Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 30, 2015

Mild cognitive impairment affects motor control and skill learning

  • Qiaofeng Wu , John S.Y. Chan and Jin H. Yan EMAIL logo

Abstract

Mild cognitive impairment (MCI) is a transitional phase between normal cognitive aging and dementia. As the world population is aging rapidly, more MCI patients will be identified, posing significant problems to society. Normal aging is associated with cognitive and motor decline, and MCI brings additional impairments. Compared to healthy older adults, MCI patients show poorer motor control in a variety of tasks. Efficient motor control and skill learning are essential for occupational and leisure purposes; degradation of motor behaviors in MCI patients often adversely affects their health and quality of life. In this article, we first define MCI and describe its pathology and neural correlates. After this, we review cognitive changes and motor control and skill learning in normal aging. This section is followed by a discussion of MCI-related degradation of motor behaviors. Finally, we propose that multicomponent interventions targeting both cognitive and motor domains can improve MCI patients’ motor functions. Future research directions are also raised.


Corresponding author: Jin H. Yan, Center for Brain Disorders and Cognitive Neuroscience, Shenzhen University, 3688 Nan Hai Ave., Shenzhen, Guangdong 518060, P.R. China, e-mail:
aCo-first authors.

Acknowledgments

This work was supported by the Natural Science Foundation of SZU (to J.H. Yan) and in part by a grant from the Neuro-Academics Hong Kong (to J.S.Y. Chan). There were no conflicts of interest. The authors thank the reviewers for their comments and suggestions.

References

Aggarwal, N.T., Wilson, R.S., Beck, T.L., Bienias, J.L., Berry-Kravis, E., and Bennett, D.A. (2005). The apolipoprotein E 4 allele and incident Alzheimer’s disease in persons with mild cognitive impairment. Neurocase 11, 3–7.10.1080/13554790490903038Search in Google Scholar PubMed

Aggarwal, N.T., Wilson, R.S., Beck, T.L., Bienias, J.L., and Bennett, D.A. (2006). Motor dysfunction in mild cognitive impairment and the risk of incident Alzheimer disease. Arch. Neurol. 63, 1763–1769.10.1001/archneur.63.12.1763Search in Google Scholar PubMed

Agosta, F., Rocca, M.A., Pagani, E., Absinta, M., Magnani, G., Marcone, A., Falautano, M., Comi, G., Gorno-Tempini, M.L., and Filippi, M. (2010). Sensorimotor network rewiring in mild cognitive impairment and Alzheimer’s disease. Hum. Brain Mapp. 31, 515–525.Search in Google Scholar

Ahn, H.J., Seo, S.W., Chin, J., Suh, M.K., Lee, B.H., Kim, S.T., Im, K., Lee, J.M., Lee, J.H., Heilman, K.M., et al. (2011). The cortical neuroanatomy of neuropsychological deficits in mild cognitive impairment and Alzheimer’s disease: a surface-based morphometric analysis. Neuropsychologia 49, 3931–3945.10.1016/j.neuropsychologia.2011.10.010Search in Google Scholar PubMed

Ameli, M., Kemper, F., Sarfeld, A.S., Kessler, J., Fink, G.R., and Nowak, D.A. (2011). Arbitrary visuo-motor mapping during object manipulation in mild cognitive impairment and Alzheimer’s disease: a pilot study. Clin. Neurol. Neurosurg. 113, 453–458.10.1016/j.clineuro.2011.01.011Search in Google Scholar PubMed

Anguera, J.A., Reuter-Lorenz, P.A., Willingham, D.T., and Seidler, R.D. (2011). Failure to engage spatial working memory contributes to age-related declines in visuomotor learning. J. Cogn. Neurosci. 23, 11–25.10.1162/jocn.2010.21451Search in Google Scholar PubMed

Aoki, T. and Fukuoka, Y. (2010). Finger tapping ability in healthy elderly and young adults. Med. Sci. Sport. Exerc. 42, 449–455.10.1249/MSS.0b013e3181b7f3e1Search in Google Scholar PubMed

Bai, F., Zhang, Z., Yu, H., Shi, Y., Yuan, Y., Zhu, W., Zhang, X., and Qian, Y. (2008). Default-mode network activity distinguishes amnestic type mild cognitive impairment from healthy aging: a combined structural and resting-state functional MRI study. Neurosci. Lett. 438, 111–115.10.1016/j.neulet.2008.04.021Search in Google Scholar PubMed

Bai, F., Zhang, Z., Watson, D.R., Yu, H., Shi, Y., Yuan, Y., Zang, Y., Zhu, C., and Qian, Y. (2009). Abnormal functional connectivity of hippocampus during episodic memory retrieval processing network in amnestic mild cognitive impairment. Biol. Psychiatr. 65, 951–958.10.1016/j.biopsych.2008.10.017Search in Google Scholar PubMed

Bai, F., Liao, W., Watson, D.R., Shi, Y., Wang, Y., Yue, C., Teng, Y., Wu, D., Yuan, Y., Jia, J., et al. (2011a). Abnormal whole-brain functional connection in amnestic mild cognitive impairment patients. Behav. Brain Res. 216, 666–672.10.1016/j.bbr.2010.09.010Search in Google Scholar PubMed

Bai, F., Watson, D.R., Shi, Y., Wang, Y., Yue, C., Wu, D., Yuan, Y., and Zhang, Z. (2011b). Specifically progressive deficits of brain functional marker in amnestic type mild cognitive impairment. PLoS One 6, e24271.10.1371/journal.pone.0024271Search in Google Scholar PubMed PubMed Central

Bailon, O., Roussel, M., Boucart, M., Krystkowiak, P., and Godefroy, O. (2010). Psychomotor slowing in mild cognitive impairment, Alzheimer’s disease and Lewy body dementia: mechanisms and diagnostic value. Dement. Geriatr. Cogn. 29, 388–296.10.1159/000305095Search in Google Scholar PubMed

Bangert, A.S. and Balota, D.A. (2012). Keep up the pace: declines in simple repetitive timing differentiate healthy aging from the earliest stages of Alzheimer’s disease. J. Int. Neuropsychol. Soc. 18, 1052–1063.10.1017/S1355617712000860Search in Google Scholar PubMed PubMed Central

Bangert, A.S., Reuter-Lorenz, P.A., Walsh, C.M., Schachter, A.B., and Seidler, R.D. (2010). Bimanual coordination and aging: neurobehavioral implications. Neuropsychologia 48, 1165–1170.10.1016/j.neuropsychologia.2009.11.013Search in Google Scholar PubMed PubMed Central

Beauchet, O., Launay, C.P., Annweiler, C., and Allali, G. (2015). Hippocampal volume, early cognitive decline and gait variability: which association? Exp. Gerontol. 61, 98–104.10.1016/j.exger.2014.11.002Search in Google Scholar PubMed

Bell-McGinty, S., Lopez, O.L., Meltzer, C.C., Scanlon, J.M., Whyte, E.M., DeKosky, S.T., and Becker, J.T. (2005). Differential cortical atrophy in subgroups of mild cognitive impairment. Arch. Neurol. 62, 1393–1397.10.1001/archneur.62.9.1393Search in Google Scholar PubMed

Bennett, D.A., Schneider, J.A., Bienias, J.L., Evans, D.A., and Wilson, R.S. (2005). Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions. Neurology 64, 834–841.10.1212/01.WNL.0000152982.47274.9ESearch in Google Scholar PubMed

Bennett, I.J., Madden, D.J., Vaidya, C.J., Howard, J.H., and Howard, D.V. (2011). White matter integrity correlates of implicit sequence learning in healthy aging. Neurobiol. Aging 32, 2317.e1–2317.e12.10.1016/j.neurobiolaging.2010.03.017Search in Google Scholar PubMed PubMed Central

Bernard, J.A. and Seidler, R.D. (2014). Moving forward: age effects on the cerebellum underlie cognitive and motor declines. Neurosci. Biobehav. R. 42, 193–207.10.1016/j.neubiorev.2014.02.011Search in Google Scholar PubMed PubMed Central

Bernard, J.A., Peltier, S.J., Wiggins, J.L., Jaeggi, S.M., Buschkuehl, M., Fling, B.W., Kwak, Y., Jonides, J., Monk, M.S., and Seidler, R.D. (2013). Disrupted cortico-cerebellar connectivity in older adults. NeuroImage 83, 103–119.10.1016/j.neuroimage.2013.06.042Search in Google Scholar PubMed PubMed Central

Beurskens, R. and Bock, O. (2013). Does the walking task matter? Influence of different walking conditions on dual-task performances in young and older persons. Hum. Movement Sci. 32, 1456–1466.10.1016/j.humov.2013.07.013Search in Google Scholar PubMed

Binnewijzend, M.A., Schoonheim, M.M., Sanz-Arigita, E., Wink, A.M., van der Flier, W.M., Tolboom, N., Adriaanse, S.M., Damoiseaux, J.S., Scheltens, P., van Berckel, B.N.M., et al. (2012). Resting-state fMRI changes in Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 33, 2018–2028.10.1016/j.neurobiolaging.2011.07.003Search in Google Scholar PubMed

