetics 11: 450–469, 1986

    Article  PubMed  CAS  Google Scholar 

  • Tokugawa K, Ueda K, Fujito H, Kurokawa T. Correlation between the saliva and free serum concentration of phenobarbital in epileptic children. European Journal of Pediatrics 145: 401–402, 1986

    Article  PubMed  CAS  Google Scholar 

  • Tomlin PI, McKinlay I, Smith I. A study on carbamazepine levels, including estimation of 10,11-epoxy-carbamazepine and levels in free plasma and saliva. Developmental Medicine and Child Neurology 28: 713–718, 1986

    Article  PubMed  CAS  Google Scholar 

  • Troupin AS, Friel P. Anticonvulsant levels in saliva, serum, and cerebrospinal fluid. Epilepsia 16: 223–227, 1975

    Article  PubMed  CAS  Google Scholar 

  • Uden DL, Miller KW, Strand LM, Johnson PB, Zaske DE. Saliva-serum theophylline concentrations: substantial intrapatient and interpatient variation in predicting serum concentrations. Therapeutic Drug Monitoring 3: 143–150, 1981

    Article  PubMed  CAS  Google Scholar 

  • Wagner SA, Slavik M. An individualized plastic intraoral device for the collection of human parotid saliva. International Journal of Clinical Pharmacology, Therapy and Toxicology 22: 236–239, 1984

    CAS  Google Scholar 

  • Yosselson-Superstine S, Yanuka Y, Ishai S. Relationship between quinidine concentrations measured in saliva and erythrocytes, and in serum. International Journal of Clinical Pharmacology, Therapy and Toxicology 20: 181–186, 1982

    CAS  Google Scholar 

  • Zaghloul I, Ptachcinski RI, Burckart GJ, Van Thiel D, Starzel TE, et al. Blood protein binding of cyclosporine in transplant patients. Journal of Clinical Pharmacology 27: 240–242, 1987

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drobitch, R.K., Svensson, C.K. Therapeutic Drug Monitoring in Saliva. Clin. Pharmacokinet. 23, 365–379 (1992). https://doi.org/10.2165/00003088-199223050-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199223050-00003

Keywords

Navigation