Skip to main content
Log in

The neurobiological context of autism

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Autistic disorder (AD) is a complex neuropsychiatric disorder of neurodevelopmental origin, where multiple genetic and environmental factors may interact, resulting in a clinical continuum. The genetic component is best described by a multilocus model that takes into account epistatic interactions between several susceptibility genes. In the past ten years enormous progress has been made in identifying chromosomal regions in linkage with AD, but moving from chromosomal regions to candidate genes has proven to be tremendously difficult. Neuroanatomical findings point to early dysgenetic events taking place in the cerebral cortex, cerebellum, and brainstem. At the cellular level, disease mechanisms may include altered cell migration, increased cell proliferation, decreased cell death, or altered synapse elimination. Neurochemical findings in AD point to involvement of multiple neurotransmitter systems. The serotoninergic system has been intensively investigated in AD, but other neurotransmitter systems (e.g., the GABAergic and the cholinergic system) are also coming under closer scrutiny. The role of environmental factors is still poorly characterized. It is not clear yet whether environmental factors act merely as precipitating agents, always requiring an underlying genetic liability, or whether they represent an essential component of a pathogenetic process where genetic liability alone does not lead to the full-blown autism phenotype. A third potential player in the pathogenesis of autism, in addition to genetic and environmental factors, is developmental variability due to “random” factors, e.g. small fluctuations of gene expression and complex, non-deterministic interactions between genes during brain development. These considerations suggest that a non-deterministic conceptual framework is highly appropriate for autism research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Psychiatric Association (1994) Diagnostic and Statistical Manual of Mental Disorders, 4th Edition.

  2. Kanner, L. (1943) Autistic disturbances of affective contact. Nervous Child 2, 217–250.

    Google Scholar 

  3. Asperger, H. (1944) Die “autistischen Psychopathen” im Kindesalter. Archiv für Psychiatrie und Nervenkrankheiten 117, 76–136.

    Article  Google Scholar 

  4. Frith, U. (1991) Autism and Asperger syndrome, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  5. Wing, L. (1981) Asperger’s syndrome: a clinical account. Psychol. Med. 11, 115–129.

    Article  PubMed  CAS  Google Scholar 

  6. Lord, C. and Schopler, E. (1988) in Diagnosis and Assessment in Autism (Schopler, E. and Mesibov, G., eds.), pp. 167–181, Plenum Press, New York.

    Google Scholar 

  7. Bienvenu, T., Poirier, K., Friocourt, G., et al. (2002) ARX, a novel Prd-class-homeobox gene highly expressed in the telencephalon, is mutated in X-linked mental retardation. Hum. Mol. Genet. 11, 981–991.

    Article  PubMed  CAS  Google Scholar 

  8. Chakrabarti, S. and Fombonne, E. (2001) Pervasive developmental disorders in preschool children. J. Am. Med. Associat. 285, 3093–3099.

    Article  CAS  Google Scholar 

  9. Fombonne, E. (2001) Is there an epidemic of autism? Pediatrics 107, 411–412.

    Article  PubMed  CAS  Google Scholar 

  10. Madsen, K. M., Hviid, A., Vestergaard, M., Schendel, D., Wohlfahrt, J., Thorsen, P., Olsen, J., and Melbye, M. (2002) A population-based study of measles, mumps, and rubella vaccination and autism. New Engl. J. Med. 347, 1477–1482.

    Article  PubMed  Google Scholar 

  11. Miles, J. H., Hadden, L. L., Takahashi, T. N., and Hillman, R. E. (2000) Head circumference is an independent clinical finding associated with autism. Am. J. Med. Genet. 95, 339–350.

    Article  PubMed  CAS  Google Scholar 

  12. Wing, L. (1997) The autistic spectrum. Lancet 350, 1761–1766.

    Article  PubMed  CAS  Google Scholar 

  13. Miles, J. H. and Hillman, R. E. (2000) Value of a clinical morphology examination in autism. Am. J. Med. Genet. 91, 245–253.

    Article  PubMed  CAS  Google Scholar 

  14. Smalley, S. L. (1997) Genetic influences in childhood-onset psychiatric disorders: autism and attention-deficit/hyperactivity disorder. Am. J. Hum. Genet. 60, 1276–1282.

    PubMed  CAS  Google Scholar 

  15. Davidovitch, M., Glick, L., Holtzman, G., Tirosh, E., and Safir, M. P. (2000) Developmental regression in autism: maternal perception. J. Autism Dev. Disord. 30, 113–119.

    Article  PubMed  CAS  Google Scholar 

  16. Rapin, I. (1995) Autistic regression and disintegrative disorder: how important the role of epilepsy? Semin. Pediatr. Neurol. 2, 278–285.