Bo, J., Borza, V., and Seidler, R.D. (2009). Age-related declines in visuospatial working memory correlate with deficits in explicit motor sequence learning. J. Neurophysiol. 102, 2744–2754.10.1152/jn.00393.2009Search in Google Scholar PubMed PubMed Central

Bo, J., Jennett, S., and Seidler, R.D. (2012). Differential working memory correlates for implicit sequence performance in young and older adults. Exp. Brain Res. 221, 467–477.10.1007/s00221-012-3189-2Search in Google Scholar PubMed

Boisgontier, M.P., Beets, I.A., Duysens, J., Nieuwboer, A., Krampe, R.T., and Swinnen, S.P. (2013). Age-related differences in attentional cost associated with postural dual tasks: increased recruitment of generic cognitive resources in older adults. Neurosci. Biobehav. R. 37, 1824–1837.10.1016/j.neubiorev.2013.07.014Search in Google Scholar PubMed

Bonekamp, D., Yassa, M.A., Munro, C.A., Geckle, R.J., Yousem, D.M., Barker, P.B., Schretlen, D.J., Brandt, J., and Horská, A. (2010). Gray matter in amnestic mild cognitive impairment: voxel-based morphometry. Neuroreport 21, 259–263.10.1097/WNR.0b013e328335642aSearch in Google Scholar PubMed PubMed Central

Brach, J.S., Studenski, S., Perera, S., VanSwearingen, J.M., and Newman, A.B. (2008). Stance time and step width variability have unique contributing impairments in older persons. Gait Posture 27, 431–439.10.1016/j.gaitpost.2007.05.016Search in Google Scholar PubMed PubMed Central

Brickman, A.M., Zimmerman, M.E., Paul, R.H., Grieve, S.M., Tate, D.F., Cohen, R.A., Williams, L.M., Clark, C.R., and Gordon, E. (2006). Regional white matter and neuropsychological functioning across the adult lifespan. Biol. Psychiat. 60, 444–453.10.1016/j.biopsych.2006.01.011Search in Google Scholar PubMed

Bronson-Lowe, C.R., Loucks, T.M., Ofori, E., and Sosnoff, J.J. (2013). Aging effects on sensorimotor integration: a comparison of effector systems and feedback modalities. J. Motor Behav. 45, 217–230.10.1080/00222895.2013.784239Search in Google Scholar PubMed

Brookmeyer, R., Gray, S., and Kawas, C. (1998). Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am. J. Public Health 88, 1337–1342.10.2105/AJPH.88.9.1337Search in Google Scholar

Buschert, V.C., Friese, U., Teipel, S.J., Schneider, P., Merensky, W., Rujescu, D., Moller, H., Hampel, H., and Buerger, K. (2011). Effects of a newly developed cognitive intervention in amnestic mild cognitive impairment and mild Alzheimer’s disease: a pilot study. J. Alzheimers Dis. 25, 679–694.10.3233/JAD-2011-100999Search in Google Scholar PubMed

Buschert, V.C., Giegling, I., Teipel, S.J., Jolk, S., Hampel, H., Rujescu, D., and Buerger, K. (2012). Long-term observation of a multicomponent cognitive intervention in mild cognitive impairment. J. Clin. Psychiat. 73, e1492–e1498.10.4088/JCP.11m07270Search in Google Scholar PubMed

Cai, L., Chan, J.S., Yan, J.H., and Peng, K. (2014). Brain plasticity and motor practice in cognitive aging. Front. Aging Neurosci. 6, 31.10.3389/fnagi.2014.00031Search in Google Scholar PubMed PubMed Central

Calautti, C., Serrati, C., and Baron, J.C. (2001). Effects of age on brain activation during auditory-cued thumb-to-index opposition: a positron emission tomography study. Stroke 32, 139–146.10.1161/01.STR.32.1.139Search in Google Scholar

Camarda, R., Camarda, C., Monastero, R., Grimaldi, S., Camarda, L.K., Pipia, C., Caltagirone, C., and Gangitano, M. (2007). Movements execution in amnestic mild cognitive impairment and Alzheimer’s disease. Behav. Neurol. 18, 135–142.10.1155/2007/845914Search in Google Scholar PubMed PubMed Central

Cappell, K.A., Gmeindl, L., and Reuter-Lorenz, P.A. (2010). Age differences in prefrontal recruitment during verbal working memory maintenance depend on memory load. Cortex 46, 462–473.10.1016/j.cortex.2009.11.009Search in Google Scholar PubMed PubMed Central

Carp, J., Park, J., Hebrank, A., Park, D.C., and Polk, T.A. (2011). Age-related neural dedifferentiation in the motor system. PLoS One 6, e29411.10.1371/journal.pone.0029411Search in Google Scholar PubMed PubMed Central

Celone, K.A., Calhoun, V.D., Dickerson, B.C., Atri, A., Chua, E.F., Miller, S.L., DePeau, K., Rentz, D.M., Selkoe, D.J., Blacker, D., et al. (2006). Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. J. Neurosci. 26, 10222–10231.10.1523/JNEUROSCI.2250-06.2006Search in Google Scholar PubMed PubMed Central

Cepeda, N.J., Kramer, A.F., and Gonzalez de Sather, J. (2001). Changes in executive control across the life span: examination of task-switching performance. Dev. Psychol. 37, 715–730.10.1037/0012-1649.37.5.715Search in Google Scholar

Cespón, J., Galdo-Álvarez, S., Pereiro, A.X., and Díaz, F. (2015). Differences between mild cognitive impairment subtypes as indicated by event-related potential correlates of cognitive and motor processes in a Simon task. J. Alzheimer’s Dis. 43, 631–647.10.3233/JAD-132774Search in Google Scholar PubMed

Cha, J., Jo, H.J., Kim, H.J., Seo, S.W., Kim, H.S., Yoon, U., Park, H., Na, D.L., and Lee, J.M. (2013). Functional alteration patterns of default mode networks: comparisons of normal aging, amnestic mild cognitive impairment and Alzheimer’s disease. Eur. J. Neurosci. 37, 1916–1924.10.1111/ejn.12177Search in Google Scholar PubMed PubMed Central

Chan, J.S.Y., Yan, J.H., and Payne, V.G. (2013). The impact of obesity and exercise on cognitive aging. Front. Aging Neurosci. 5, 97.10.3389/fnagi.2013.00097Search in Google Scholar PubMed PubMed Central

Chauvel, G., Maquestiaux, F., Hartley, A.A., Joubert, S., Didierjean, A., and Masters, R.S. (2012). Age effects shrink when motor learning is predominantly supported by nondeclarative, automatic memory processes: evidence from golf putting. Q. J. Exp. Psychol. 65, 25–38.10.1080/17470218.2011.588714Search in Google Scholar PubMed

Cheng, K.C., McKay, S.M., King, E.C., and Maki, B.E. (2012). Does aging impair the capacity to use stored visuospatial information or online visual control to guide reach-to-grasp reactions evoked by unpredictable balance perturbation? J. Gerontol. A Biol. 67, 1238–1245.10.1093/gerona/gls116Search in Google Scholar PubMed

Christ, S.E., White, D.A., Mandernach, T., and Keys, B.A. (2001). Inhibitory control across the life span. Dev. Neuropsychol. 20, 653–669.10.1207/S15326942DN2003_7Search in Google Scholar PubMed

Christou, E.A., and Enoka, R.M. (2011). Aging and movement errors when lifting and lowering light loads. Age 33, 393–407.10.1007/s11357-010-9190-4Search in Google Scholar PubMed PubMed Central

Cid-Fernández, S., Lindín, M., and Díaz, F. (2014). Effects of amnestic mild cognitive impairment on N2 and P3 Go/NoGo ERP components. J. Alzheimer’s Dis. 38, 295–306.10.3233/JAD-130677Search in Google Scholar PubMed

Clarkson-Smith, L. and Hartley, A.A. (1989). Relationships between physical exercise and cognitive abilities in older adults. Psychol. Aging 4, 183–189.10.1037/0882-7974.4.2.183Search in Google Scholar

Clément, F. and Belleville, S. (2010). Compensation and disease severity on the memory-related activations in mild cognitive impairment. Biol. Psychiat. 68, 894–902.10.1016/j.biopsych.2010.02.004Search in Google Scholar PubMed

Coats, R.O. and Wann, J.P. (2011). The reliance on visual feedback control by older adults is highlighted in tasks requiring precise endpoint placement and precision grip. Exp. Brain Res. 214, 139–150.10.1007/s00221-011-2813-xSearch in Google Scholar PubMed

Coats, R.O., Snapp-Childs, W., Wilson, A.D., and Bingham, G.P. (2013). Perceptuo-motor learning rate declines by half from 20s to 70/80s. Exp. Brain Res. 225, 75–84.10.1007/s00221-012-3349-4Search in Google Scholar PubMed

Coats, R.O., Wilson, A.D., Snapp-Childs, W., Fath, A.J., and Bingham, G.P. (2014). The 50s cliff: perceptuo-motor learning rates across the lifespan. PLoS One 9, e85758.10.1371/journal.pone.0085758Search in Google Scholar

