Skip to main content
Log in

Plasticity and tissue regenerative potential of bone marrow-derived cells

  • Review
  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

Diverse in vivo studies have suggested that adult stem cells might have the ability to differentiate into cell types other than those of the tissues in which they reside or derive during embryonic development. This idea of stem cell “plasticity” has led investigators to hypothesize that, similar to embryonic stem cells, adult stem cells might have unlimited tissue regenerative potential in vivo, and therefore, broad and novel therapeutic applications. Since the beginning of these observations, our group has critically examined these exciting possibilities for mouse bone marrow-derived cells by taking advantage of well-characterized models of tissue regeneration, Cre/lox technology, and novel stem cell isolation protocols. Our experimental evidence does not support plasticity of hematopoietic stem cells as a frequent physiological event, but rather indicates that cell fusion could account for reported cases of hematopoietic stem cell plasticity or “transdifferentiation” in vivo. Our studies highlight the need for meticulous technical controls during the isolation, transplantation, tracking, and analysis of bone marrow-derived cells during in vivo studies on plasticity. Further studies will be necessary to better define experimental conditions and criteria to unequivocally prove or reject plasticity in vivo. In this review, we focus on results from several studies from our laboratory, and discuss their conclusions and implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gilbert SF. In: Developmental Biology. 6th ed. Massachusetts: Sutherland, 2000.

    Google Scholar 

  2. Evans MJ, Kaufman, MH. Nature 1981;5819:154–156.

    Article  Google Scholar 

  3. Martin GR. Proc Natl Acad Sci USA 1981;12:7634–7638.

    Article  Google Scholar 

  4. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Science 1998;5391:1145–1147.

    Article  Google Scholar 

  5. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Nat Biotechnol 2000;4:399–404.

    Google Scholar 

  6. Graf T. Blood 2002;9:3089–3101.

    Article  Google Scholar 

  7. Blau HM. Annu Rev Biochem 1992;61:1213–1230.

    Article  PubMed  CAS  Google Scholar 

  8. Slack JM, Tosh D. Curr Opin Genet Dev 2001;5:581–586.

    Article  Google Scholar 

  9. Blau HM. Cell 2001;105:829–841.

    Article  PubMed  CAS  Google Scholar 

  10. Krause DS. Gene Ther 2002;11:754–758.

    Article  Google Scholar 

  11. Terada N, Hamazaki T, Oka M, et al. Nature 2002;6880:542–545.

    Article  Google Scholar 

  12. Ying QL, Nichols J, Evans EP, Smith AG. Nature 2002;6880:545–548.

    Article  Google Scholar 

  13. Goodell MA. Curr Opin Hematol 2003;3:208–213.

    Article  Google Scholar 

  14. Anderson DJ, Gage FH, Weissman IL. Nat Med 2001;4:393–395.

    Article  Google Scholar 

  15. Weissman IL, Anderson DJ, Gage F. Annu Rev Cell Dev Biol 2001;17:387–403.

    Article  PubMed  CAS  Google Scholar 

  16. Jackson KA, Mi T, Goodell MA. Proc Natl Acad Sci USA 1999;25:14482–14486.

    Article  Google Scholar 

  17. McKinney-Freeman SL, Jackson KA, Camargo FD, Ferrari G, Mavilio F, Goodell MA. Proc Natl Acad Sci USA 2002;3:1341–1346.

    Article  CAS  Google Scholar 

  18. Jackson KA, Majka SM, Wang H, et al. J Clin Invest 2001;11:1395–1402.

    Article  Google Scholar 

  19. Camargo FD, Green R, Capetenaki Y, Jackson KA, Goodell MA. Nat Med 2003;12:1520–1527.

    Article  CAS  Google Scholar 

  20. Castro RF, Jackson, KA, Goodell MA, Robertson CS, Liu H, Shine HD. Science 2002;5585:1299.

    Article  Google Scholar 

  21. Camargo FD, Finegold M, Goodell MA. J Clin Invest 2004;113:1266–1270.

    Article  PubMed  CAS  Google Scholar 

  22. Wagers AJ, Weissman IL. Cell 2004;5:639–648.

    Article  Google Scholar 

  23. Camargo FD, Chambers SM, Goodell MA. Cell Prolif 2004;37:55–65.

    Article  PubMed  CAS  Google Scholar 

  24. Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. Science 1999;5401:534–537.

    Article  Google Scholar 

  25. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. J Exp Med 1996;4:1797–1806.

    Article  Google Scholar 

  26. Goodell MA, Rosenzweig M, Kim H, et al. Nat Med 1997;12:1337–1345.

    Article  Google Scholar 

  27. Ferrari G, Cusella-De Angelis G, Coletta M, et al. Science 1998;5356:1528–1530.

    Article  Google Scholar 

  28. Murry CE, Soonpaa MH, Reinecke H, et al. Nature 2004;428:664–668.

    Article  PubMed  CAS  Google Scholar 

  29. Brazelton TR, Rossi FM, Keshet GI, Blau HM. Science 2000;5497:1775–1779.

    Article  Google Scholar 

  30. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. Science 2000;5497:1779–1782.

    Article  Google Scholar 

  31. Priller J, Persons DA, Klett FF, Kempermann G, Kreutzberg GW, Dirnagl U. J Cell Biol 2001;5:733–738.

    Article  Google Scholar 

  32. Gussoni E, Soneoka Y, Strickland CD, et al. Nature 1999;6751:390–394.

    Google Scholar 

  33. LaBarge MA, Blau HM. Cell 2002;4:589–601.

    Article  Google Scholar 

  34. Lagasse E, Connors H, Al-Dhalimy M, et al. Nat Med 2000;6:1212–1213.

    Article  CAS  Google Scholar 

  35. Wang X, Willenbring H, Akkari Y, et al. Nature 2003;6934:897–901.

    Article  CAS  Google Scholar 

  36. Vassilopoulos G, Wang PR, Russell DW. Nature 2003;6934:901–904.

    Article  CAS  Google Scholar 

  37. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, et al. Nature 2003;6961:968–973.

    Article  CAS  Google Scholar 

  38. Ye M, Iwasaki H, Laiosa CV, et al. Immunity 2003;5:689–699.

    Article  Google Scholar 

  39. Willenbring H, Bailey AS, Foster M, et al. Nat Med 2004;7:744–748.

    Article  CAS  Google Scholar 

  40. Wurmser AE, Nakashima K, Summers RG, et al. Nature 2004;6997:350–356.

    Article  CAS  Google Scholar 

  41. Harris RG, Herzog EL, Bruscia EM, Grove JE, Van Arnam JS, Krause DS. Science 2004;5680:90–93.

    Article  CAS  Google Scholar 

  42. Jackson KA, Snyder DS, Goodell MA. Stem Cells 2004;2:180–187.

    Article  Google Scholar 

  43. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Nature 2002;6893:41–49.

    Article  CAS  Google Scholar 

  44. Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM. Exp. Hematol 2002;8:896–904.

    Article  Google Scholar 

  45. Asakura A, Komaki M, Rudnicki M. Differentiation 2001;4,5:245–253.

    Article  Google Scholar 

  46. Daley GQ, Goodell MA, Snyder EY. Hematology (Am Soc Hematol Educ Program) 2003;1:398–418.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret A. Goodell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieyra, D.S., Jackson, K.A. & Goodell, M.A. Plasticity and tissue regenerative potential of bone marrow-derived cells. Stem Cell Rev 1, 65–69 (2005). https://doi.org/10.1385/SCR:1:1:065

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/SCR:1:1:065

Index Entries

Navigation