    Article  PubMed  CAS  Google Scholar 

  17. Shinnar, S., Rapin, I., Arnold, S., Tuchman, R. F., Shulman, L., Ballaban-Gil, K., Maw, M., Deuel, R. K., and Volkmar, F. R. (2001) Language regression in childhood. Pediatr. Neurol. 24, 183–189.

    Article  PubMed  CAS  Google Scholar 

  18. Rapin, I. and Katzman, R. (1998) Neurobiology of autism. Ann. Neurol. 43, 7–14.

    Article  PubMed  CAS  Google Scholar 

  19. Wakefield, A. J., Murch, S. H., Anthony, A., et al. (1998) Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet 351, 637–641.

    Article  PubMed  CAS  Google Scholar 

  20. Folstein, S. E. and Rosen-Sheidley, B. (2001) Genetics of autism: complex aetiology for a heterogeneous disorder. Nat. Rev. Genet. 2, 943–955.

    Article  PubMed  CAS  Google Scholar 

  21. McAdams, H. H. and Arkin, A. (1999) It’s a noisy business! Genetic regulation at the nanomolar scale. Trends Genetics 15, 65–69.

    Article  CAS  Google Scholar 

  22. McAdams, H. H. and Arkin, A. (1997) Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA 94, 814–819.

    Article  PubMed  CAS  Google Scholar 

  23. Fedoroff, N. and Fontana, W. (2002) Genetic networks. Small numbers of big molecules. Science 297, 1129–1131.

    Article  PubMed  CAS  Google Scholar 

  24. Brody, S. L., Yan, X. H., Wuerffel, M. K., Song, S. K., and Shapiro, S. D. (2000) Ciliogenesis and left-right axis defects in forkhead factor HFH-4-null mice. Am. J. Respir. Cell. Mol. Biol. 23, 45–51.

    PubMed  CAS  Google Scholar 

  25. Ghaziuddin, M., Zaccagnini, J., Tsai, L., and Elardo, S. (1999) Is megalencephaly specific to autism? J. Intell. Disab. Res. 43, 279–282.

    Article  Google Scholar 

  26. Hardan, A. Y., Minshew, N., Mallikarjuhn, M., and Keshavan, M. S. (2001) Brain volume in autism. J. Child. Neurol. 16, 421–424.

    PubMed  CAS  Google Scholar 

  27. Aylward, E. H., Minshew, N. J., Goldstein, G., Honeycutt, N. A., Augustine, A. M., Yates, K. O., Barta, P. E., and Pearlson, G. D. (1999) MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology 53, 53.

    Google Scholar 

  28. Saitoh, O., Karns, C. M., and Courchesne, E. (2001) Development of the hippocampal formation from 2 to 42 years: MRI evidence of smaller area dentata in autism. Brain 124, 1317–1324.

    Article  PubMed  CAS  Google Scholar 

  29. Sears, L. L., Vest, C., Mohamed, S., Bailey, J., Ranson, B. J., and Piven, J. (1999) An MRI study of the basal ganglia in autism. Prog. Neuro-Psychopharmacol and Biol. Psychiat. 23, 613–624.

    Article  CAS  Google Scholar 

  30. Piven, J., Bailey, B. S., Ranson, B. J., and Arndt, S. (1997) An MRI study fo the corpus callosum in autism. Am. J. Psychiatry 154, 1051–1056.

    PubMed  CAS  Google Scholar 

  31. Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., and Roy, E. (2002) Minicolumnar pathology in autism. Neurology 58, 428–432.

    PubMed  Google Scholar 

  32. Chan, S., Kwong, K., Hodge, S., McGrath, L., Steele, S., Tager-Flusberg, H., and Harris, G. J. (2002) A voxel-based morphometric study in autism and language impairment. Ann. Neurol. in press.

  33. Courchesne, E., Young-Courchesne, R., Press, G. A., Hesselink, J. R., and Jernigan, T. L. (1988) Hypoplasia of cerebellar vermal lobules VI and VII in autism. New Engl. J. Med. 318, 1349–1354.

    Article  PubMed  CAS  Google Scholar 

  34. Deb, S. and Thompson, B. (1998) Neuroimaging in autism. Br. J. Psychiat. 173, 299–302.

    Article  CAS  Google Scholar 

  35. Sultan, F. (2002) Analysis of mammalian brain architecture. Nature 415, 133–134.

    Article  PubMed  CAS  Google Scholar 

  36. Rodier, P. M., Ingram, J. L., Tisdale, B., Nelson, S. and Romano, J. (1996) Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J. Comp. Neurol. 370, 247–261.