Coffey, C.E., Wilkinson, W.E., Parashos, L.A., Soady, S.A.R., Sullivan, R.J., Patterson, L.J., Figiel, G.S., Webb, M.C., Spritzer, C.E., and Djang, W.T. (1992). Quantitative cerebral anatomy of the aging human brain: a cross-sectional study using magnetic resonance imaging. Neurology 42, 527–527.10.1212/WNL.42.3.527Search in Google Scholar

Colcombe, S. and Kramer, A.F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci. 14, 125–130.10.1111/1467-9280.t01-1-01430Search in Google Scholar

Colcombe, S.J., Erickson, K.I., Scalf, P.E., Kim, J.S., Prakash, R., McAuley, E., Elavsky, S., Marquez, D.X., Hu, L., and Kramer, A.F. (2006). Aerobic exercise training increases brain volume in aging humans. J. Gerontol. A-Biol. 61, 1166–1170.10.1093/gerona/61.11.1166Search in Google Scholar

Collie, A. and Maruff, P. (2000). The neuropsychology of preclinical Alzheimer’s disease and mild cognitive impairment. Neurosci. Biobehav. R. 24, 365–374.10.1016/S0149-7634(00)00012-9Search in Google Scholar

Cotman, C.W. and Berchtold, N.C. (2002). Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25, 295–301.10.1016/S0166-2236(02)02143-4Search in Google Scholar

Coxon, J.P., Van Impe, A., Wenderoth, N., and Swinnen, S.P. (2012). Aging and inhibitory control of action: cortico-subthalamic connection strength predicts stopping performance. J. Neurosci. 32, 8401–8412.10.1523/JNEUROSCI.6360-11.2012Search in Google Scholar PubMed PubMed Central

Critchley, K., Kokubu, M., Iemitsu, M., Fujita, S., and Isaka, T. (2014). Age-related differences in the availability of visual feedback during bimanual pinch. Eur. J. Appl. Physiol. 114, 1925–1932.10.1007/s00421-014-2916-8Search in Google Scholar PubMed

Das, S.R., Pluta, J., Mancuso, L., Kliot, D., Orozco, S., Dickerson, B.C., Yushkevich, P.A., and Wolk, D.A. (2013). Increased functional connectivity within medial temporal lobe in mild cognitive impairment. Hippocampus 23, 1–6.10.1002/hipo.22051Search in Google Scholar PubMed PubMed Central

De Vogelaere, F., Santens, P., Achten, E., Boon, P., and Vingerhoets, G. (2012). Altered default-mode network activation in mild cognitive impairment compared with healthy aging. Neuroradiology 54, 1195–1206.10.1007/s00234-012-1036-6Search in Google Scholar PubMed

DeCarli, C., Miller, B.L., Swan, G.E., Reed, T., Wolf, P.A., and Carmelli, D. (2001). Cerebrovascular and brain morphologic correlates of mild cognitive impairment in the National Heart, Lung, and Blood Institute Twin Study. Arch. Neurol. 58, 643–647.10.1001/archneur.58.4.643Search in Google Scholar PubMed

Dennis, N.A. and Cabeza, R. (2011). Age-related dedifferentiation of learning systems: an fMRI study of implicit and explicit learning. Neurobiol. Aging 32, 2318.e17–2318.e30.10.1016/j.neurobiolaging.2010.04.004Search in Google Scholar PubMed PubMed Central

Deschamps, T., Beauchet, O., Annweiler, C., Cornu, C., and Mignardot, J.B. (2014). Postural control and cognitive decline in older adults: position versus velocity implicit motor strategy. Gait Posture 39, 628–630.10.1016/j.gaitpost.2013.07.001Search in Google Scholar PubMed

Dickerson, B.C. and Sperling, R.A. (2008). Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer’s disease: insights from functional MRI studies. Neuropsychologia 46, 1624–1635.10.1016/j.neuropsychologia.2007.11.030Search in Google Scholar PubMed PubMed Central

Diniz, B.S., Yassuda, M.S., Nunes, P.V., Radanovic, M., and Forlenza, O.V. (2007). Mini-Mental State Examination performance in mild cognitive impairment subtypes. Int. Psychogeriatr. 19, 647–656.10.1017/S104161020700542XSearch in Google Scholar PubMed

Doi, T., Makizako, H., Shimada, H., Yoshida, D., Tsutsumimoto, K., Sawa, R., Misu, S., and Suzuki, T. (2013). Effects of multicomponent exercise on spatial-temporal gait parameters among the elderly with amnestic mild cognitive impairment (aMCI): preliminary results from a randomized controlled trial (RCT). Arch. Gerontol. Geriat. 56, 104–108.10.1016/j.archger.2012.09.003Search in Google Scholar PubMed

Dubois, B. and Albert, M.L. (2004). Amnestic MCI or prodromal Alzheimer’s disease? Lancet Neurol. 3, 246–248.Search in Google Scholar

Edwards, J.D., Wadley, V.G., Vance, D.E., Wood, K., Roenker, D.L., and Ball, K.K. (2005). The impact of speed of processing training on cognitive and everyday performance. Aging Ment. Health 9, 262–271.10.1080/13607860412331336788Search in Google Scholar PubMed

Eggermont, L.H., Gavett, B.E., Volkers, K.M., Blankevoort, C.G., Scherder, E.J., Jefferson, A.L., Steinberg, E., Nair, A., Green, R.C., and Stern, R.A. (2010). Lower-extremity function in cognitively healthy aging, mild cognitive impairment, and Alzheimer’s disease. Arch. Phys. Med. Rehab. 91, 584–588.10.1016/j.apmr.2009.11.020Search in Google Scholar PubMed PubMed Central

Erickson, K.I., Voss, M.W., Prakash, R.S., Basak, C., Szabo, A., Chaddock, L., Kim, J.S., Heo, S., Alves, H., White, S.M., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 108, 3017–3022.10.1073/pnas.1015950108Search in Google Scholar PubMed PubMed Central

Esposito, R., Mosca, A., Pieramico, V., Cieri, F., Cera, N., and Sensi, S.L. (2013). Characterization of resting state activity in MCI individuals. Peer J 1, e135.10.7717/peerj.135Search in Google Scholar PubMed PubMed Central

Fling, B.W. and Seidler, R.D. (2012). Fundamental differences in callosal structure, neurophysiologic function, and bimanual control in young and older adults. Cereb. Cortex 22, 2643–2652.10.1093/cercor/bhr349Search in Google Scholar PubMed PubMed Central

Fling, B.W., Walsh, C.M., Bangert, A.S., Reuter-Lorenz, P.A., Welsh, R.C., and Seidler, R.D. (2011). Differential callosal contributions to bimanual control in young and older adults. J. Cogn. Neurosci. 23, 2171–2185.10.1162/jocn.2010.21600Search in Google Scholar PubMed PubMed Central

Fogel, S.M., Albouy, G., Vien, C., Popovicci, R., King, B.R., Hoge, R., Jbabdi, S., Benali, H., Karni, A., Maquet, P., et al. (2014). fMRI and sleep correlates of the age-related impairment in motor memory consolidation. Hum. Brain Mapp. 35, 3625–3645.10.1002/hbm.22426Search in Google Scholar PubMed PubMed Central

Förster, S., Buschert, V.C., Teipel, S.J., Friese, U., Buchholz, H.G., Drzezga, A., Hampel, H., Bartenstein, P., and Buerger, K. (2011). Effects of a 6-month cognitive intervention on brain metabolism in patients with amnestic MCI and mild Alzheimer’s disease. J. Alzheimers Dis. 26, 337–348.10.3233/JAD-2011-0025Search in Google Scholar PubMed

Fraser, S.A., Li, K.Z., and Penhune, V.B. (2009). A comparison of motor skill learning and retention in younger and older adults. Exp. Brain Res. 195, 419–427.10.1007/s00221-009-1806-5Search in Google Scholar PubMed

Fraser, S.A., Li, K.Z., and Penhune, V.B. (2010). Dual-task performance reveals increased involvement of executive control in fine motor sequencing in healthy aging. J. Gerontol. B Psychol. 65, 526–535.10.1093/geronb/gbq036Search in Google Scholar PubMed

Freitas, C., Perez, J., Knobel, M., Tormos, J. M., Oberman, L., Eldaief, M., Bashir, S., Vernet, M., Peña-Gómez, C., and Pascual Leone, A. (2011). Changes in cortical plasticity across the lifespan. Front. Aging Neurosci. 3, 5.10.3389/fnagi.2011.00005Search in Google Scholar PubMed PubMed Central

Frittelli, C., Borghetti, D., Iudice, G., Bonanni, E., Maestri, M., Tognoni, G., Pasquali, L., and Iudice, A. (2009). Effects of Alzheimer’s disease and mild cognitive impairment on driving ability: a controlled clinical study by simulated driving test. Int. J. Geriatr. Psych. 24, 232–238.10.1002/gps.2095Search in Google Scholar PubMed

Fujiyama, H., Garry, M.I., Martin, F.H., and Summers, J.J. (2010). An ERP study of age-related differences in the central cost of interlimb coordination. Psychophysiology 47, 501–511.10.1111/j.1469-8986.2009.00954.xSearch in Google Scholar PubMed

Gates, N.J., Sachdev, P.S., Singh, M.A.F., and Valenzuela, M. (2011). Cognitive and memory training in adults at risk of dementia: a systematic review. BMC Geriatr. 11, 55.10.1186/1471-2318-11-55Search in Google Scholar PubMed PubMed Central

Gérin-Lajoie, M., Richards, C.L., and McFadyen, B.J. (2006). The circumvention of obstacles during walking in different environmental contexts: a comparison between older and younger adults. Gait Posture 24, 364–369.10.1016/j.gaitpost.2005.11.001Search in Google Scholar PubMed

Gillain, S., Warzee, E., Lekeu, F., Wojtasik, V., Maquet, D., Croisier, J.L., Salmon, E., and Petermans, J. (2009). The value of instrumental gait analysis in elderly healthy, MCI or Alzheimer’s disease subjects and a comparison with other clinical tests used in single and dual-task conditions. Ann. Phys. Rehab. Med. 52, 453–474.10.1016/j.rehab.2008.10.004Search in Google Scholar PubMed

Gobel, E.W., Blomeke, K., Zadikoff, C., Simuni, T., Weintraub, S., and Reber, P.J. (2013). Implicit perceptual-motor skill learning in mild cognitive impairment and Parkinson’s disease. Neuropsychology 27, 314–321.10.1037/a0032305Search in Google Scholar PubMed PubMed Central

Gold, B.T., Powell, D.K., Xuan, L., Jicha, G.A., and Smith, C.D. (2010). Age-related slowing of task switching is associated with decreased integrity of frontoparietal white matter. Neurobiol. Aging 31, 512–522.10.1016/j.neurobiolaging.2008.04.005Search in Google Scholar PubMed PubMed Central

Grady, C. (2012). The cognitive neuroscience of ageing. Nat. Rev. Neurosci. 13, 491–505.10.1038/nrn3256Search in Google Scholar PubMed PubMed Central

Graziadio, S., Nazarpour, K., Gretenkord, S., Jackson, A., and Eyre, J.A. (2015). Greater intermanual transfer in the elderly suggests age-related bilateral motor cortex activation is compensatory. J. Motor Behav. 47, 47–55.10.1080/00222895.2014.981501Search in Google Scholar PubMed PubMed Central

Grön, G., Brandenburg, I., Wunderlich, A.P., and Riepe, M.W. (2006). Inhibition of hippocampal function in mild cognitive impairment: targeting the cholinergic hypothesis. Neurobiol. Aging 27, 78–87.10.1016/j.neurobiolaging.2004.12.005Search in Google Scholar PubMed

Han, Y., Wang, J., Zhao, Z., Min, B., Lu, J., Li, K., He, Y., and Jia, J. (2011). Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study. NeuroImage 55, 287–295.10.1016/j.neuroimage.2010.11.059Search in Google Scholar PubMed

Heuninckx, S., Wenderoth, N., and Swinnen, S.P. (2008). Systems neuroplasticity in the aging brain: recruiting additional neural resources for successful motor performance in elderly persons. J. Neurosci. 28, 91–99.10.1523/JNEUROSCI.3300-07.2008Search in Google Scholar PubMed PubMed Central

Heuninckx, S., Wenderoth, N., and Swinnen, S.P. (2010). Age-related reduction in the differential pathways involved in internal and external movement generation. Neurobiol. Aging 31, 301–314.10.1016/j.neurobiolaging.2008.03.021Search in Google Scholar PubMed

Hinder, M.R., Schmidt, M.W., Garry, M.I., Carroll, T.J., and Summers, J.J. (2011). Absence of cross-limb transfer of performance gains following ballistic motor practice in older adults. J. Appl. Physiol. 110, 166–175.10.1152/japplphysiol.00958.2010Search in Google Scholar PubMed

Hommel, B., Li, K.Z.H., and Li, S.C. (2004). Visual search across the life span. Dev. Psychol. 40, 545–558.10.1037/0012-1649.40.4.545Search in Google Scholar PubMed

Howard, J.H. and Howard, D.V. (1997). Age differences in implicit learning of higher order dependencies in serial patterns. Psychol. Aging 12, 634–656.10.1037/0882-7974.12.4.634Search in Google Scholar

Howard, J.H. and Howard, D.V. (2013). Aging mind and brain: is implicit learning spared in healthy aging? Front. Psychol. 4, 817.10.3389/fpsyg.2013.00817Search in Google Scholar PubMed PubMed Central

Howard, D.V., Howard, J.H., Japikse, K., DiYanni, C., Thompson, A., and Somberg, R. (2004). Implicit sequence learning: effects of level of structure, adult age, and extended practice. Psychol. Aging 19, 79–92.10.1037/0882-7974.19.1.79Search in Google Scholar PubMed PubMed Central

Howard, D.V., Howard, J.H., Dennis, N.A., LaVine, S., and Valentino, K. (2008a). Aging and implicit learning of an invariant association. J. Gerontol. B-Psychol. 63, P100–P105.10.1093/geronb/63.2.P100Search in Google Scholar

Howard, J.H., Howard, D.V., Dennis, N.A., and Kelly, A.J. (2008b). Implicit learning of predictive relationships in three-element visual sequences by young and old adults. J. Exp. Psychol. Learn. 34, 1139–1157.10.1037/a0012797Search in Google Scholar PubMed PubMed Central

Hughes, L.E., Barker, R.A., Owen, A.M., and Rowe, J.B. (2010). Parkinson’s disease and healthy aging: independent and interacting effects on action selection. Hum. Brain Mapp. 31, 1886–1899.10.1002/hbm.20979Search in Google Scholar PubMed PubMed Central

Jack, C.R., Petersen, R.C., Xu, Y.C., O’Brien, P.C., Smith, G.E., Ivnik, R.J., Boeve, B.F., Waring, S.C., Tangalos, E.G., and Kokmen, E. (1999). Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52, 1397–1397.10.1212/WNL.52.7.1397Search in Google Scholar PubMed PubMed Central

Jenkins, L., Myerson, J., Hale, S., and Fry, A.F. (1999). Individual and developmental differences in working memory across the life span. Psychon. B. Rev. 6, 28–40.10.3758/BF03210810Search in Google Scholar

Jeon, S.Y., Han, S.J., Jeong, J.H., and Fregni, F. (2014). Effect of exercise on balance in persons with mild cognitive impairment. NeuroRehabilitation 35, 271–278.10.3233/NRE-141120Search in Google Scholar

Jernigan, T.L., Archibald, S.L., Fennema-Notestine, C., Gamst, A.C., Stout, J.C., Bonner, J., and Hesselink, J.R. (2001). Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol. Aging 22, 581–594.10.1016/S0197-4580(01)00217-2Search in Google Scholar

Johnson, S.C., Schmitz, T.W., Moritz, C.H., Meyerand, M.E., Rowley, H.A., Alexander, A.L., Hansen, K.W., Gleason, C.E., Carlsson, C.M., Ries, M.L., et al. (2006). Activation of brain regions vulnerable to Alzheimer’s disease: the effect of mild cognitive impairment. Neurobiol. Aging 27, 1604–1612.10.1016/j.neurobiolaging.2005.09.017Search in Google Scholar

Kawagoe, T. and Sekiyama, K. (2014). Visually encoded working memory is closely associated with mobility in older adults. Exp. Brain Res. 232, 2035–2043.10.1007/s00221-014-3893-1Search in Google Scholar

Keenan, K.G. and Massey, W.V. (2012). Control of fingertip forces in young and older adults pressing against fixed low- and high-friction surfaces. PLoS One 7, e48193.10.1371/journal.pone.0048193Search in Google Scholar

Killiany, R.J., Gomez-Isla, T., Moss, M., Kikinis, R., Sandor, T., Jolesz, F., Tanzi, R., Jones, K., Hyman, B.T., and Albert, M.S. (2000). Use of structural magnetic resonance imaging to predict who will get Alzheimer’s disease. Ann. Neurol. 47, 430–439.10.1002/1531-8249(200004)47:4<430::AID-ANA5>3.0.CO;2-ISearch in Google Scholar

Kivipelto, M., Helkala, E.L., Hänninen, T., Laakso, M.P., Hallikainen, M., Alhainen, K., Soininen, H., Tuomilehto, J., and Nissinen, A. (2001a). Midlife vascular risk factors and late-life mild cognitive impairment: a population-based study. Neurology 56, 1683–1689.10.1212/WNL.56.12.1683Search in Google Scholar

Kivipelto, M., Helkala, E.L., Laakso, M.P., Hänninen, T., Hallikainen, M., Alhainen, K., Soininen, H., Tuomilehto, J., and Nissinen, A. (2001b). Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. Br. Med. J. 322, 1447–1451.Search in Google Scholar