    Article  PubMed  CAS  Google Scholar 

  37. Ingram, J. L., Stodgell, C. J., Hyman, S. L., Figlewicz, D. A., Weitkamp, L. R., and Rodier, P. M. (2000) Discovery of allelic variants of HOXA1 and HOXB1: genetic susceptibility to autism spectrum disorders. Teratology 62, 393–405.

    Article  PubMed  CAS  Google Scholar 

  38. Hashimoto, T., Tayama, M., Murakawa, K., Yoshimoto, T., Miyazaki, M., Harada, M., and Kuroda, Y. (1995) Development of the brain-stem and cerebellum in autistic patients. J. Autism Develop. Dis. 25, 1–18.

    Article  CAS  Google Scholar 

  39. Courchesne, E., Karns, C. M., Davis, H. R., et al. (2001) Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 57, 245–254.

    PubMed  CAS  Google Scholar 

  40. Bolton, P. F. and Griffiths, P. D. (1997) Association of tuberous sclerosis of temporal lobes with autism and atypical autism. Lancet 349, 392–395.

    Article  PubMed  CAS  Google Scholar 

  41. Ballaban-Gil, K. and Tuchman, R. (2000) Epilepsy and epileptiform EEG: association with autism and language disorders. Ment. Retard. Dev. Disabil. Res. Rev. 6, 300–308.

    Article  PubMed  CAS  Google Scholar 

  42. Lewine, J. D., Andrews, R., Chez, M., et al. (1999) Magnetoencephalographic patters of epileptiform activity in children with regressive autism spectrum disorders. Pediatrics 104, 405–418.

    Article  PubMed  CAS  Google Scholar 

  43. Rumsey, J. M., Duara, R., Grady, C., Rapoport, J. L., Margolin, R. A., Rapoport, S. I., and Cutler, N. R. (1985) Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography. Arch. Gen. Psychiatry 42, 448–455.

    PubMed  CAS  Google Scholar 

  44. Horwitz, B., Rumsey, J. M., Grady, C. L., and Rapoport, S. I. (1988) The cerebral metabolic landscape in autism. Intercorrelations of regional glucose utilization. Arch. Neurol. 45, 749–755.

    PubMed  CAS  Google Scholar 

  45. Asano, E., Chugani, D. C., Muzik, O., Behen, M., Janisse, J., Rothermel, R., Mangner, T. J., Chakraborty, P. K., and Chugani, H. T. (2001) Autism in tuberous sclerosis complex is related to both cortical and subcortical dysfunction. Neurology 57, 1269–1277.

    PubMed  CAS  Google Scholar 

  46. Chugani, D. C., Muzik, O., Behen, M., Rothermel, R., Janisse, J. J., and Chugani, H. T. (1999) Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann. Neurol. 45, 287–295.

    Article  PubMed  CAS  Google Scholar 

  47. Bennett-Clarke, C. A., Chiaia, N. L., Crissman, R. S., and Rhoades, R. W. (1991) The source of the transient serotoninergic input to the developing visual and somatosensory cortices in rat. Neuroscience 43, 163–183.

    Article  PubMed  CAS  Google Scholar 

  48. Lebrand, C., Cases, O., Adelbrecht, C., Doye, A., Alvarez, C., El Mestikawy, S., Seif, I., and Gaspar, P. (1996) Transient uptake and storage of serotonin in developing thalamic neurons. Neuron 17, 823–835.

    Article  PubMed  CAS  Google Scholar 

  49. Goldman-Rakic, P. S. and Brown, R. M. (1982) Postnatal development of monoamine content and synthesis in the cerebral cortex of rhesus monkeys. Dev. Brain Res. 4, 339–349.

    Article  CAS  Google Scholar 

  50. Chugani, D. C. (2002) Role of altered brain serotonin mechanisms in autism. Mol. Psychiatry 7 Suppl 2, 16–17.

    Article  Google Scholar 

  51. Huttenlocher, P. R. and Dabholkar, A. S. (1997) Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387, 167–178.

    Article  PubMed  CAS  Google Scholar 

  52. Kemper, T. L. and Bauman, M. L. (1993) The contribution of neuropathologic studies to the understanding of autism. Neurol. Clin. 11, 175–187.

    PubMed  CAS  Google Scholar 

  53. Bailey, A., Luthert, P., Dean, A., Harding, B., Janota, I., Montgomery, M., Rutter, M. and and Lantos, P. (1998) A clinicopathological study of autism. Brain 121, 889–905.

    Article  PubMed  Google Scholar 

  54. Fatemi, S. H., Halt, A. R., Realmuto, G. R., Earle, J., Kist, D. A., Thuras, P. and Merz, A. (2002) Purkinje cell size reduced in cerebellum of patients with autism. Cell Mol. Neurobiol. 22, 171–175.