Kluger, A., Gianutsos, J.G., Golomb, J., Ferris, S.H., George, A.E., Franssen, E., and Reisberg, B. (1997). Patterns of motor impairment in normal aging, mild cognitive decline, and early Alzheimer’s disease. J. Gerontol. B Psychol. 52, 28–39.10.1093/geronb/52B.1.P28Search in Google Scholar

Kurz, A., Pohl, C., Ramsenthaler, M., and Sorg, C. (2009). Cognitive rehabilitation in patients with mild cognitive impairment. Int. J. Geriatr. Psych. 24, 163–168.10.1002/gps.2086Search in Google Scholar

Kwon, M., Chen, Y.T., Fox, E.J., and Christou, E.A. (2014). Aging and limb alter the neuromuscular control of goal-directed movements. Exp. Brain Res. 232, 1759–1771.10.1007/s00221-014-3868-2Search in Google Scholar

Laessoe, U., Hoeck, H.C., Simonsen, O., and Voigt, M. (2008). Residual attentional capacity amongst young and elderly during dual and triple task walking. Hum. Movement Sci. 27, 496–512.10.1016/j.humov.2007.12.001Search in Google Scholar

Langan, J. and Seidler, R.D. (2011). Age differences in spatial working memory contributions to visuomotor adaptation and transfer. Behav. Brain Res. 225, 160–168.10.1016/j.bbr.2011.07.014Search in Google Scholar

Launer, L.J., Ross, G.W., Petrovitch, H., Masaki, K., Foley, D., White, L.R., and Havlik, R.J. (2000). Midlife blood pressure and dementia: the Honolulu-Asia aging study. Neurobiol. Aging 21, 49–55.10.1016/S0197-4580(00)00096-8Search in Google Scholar

Li, K.Z., Roudaia, E., Lussier, M., Bherer, L., Leroux, A., and McKinley, P.A. (2010). Benefits of cognitive dual-task training on balance performance in healthy older adults. J. Gerontol. A Biol. 65, 1344–1352.10.1093/gerona/glq151Search in Google Scholar PubMed

Li, H.J., Wang, P.Y., Jiang, Y., Chan, R.C., Wang, H.L., and Li, J. (2012). Neurological soft signs in persons with amnestic mild cognitive impairment and the relationships to neuropsychological functions. Behav. Brain Funct. 8, 8–29.10.1186/1744-9081-8-29Search in Google Scholar PubMed PubMed Central

Li, H., Liang, Y., Chen, K., Li, X., Shu, N., Zhang, Z., and Wang, Y. (2013). Different patterns of white matter disruption among amnestic mild cognitive impairment subtypes: relationship with neuropsychological performance. J. Alzheimer’s Dis. 36, 365–376.10.3233/JAD-122023Search in Google Scholar PubMed PubMed Central

Li, H.J., Hou, X.H., Liu, H.H., Yue, C.L., He, Y., and Zuo, X.N. (2015). Toward systems neuroscience in mild cognitive impairment and Alzheimer’s disease: a meta-analysis of 75 fMRI studies. Hum. Brain Mapp. 36, 127–1232.10.1002/hbm.22689Search in Google Scholar PubMed PubMed Central

Liang, P., Wang, Z., Yang, Y., Jia, X., and Li, K. (2011). Functional disconnection and compensation in mild cognitive impairment: evidence from DLPFC connectivity using resting-state fMRI. PLoS One 6, e22153.10.1371/journal.pone.0022153Search in Google Scholar PubMed PubMed Central

Liu, Y., Cao, C., and Yan, J.H. (2013). Functional aging impairs the role of feedback in motor learning. Geriatr. Gerontol. Int. 13, 849–859.10.1111/ggi.12013Search in Google Scholar PubMed

Liu, Y., Chan, J.S.Y., and Yan, J.H. (2014a). Neuropsychological mechanisms of falls in older adults. Front. Aging Neurosci. 6, 64.10.3389/fnagi.2014.00064Search in Google Scholar PubMed PubMed Central

Liu, G., Chan, J.S.Y., Chen, D.D., Peng, K., Qin, C., and Yan, J.H. (2014b). Visuomotor control in continuous response time tasks across different age groups. Percept. Motor Skill 119, 169–182.10.2466/25.10.PMS.119c13z8Search in Google Scholar PubMed

Lopez, O.L., Becker, J.T., Jagust, W.J., Fitzpatrick, A., Carlson, M.C., DeKosky, S.T., Breitner, J., Lyketsos, C.G., Jones, B., Kawas, C., et al. (2006). Neuropsychological characteristics of mild cognitive impairment subgroups. J. Neurol. Neurosur. Ps. 77, 159–165.10.1136/jnnp.2004.045567Search in Google Scholar PubMed PubMed Central

Lutz, W., Sanderson, W., and Scherbov, S. (2008). The coming acceleration of global population ageing. Nature 451, 716–719.10.1038/nature06516Search in Google Scholar PubMed

Maquet, D., Lekeu, F., Warzee, E., Gillain, S., Wojtasik, V., Salmon, E., Petermans, J., and Croisier, J.L. (2010). Gait analysis in elderly adult patients with mild cognitive impairment and patients with mild Alzheimer’s disease: simple versus dual task: a preliminary report. Clin. Physiol. Funct. I. 30, 51–56.10.1111/j.1475-097X.2009.00903.xSearch in Google Scholar PubMed

Marusic, U., Kavcic, V., Giordani, B., Gerževič, M., Meeusen, R., and Pišot, R. (2015). Computerized spatial navigation training during 14 days of bed rest in healthy older adult men: effect on gait performance. Psychol. Aging 30, 334–340.10.1037/pag0000021Search in Google Scholar PubMed

Mary, A., Bourguignon, M., Wens, V., de Beeck, M.O., Leproult, R., De Tiege, X., and Peigneux, P. (2015). Aging reduces experience-induced sensorimotor plasticity. A magnetoencephalographic study. NeuroImage 104, 59–68.10.1016/j.neuroimage.2014.10.010Search in Google Scholar PubMed

Maryott, J. and Sekuler, R. (2009). Age-related changes in imitating sequences of observed movements. Psychol. Aging 24, 476–486.10.1037/a0015266Search in Google Scholar PubMed PubMed Central

Mathis, A., Schunck, T., Erb, G., Namer, I.J., and Luthringer, R. (2009). The effect of aging on the inhibitory function in middle-aged subjects: a functional MRI study coupled with a color-matched Stroop task. Int. J. Geriatr. Psychiat. 24, 1062–1071.10.1002/gps.2222Search in Google Scholar PubMed

Mathys, C., Hoffstaedter, F., Caspers, J., Caspers, S., Südmeyer, M., Grefkes, C., Eickhoff, S.B., and Langner, R. (2014). An age-related shift of resting-state functional connectivity of the subthalamic nucleus: a potential mechanism for compensating motor performance decline in older adults. Front. Aging Neurosci. 6, 178.10.3389/fnagi.2014.00178Search in Google Scholar PubMed PubMed Central

Maylor, E.A. (1998). Changes in event-based prospective memory across adulthood. Aging Neuropsychology C 5, 107–128.10.1076/anec.5.2.107.599Search in Google Scholar

McGregor, K.M., Craggs, J.G., Benjamin, M.L., Crosson, B., and White, K.D. (2009). Age-related changes in motor control during unimanual movements. Brain Imaging Behav. 3, 317–331.10.1007/s11682-009-9074-3Search in Google Scholar

Minati, L., Chan, D., Mastropasqua, C., Serra, L., Spanò, B., Marra, C., Caltagirone, C., Cercignani, M., and Bozzali, M. (2014). Widespread alterations in functional brain network architecture in amnestic mild cognitive impairment. J. Alzheimer’s Dis. 40, 213–220.10.3233/JAD-131766Search in Google Scholar PubMed

Mitchell, T.W., Mufson, E.J., Schneider, J.A., Cochran, E.J., Nissanov, J., Han, L.Y., Bienias, J. L., Lee, V.M.Y., Trojanowski, J.Q., Bennett, D.A., et al. (2002). Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer’s disease. Ann. Neurol. 51, 182–189.10.1002/ana.10086Search in Google Scholar PubMed

Montero-Odasso, M., Oteng-Amoako, A., Speechley, M., Gopaul, K., Beauchet, O., Annweiler, C., and Muir-Hunter, S.W. (2014). The motor signature of mild cognitive impairment: results from the Gait and Brain Study. J. Gerontol. A Biol. 69, 1415–2421.10.1093/gerona/glu155Search in Google Scholar PubMed PubMed Central

Morris, J.C., Storandt, M., Miller, J.P., McKeel, D.W., Price, J.L., Rubin, E.H., and Berg, L. (2001). Mild cognitive impairment represents early-stage Alzheimer disease. Arch. Neurol. 58, 397–405.10.1001/archneur.58.3.397Search in Google Scholar PubMed

Moulin, C.J., Laine, M., Rinne, J.O., Kaasinen, V., Sipilä, H., Hiltunen, J., and Kangasmäki, A. (2007). Brain function during multi-trial learning in mild cognitive impairment: a PET activation study. Brain Res. 1136, 132–141.10.1016/j.brainres.2006.12.021Search in Google Scholar PubMed

Mufson, E.J., Chen, E.Y., Cochran, E.J., Beckett, L.A., Bennett, D.A., and Kordower, J.H. (1999). Entorhinal cortex β-amyloid load in individuals with mild cognitive impairment. Exp. Neurol. 158, 469–490.10.1006/exnr.1999.7086Search in Google Scholar PubMed

Muñiz, R., Serra, C.M., Reisberg, B., Rojo, J.M., del Ser, T., Peña Casanova, J., and Olazarán, J. (2014). Cognitive-motor intervention in Alzheimer’s disease: long-term results from the Maria Wolff Trial. J. Alzheimer’s Dis. 45, 295–304.10.3233/JAD-142364Search in Google Scholar PubMed

Nasreddine, Z.S., Phillips, N.A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J.L., and Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–699.10.1111/j.1532-5415.2005.53221.xSearch in Google Scholar PubMed

Negash, S., Petersen, L.E., Geda, Y.E., Knopman, D.S., Boeve, B.F., Smith, G.E., Ivnik, R.J., Howard, D.V., Howard, J.H., and Petersen, R.C. (2007). Effects of ApoE genotype and mild cognitive impairment on implicit learning. Neurobiol. Aging 28, 885–893.10.1016/j.neurobiolaging.2006.04.004Search in Google Scholar PubMed

Negash, S., Kliot, D., Howard, D.V., Howard, J.H., Das, S.R., Yushkevich, P.A., Pluta, J.B., Arnold, S.E., and Wolk, D.A. (2015). Relationship of contextual cueing and hippocampal volume in amnestic mild cognitive impairment patients and cognitively normal older adults. J. Int. Neuropsych. Soc. 21, 285–296.10.1017/S1355617715000223Search in Google Scholar

Nemeth, D., and Janacsek, K. (2010). The dynamics of implicit skill consolidation in young and elderly adults. J. Gerontol. B-Psychol. 66, 15–22.Search in Google Scholar

Nemeth, D., Janacsek, K., Király, K., Londe, Z., Németh, K., Fazekas, K., Ádám, I., Elemérné, K., and Csányi, A. (2013). Probabilistic sequence learning in mild cognitive impairment. Front. Hum. Neurosci. 7, 318.10.3389/fnhum.2013.00318Search in Google Scholar

Noble, J.W., Eng, J.J., Kokotilo, K.J., and Boyd, L.A. (2011). Aging effects on the control of grip force magnitude: an fMRI study. Exp. Gerontol. 46, 453–461.10.1016/j.exger.2011.01.004Search in Google Scholar

Olazaran, J., Muniz, R., Reisberg, B., Peña-Casanova, J., Del Ser, T., Cruz-Jentoft, A.J., Serrano, P., Navarro, E., García de la Rocha, M.L., Frank, A., et al. (2004). Benefits of cognitive-motor intervention in MCI and mild to moderate Alzheimer disease. Neurology 63, 2348–2353.10.1212/01.WNL.0000147478.03911.28Search in Google Scholar

Onushko, T., Kim, C., and Christou, E.A. (2014). Reducing task difficulty during practice improves motor learning in older adults. Exp. Gerontol. 57, 168–174.10.1016/j.exger.2014.06.006Search in Google Scholar

Panza, F., D’Introno, A., Colacicco, A.M., Capurso, C., Del Parigi, A., Caselli, R.J., Pilotto, A., Argentieri, G., Scapicchio, P.G., Scafato, E., et al. (2005). Current epidemiology of mild cognitive impairment and other predementia syndromes. Am. J. Geriat. Psychiat. 13, 633–644.10.1097/00019442-200508000-00002Search in Google Scholar

Parikh, P.J. and Cole, K.J. (2012). Handling objects in old age: forces and moments acting on the object. J. Appl. Physiol. 112, 1095–1104.10.1152/japplphysiol.01385.2011Search in Google Scholar

Pennanen, C., Kivipelto, M., Tuomainen, S., Hartikainen, P., Hänninen, T., Laakso, M.P., Hallikainen, M., Vanhanen, M., Nissinen, A., Helkala, E.L., et al. (2004). Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol. Aging 25, 303–310.10.1016/S0197-4580(03)00084-8Search in Google Scholar

Pereira, A.C., Huddleston, D.E., Brickman, A.M., Sosunov, A.A., Hen, R., McKhann, G.M., Sloan, R., Gage, F.H., Brown, T.R., and Small, S.A. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. USA 104, 5638–5643.10.1073/pnas.0611721104Search in Google Scholar PubMed PubMed Central

Petersen, R.C., Smith, G.E., Ivnik, R.J., Tangalos, E.G., Schaid, D.J., Thibodeau, S.N., Kokmen, E., Waring, S.C., and Kurland, L.T. (1995). Apolipoprotein E status as a predictor of the development of Alzheimer’s disease in memory-impaired individuals. J. Am. Med. Assoc. 273, 1274–1278.10.1001/jama.1995.03520400044042Search in Google Scholar

Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., and Kokmen, E. (1997). Aging, memory, and mild cognitive impairment. Int. Psychogeriatr. 9, 65–69.10.1017/S1041610297004717Search in Google Scholar

Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., and Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. (Chicago) 56, 303–308.10.1001/archneur.56.3.303Search in Google Scholar

Petersen, R.C., Doody, R., Kurz, A., Mohs, R.C., Morris, J.C., Rabins, P.V., Ritchie, K., Rossor, M., Thal, L., and Winblad, B. (2001). Current concepts in mild cognitive impairment. Arch. Neurol. 58, 1985–1992.10.1001/archneur.58.12.1985Search in Google Scholar

Petersen, R.C., Thomas, R.G., Grundman, M., Bennett, D., Doody, R., Ferris, S., Galasko, D., Jin, S., Kaye, J., Levey, A., et al. (2005). Vitamin E and donepezil for the treatment of mild cognitive impairment. N. Engl. J. Med. 352, 2379–2388.10.1056/NEJMoa050151Search in Google Scholar

Qi, Z., Wu, X., Wang, Z., Zhang, N., Dong, H., Yao, L., and Li, K. (2010). Impairment and compensation coexist in amnestic MCI default mode network. NeuroImage 50, 48–55.10.1016/j.neuroimage.2009.12.025Search in Google Scholar

Rantanen, T., Guralnik, J.M., Sakari-Rantala, R., Leveille, S., Simonsick, E.M., Ling, S., and Fried, L.P. (1999). Disability, physical activity, and muscle strength in older women: the Women’s Health and Aging Study. Arch. Phys. Med. Rehab. 80, 130–135.10.1016/S0003-9993(99)90109-0Search in Google Scholar

Reisberg, B., Ferris, S.H., de Leon, M.J., and Crook, T. (1982). The global deterioration scale for assessment of primary degenerative dementia. Am. J. Psychiat. 139, 1136–1139.10.1176/ajp.139.9.1136Search in Google Scholar PubMed

Rejeski, W.J. and Mihalko, S.L. (2001). Physical activity and quality of life in older adults. J. Gerontol. A Biol. 56, 23–35.10.1093/gerona/56.suppl_2.23Search in Google Scholar PubMed

Ren, J., Wu, Y.D., Chan, J.S., and Yan, J.H. (2013). Cognitive aging affects motor performance and learning. Geriatr. Gerontol. Int. 13, 19–27.10.1111/j.1447-0594.2012.00914.xSearch in Google Scholar PubMed

Reuter-Lorenz, P.A. and Cappell, K.A. (2008). Neurocognitive aging and the compensation hypothesis. Curr. Dir. Psychol. Sci. 17, 177–182.10.1111/j.1467-8721.2008.00570.xSearch in Google Scholar

Rey-Robert, B., Temprado, J.J., Lemaire, P., and Berton, E. (2012). Combining movement kinematics, efficiency functions, and Brinley plots to study age-related slowing of sensorimotor processes: insights from Fitts’ task. Gerontology 58, 171–180.10.1159/000329347Search in Google Scholar PubMed

Riecker, A., Gröschel, K., Ackermann, H., Steinbrink, C., Witte, O., and Kastrup, A. (2006). Functional significance of age-related differences in motor activation patterns. Neuroimage 32, 1345–1354.10.1016/j.neuroimage.2006.05.021Search in Google Scholar PubMed

Rieckmann, A. and Bäckman, L. (2009). Implicit learning in aging: extant patterns and new directions. Neuropsychol. Rev. 19, 490–503.10.1007/s11065-009-9117-ySearch in Google Scholar PubMed

Rieckmann, A., Fischer, H., and Bäckman, L. (2010). Activation in striatum and medial temporal lobe during sequence learning in younger and older adults: relations to performance. NeuroImage 50, 1303–1312.10.1016/j.neuroimage.2010.01.015Search in Google Scholar PubMed

Ritchie, K., Artero, S., and Touchon, J. (2001). Classification criteria for mild cognitive impairment: a population-based validation study. Neurology 5, 37–42.10.1212/WNL.56.1.37Search in Google Scholar PubMed

Roig, M., Ritterband-Rosenbaum, A., Lundbye-Jensen, J., and Nielsen, J.B. (2014). Aging increases the susceptibility to motor memory interference and reduces off-line gains in motor skill learning. Neurobiol. Aging 35, 1892–1900.10.1016/j.neurobiolaging.2014.02.022Search in Google Scholar PubMed

Sala-Llonch, R., Arenaza-Urquijo, E.M., Valls-Pedret, C., Vidal-Piñeiro, D., Bargalló, N., Junqué, C., and Bartrés-Faz, D. (2012). Dynamic functional reorganizations and relationship with working memory performance in healthy aging. Front. Hum. Neurosci. 6, 152.10.3389/fnhum.2012.00152Search in Google Scholar PubMed PubMed Central

Salek, Y., Anderson, N.D., and Sergio, L. (2011). Mild cognitive impairment is associated with impaired visual-motor planning when visual stimuli and actions are incongruent. Eur. Neurol. 66, 283–293.10.1159/000331049Search in Google Scholar PubMed

Salthouse, T.A. (1996). The processing-speed theory of adult age differences in cognition. Psychol. Rev. 103, 403–428.10.1037/0033-295X.103.3.403Search in Google Scholar PubMed

Salthouse, T.A. (2009). When does age-related cognitive decline begin? Neurobiol. Aging 30, 507–514.Search in Google Scholar

Saxton, J., Snitz, B.E., Lopez, O.L., Ives, D.G., Dunn, L.O., Fitzpatrick, A., Carlson, M.C., and DeKosky, S.T. (2009). Functional and cognitive criteria produce different rates of mild cognitive impairment and conversion to dementia. J. Neurol. Neurosur. Ps. 80, 737–743.10.1136/jnnp.2008.160705Search in Google Scholar PubMed PubMed Central

Schroter, A., Mergl, R., Burger, K., Hampel, H., Möller, H.J., and Hegerl, U. (2003). Kinematic analysis of handwriting movements in patients with Alzheimer’s disease, mild cognitive impairment, depression and healthy subjects. Dement. Geriatr. Cogn. 15, 132–142.10.1159/000068484Search in Google Scholar

Schulz, R., Zimerman, M., Timmermann, J.E., Wessel, M.J., Gerloff, C., and Hummel, F.C. (2014). White matter integrity of motor connections related to training gains in healthy aging. Neurobiol. Aging 35, 1404–1411.10.1016/j.neurobiolaging.2013.11.024Search in Google Scholar

Seidler, R.D., Bernard, J.A., Burutolu, T.B., Fling, B.W., Gordon, M.T., Gwin, J.T., Kwak, Y., and Lipps, D.B. (2010). Motor control and aging: links to age–related brain structural, functional, and biochemical effects. Neurosci Biobehav. R. 34, 721–733.10.1016/j.neubiorev.2009.10.005Search in Google Scholar

Shea, C.H., Park, J.H., and Braden, H.W. (2006). Age-related effects in sequential motor learning. Phys. Ther. 86, 478–488.10.1093/ptj/86.4.478Search in Google Scholar

Simon, J.R., Vaidya, C.J., Howard, J.H., and Howard, D.V. (2012a). The effects of aging on the neural basis of implicit associative learning in a probabilistic triplets learning task. J. Cogn. Neurosci. 24, 451–463.10.1162/jocn_a_00116Search in Google Scholar

Simon, S.S., Yokomizo, J.E., and Bottino, C.M. (2012b). Cognitive intervention in amnestic mild cognitive impairment: a systematic review. Neurosci. Biobehav. R. 36, 1163–1178.10.1016/j.neubiorev.2012.01.007Search in Google Scholar

Skoog, I., Nilsson, L., Persson, G., Lernfelt, B., Landahl, S., Palmertz, B., Andreasson, L.A., Odén, A., and Svanborg, A. (1996). 15-Year longitudinal study of blood pressure and dementia. Lancet 347, 1141–1145.10.1016/S0140-6736(96)90608-XSearch in Google Scholar

Sohn, W.S., Yoo, K., Na, D.L., and Jeong, Y. (2014). Progressive changes in hippocampal resting-state connectivity across cognitive impairment: a cross-sectional study from normal to Alzheimer disease. Alz. Dis. Assoc. Dis. 28, 239–246.10.1097/WAD.0000000000000027Search in Google Scholar PubMed

Solesio-Jofre, E., Serbruyns, L., Woolley, D.G., Mantini, D., Beets, I.A., and Swinnen, S.P. (2014). Aging effects on the resting state motor network and interlimb coordination. Hum. Brain Mapp. 35, 3945–3961.10.1002/hbm.22450Search in Google Scholar PubMed PubMed Central

Sosnoff, J.J. and Newell, K.M. (2006). Are age-related increases in force variability due to decrements in strength? Exp. Brain Res. 174, 86–94.10.1007/s00221-006-0422-xSearch in Google Scholar PubMed

Spencer, R.M., Gouw, A.M., and Ivry, R.B. (2007). Age-related decline of sleep-dependent consolidation. Learn. Memory 14, 480–484.10.1101/lm.569407Search in Google Scholar

Sterr, A. and Dean, P. (2008). Neural correlates of movement preparation in healthy ageing. Eur. J. Neurosci. 27, 254–260.10.1111/j.1460-9568.2007.05975.xSearch in Google Scholar

Suzuki, T., Shimada, H., Makizako, H., Doi, T., Yoshida, D., Tsutsumimoto, K., Anan, Y., Uemura, K., Lee, S., and Park, H. (2012). Effects of multicomponent exercise on cognitive function in older adults with amnestic mild cognitive impairment: a randomized controlled trial. BMC Neurol. 12, 128.10.1186/1471-2377-12-128Search in Google Scholar

Suzuki, T., Shimada, H., Makizako, H., Doi, T., Yoshida, D., Ito, K., Shimokata, H., Washimi, Y., Endo, H., and Kato, T. (2013). A randomized controlled trial of multicomponent exercise in older adults with mild cognitive impairment. PloS One 8, e61483.10.1371/journal.pone.0061483Search in Google Scholar

Tam, C.W., Lam, L.C., Lui, V.W., Chan, W.C., Chan, S.S., Chiu, H.F., and Chan, W.M. (2008). Clinical correlates of functional performance in community-dwelling Chinese older persons with mild cognitive impairment. Int. Psychogeriatr. 20, 1059–1070.10.1017/S1041610208007345Search in Google Scholar

Tangen, G.G., Engedal, K., Bergland, A., Moger, T.A., and Mengshoel, A.M. (2014). Relationships between balance and cognition in patients with subjective cognitive impairment, mild cognitive impairment, and Alzheimer disease. Phys. Ther. 94, 1123–1134.10.2522/ptj.20130298Search in Google Scholar

Tanigawa, T., Takechi, H., Arai, H., Yamada, M., Nishiguchi, S., and Aoyama, T. (2014). Effect of physical activity on memory function in older adults with mild Alzheimer’s disease and mild cognitive impairment. Geriatr. Gerontol. Int. 14, 758–762.10.1111/ggi.12159Search in Google Scholar

Tierney, M.C., Szalai, J.P., Snow, W.G., Fisher, R.H., Nores, A., Nadon, G., Dunn, E., and George-Hyslop, P.S. (1996). Prediction of probable Alzheimer’s disease in memory-impaired patients: a prospective longitudinal study. Neurology 46, 661–665.10.1212/WNL.46.3.661Search in Google Scholar

Trewartha, K.M., Endo, A., Li, K.Z., and Penhune, V.B. (2009). Examining prepotent response suppression in aging: a kinematic analysis. Psychol Aging 24, 450–461.10.1037/a0015498Search in Google Scholar

Troncoso, J.C., Martin, L.J., Dal Forno, G., and Kawas, C.H. (1996). Neuropathology in controls and demented subjects from the Baltimore Longitudinal Study of Aging. Neurobiol. Aging 17, 365–371.10.1016/0197-4580(96)00028-0Search in Google Scholar

Tseng, B.Y., Cullum, C.M., and Zhang, R. (2014). Older adults with amnestic mild cognitive impairment exhibit exacerbated gait slowing under dual-task challenges. Curr. Alzheimer Res. 11, 494–500.10.2174/1567205011666140505110828Search in Google Scholar PubMed PubMed Central

Vallesi, A. and Stuss, D.T. (2010). Excessive sub-threshold motor preparation for non-target stimuli in normal aging. NeuroImage 50, 1251–1257.10.1016/j.neuroimage.2010.01.022Search in Google Scholar PubMed

Verghese, J., Robbins, M., Holtzer, R., Zimmerman, M., Wang, C., Xue, X., and Lipton, R.B. (2008). Gait dysfunction in mild cognitive impairment syndromes. J. Am. Geriatr. Soc. 56, 1244–1251.10.1111/j.1532-5415.2008.01758.xSearch in Google Scholar PubMed PubMed Central

Verwey, W.B. (2010). Diminished motor skill development in elderly: indications for limited motor chunk use. Acta Psychol. 134, 206–214.10.1016/j.actpsy.2010.02.001Search in Google Scholar PubMed

Voelcker-Rehage, C. (2008). Motor-skill learning in older adults – a review of studies on age-related differences. Eur. Rev. Aging Phys. A 5, 5–16.10.1007/s11556-008-0030-9Search in Google Scholar

Voelcker-Rehage, C. and Willimczik, K. (2006). Motor plasticity in a juggling task in older adults – a developmental study. Age Ageing 35, 422–427.10.1093/ageing/afl025Search in Google Scholar PubMed

Wadley, V.G., Okonkwo, O., Crowe, M., Vance, D., Elgin, J., Ball, K., and Owsley, C. (2009). Mild cognitive impairment and everyday function: an investigation of driving performance. J. Geriatr. Psych. Neur. 22, 87–94.10.1177/0891988708328215Search in Google Scholar PubMed PubMed Central

Wang, Z., Liang, P., Jia, X., Qi, Z., Yu, L., Yang, Y., Zhou, W., Lu, J., and Li, K. (2011a). Baseline and longitudinal patterns of hippocampal connectivity in mild cognitive impairment: evidence from resting state fMRI. J. Neurol. Sci. 309, 79–85.10.1016/j.jns.2011.07.017Search in Google Scholar PubMed

Wang, Z., Yan, C., Zhao, C., Qi, Z., Zhou, W., Lu, J., He, Y., and Li, K. (2011b). Spatial patterns of intrinsic brain activity in mild cognitive impairment and Alzheimer’s disease: a resting-state functional MRI study. Hum. Brain Mapp. 32, 1720–1740.10.1002/hbm.21140Search in Google Scholar PubMed PubMed Central

Wang, Z., Liang, P., Jia, X., Jin, G., Song, H., Han, Y., Lu, J., and Li, K. (2012). The baseline and longitudinal changes of PCC connectivity in mild cognitive impairment: a combined structure and resting-state fMRI study. PLoS One 7, e36838.10.1371/journal.pone.0036838Search in Google Scholar PubMed PubMed Central

Wang, Y., Risacher, S.L., West, J.D., McDonald, B.C., MaGee, T.R., Farlow, M.R., Gao, S., O’Neill, D.P., and Saykin, A.J. (2013). Altered default mode network connectivity in older adults with cognitive complaints and amnestic mild cognitive impairment. J. Alzheimer’s Dis. 35, 751–760.10.3233/JAD-130080Search in Google Scholar PubMed PubMed Central

Weuve, J., Kang, J.H., Manson, J.E., Breteler, M.M., Ware, J.H., and Grodstein, F. (2004). Physical activity, including walking, and cognitive function in older women. J. Am. Med. Assoc. 292, 1454–1461.10.1001/jama.292.12.1454Search in Google Scholar PubMed

Willis, S.L., Tennstedt, S.L., Marsiske, M., Ball, K., Elias, J., Koepke, K.M., Morris, J.N., Rebok, G..W., Unverzagt, F.W., Stoddard, A.M., et al. (2006). Long-term effects of cognitive training on everyday functional outcomes in older adults. J. Am. Med. Assoc. 296, 2805–2814.10.1001/jama.296.23.2805Search in Google Scholar PubMed PubMed Central

Wilson, R.S., Beckett, L.A., Bennett, D.A., Albert, M.S., and Evans, D.A. (1999). Change in cognitive function in older persons from a community population: relation to age and Alzheimer disease. Arch. Neurol. 56, 1274–1279.10.1001/archneur.56.10.1274Search in Google Scholar PubMed

Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L.O., Nordberg, A., Bäckman, L., Albert, M., Almkvist, O., et al. (2004). Mild cognitive impairment – beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. J. Intern. Med. 256, 240–246.10.1111/j.1365-2796.2004.01380.xSearch in Google Scholar PubMed

Wolf, P.A., D’Agostino, R.B., Belanger, A.J., and Kannel, W.B. (1991). Probability of stroke: a risk profile from the Framingham Study. Stroke 22, 312–318.10.1161/01.STR.22.3.312Search in Google Scholar PubMed

Wolf, H., Hensel, A., Kruggel, F., Riedel-Heller, S.G., Arendt, T., Wahlund, L.O., and Gertz, H.J. (2004). Structural correlates of mild cognitive impairment. Neurobiol. Aging 25, 913–924.10.1016/j.neurobiolaging.2003.08.006Search in Google Scholar PubMed

Wu, C.C., Mungas, D., Petkov, C.I., Eberling, J.L., Zrelak, P.A., Buonocore, M.H., Brunberg, J.A., Haan, M.N., and Jagust, W.J. (2002). Structural brain changes and cognitive impairment in a community sample: the SALSA Study. Neurology 59, 383–391.10.1212/WNL.59.3.383Search in Google Scholar

Yaffe, K., Barnes, D., Nevitt, M., Lui, L.Y., and Covinsky, K. (2001). A prospective study of physical activity and cognitive decline in elderly women: women who walk. Arch Intern. Med. 161, 1703–1708.10.1001/archinte.161.14.1703Search in Google Scholar PubMed

Yan, J.H., Rountree, S., Massman, P., Doody, R.S., and Li, H. (2008). Alzheimer’s disease and mild cognitive impairment deteriorate fine movement control. J. Psychiatr. Res. 42, 1203–1212.10.1016/j.jpsychires.2008.01.006Search in Google Scholar PubMed

Yan, J.H., Abernethy, B., and Li, X. (2010). The effects of ageing and cognitive impairment on on-line and off-line motor learning. Appl. Cogn. Psychol. 24, 200–212.10.1002/acp.1551Search in Google Scholar

Yan, H., Zhang, Y., Chen, H., Wang, Y., and Liu, Y. (2013). Altered effective connectivity of the default mode network in resting-state amnestic type mild cognitive impairment. J. Int. Neuropsych. Soc. 19, 400–409.10.1017/S1355617712001580Search in Google Scholar

Yesavage, J.A., O’Hara, R., Kraemer, H., Noda, A., Taylor, J.L., Ferris, S., Gély-Nargeotd, M.C., Rosen, A., Friedman, L., Sheikh, J., et al. (2002). Modeling the prevalence and incidence of Alzheimer’s disease and mild cognitive impairment. J. Psychiatr. Res. 36, 281–286.10.1016/S0022-3956(02)00020-1Search in Google Scholar

Zelinski, E.M. and Burnight, K.P. (1997). Sixteen-year longitudinal and time lag changes in memory and cognition in older adults. Psychol. Aging 12, 503–513.10.1037/0882-7974.12.3.503Search in Google Scholar

Zhang, Z., Liu, Y., Jiang, T., Zhou, B., An, N., Dai, H., Wang, P., Niu, Y., Wang, L., and Zhang, X. (2012). Altered spontaneous activity in Alzheimer’s disease and mild cognitive impairment revealed by regional homogeneity. NeuroImage 59, 1429–1440.10.1016/j.neuroimage.2011.08.049Search in Google Scholar PubMed

Zhang, Z., Zheng, H., Liang, K., Wang, H., Kong, S., Hu, J., Wu, F., and Sun, G. (2015). Functional degeneration in dorsal and ventral attention systems in amnestic mild cognitive impairment and Alzheimer’s disease: an fMRI study. Neurosci. Lett. 585, 160–165.10.1016/j.neulet.2014.11.050Search in Google Scholar PubMed

Zhou, Y., Dougherty, J.H., Hubner, K.F., Bai, B., Cannon, R.L., and Hutson, R.K. (2008). Abnormal connectivity in the posterior cingulate and hippocampus in early Alzheimer’s disease and mild cognitive impairment. Alzheimer’s Dement. 4, 265–270.10.1016/j.jalz.2008.04.006Search in Google Scholar PubMed

Zhou, B., Liu, Y., Zhang, Z., An, N., Yao, H., Wang, P., Wang, L., Zhang, X., and Jiang, T. (2013). Impaired functional connectivity of the thalamus in Alzheimer’s disease and mild cognitive impairment: a resting-state fMRI study. Curr. Alzheimer Res. 10, 754–766.10.2174/15672050113109990146Search in Google Scholar PubMed

Ziegler, D.A., Piguet, O., Salat, D.H., Prince, K., Connally, E., and Corkin, S. (2010). Cognition in healthy aging is related to regional white matter integrity, but not cortical thickness. Neurobiol. Aging 31, 1912–1926.10.1016/j.neurobiolaging.2008.10.015Search in Google Scholar PubMed PubMed Central

Zimmerman, M.E., Brickman, A.M., Paul, R.H., Grieve, S.M., Tate, D.F., Gunstad, J., Cohen, R.A., Aloia, M.S., Williams, L.M., Clark, C.R., et al. (2006). The relationship between frontal gray matter volume and cognition varies across the healthy adult lifespan. Am. J. Geriatr. Psychiat. 14, 823–833.10.1097/01.JGP.0000238502.40963.acSearch in Google Scholar PubMed

Received: 2015-5-16
Accepted: 2015-8-3
Published Online: 2015-9-30
Published in Print: 2016-2-1

©2016 by De Gruyter

Downloaded on 31.5.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2015-0020/html
Scroll to top button