    Article  PubMed  Google Scholar 

  55. Tran, K. D., Smutzer, G. S., Doty, R. L. and Arnold, S. E. (1998) Reduced Purkinje cell size in the cerebellar vermis of elderly patients with schizophrenia. Am. J. Psychiatry 155, 1288–12890.

    PubMed  CAS  Google Scholar 

  56. Bailey, A., Luthert, P., Dean, A., Harding, B., Janota, I., Montgomery, M., Rutter, M. and Lantos, P. (1998) A clinicopathological study of autism. Brain 121, 889–905.

    Article  PubMed  Google Scholar 

  57. Ahlsen, G., Rosengren, L., Belfrage, M., Palm, A., Haglid, K., Hamberger, A., and Gillberg, C. (1993) Glial fibrillary acid protein in the cerebrospinal fluid of children with autism and other neuropsychiatric disorders. Biol. Psychiatry 33, 734–743.

    Article  PubMed  CAS  Google Scholar 

  58. Nelson, K. B., Grether, J. K., Croen, L. A., Dambrosia, J. M., Dickens, B. F., Jelliffe, L. L., Hansen, R. L., and Phillips, T. M. (2001) Neuropeptides and neurotrophins in neonatal blood of children with autism or mental retardation. Ann. Neurol. 49, 587–606.

    Article  Google Scholar 

  59. Cheng, Y., Tao, Y., Black, I. B., and DiCicco-Bloom, E. (2001) A single peripheral injection of basic fibroblast growth factor (bFGF) stimulates granule cell production and increases cerebellar growth in newborn rats. J. Neurobiol. 46, 220–229.

    Article  PubMed  CAS  Google Scholar 

  60. Ritvo, E. R., Spence, M. A., Freeman, B. J., Mason-Brothers, A., Mo, A., and Marazita, M. L. (1985) Evidence for autosomal recessive inheritance in 46 families with multiple incidences of autism. Evidence for autosomal recessive inheritance in 46 families with multiple incidences of autism. Am. J. Psychiatry 142, 187–192.

    PubMed  CAS  Google Scholar 

  61. Lamb, J. A., Moore, J., Bailey, A., and Monaco, A. P. (2000) Autism: recent molecular genetic advances. Hum. Mol. Genet. 9, 861–868.

    Article  PubMed  CAS  Google Scholar 

  62. Cook, E. H. (2001) Genetics of autism. Child Adolesc. Psychiatr. Clin. N. Am. 10, 333–350.

    PubMed  Google Scholar 

  63. Wolf, U. (1997) Identical mutations and phenotypic variation. Hum. Genet. 100, 305–321.

    Article  PubMed  CAS  Google Scholar 

  64. Van Slegtenhorst, M., Nellist, M., Nagelkerken, B., et al. (1998) Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum. Mol. Genet. 7, 1053–1057.

    Article  PubMed  Google Scholar 

  65. Plomin, R. (1999) Genetics and general cognitive ability. Nature 402, C25-C29.

    Article  PubMed  CAS  Google Scholar 

  66. Caviness, V. S. (2001) research strategies in autism: a story with two sides. Curr. Opin. Neurol. 14, 141–143.

    Article  PubMed  CAS  Google Scholar 

  67. Kirov, G., Murphy, K. C., Arranz, M. J., et al. (1998) Low activity allele of catechol-O-methyltransferase gene associated with rapid cycling bipolar disorder. Mol. Psychiatry 3, 342–345.

    Article  PubMed  CAS  Google Scholar 

  68. Schain, R. J. and and Friedman, D. X. (1961) Studies on 5-hydroxyindole metabolism in autistic and other mentally retared children. J. Pediatr. 58, 315–320.

    Article  PubMed  CAS  Google Scholar 

  69. Posey, D. J. and McDougle, C. J. (2001) The pathophysiology and treatment of autism. Curr. Psychiatry Rep. 3, 101–108.

    Article  PubMed  CAS  Google Scholar 

  70. Anderson, G. M., Horne, W. C., Chatterjee, D., and Cohen, D. J. (1990) The hyperserotoninemia of autism. Ann. NY. Acad. Sci. 600, 331–340.

    Article  PubMed  CAS  Google Scholar 

  71. Piven, J., Tsai, G. C., Nehme, E., Coyle, J. T., Chase, G. A., and Folstein, S. E. (1991) Platelet serotonin, a possible marker for familial autism. J. Autism Dev. Disord. 21, 51–59.

    Article  PubMed  CAS  Google Scholar 

  72. Cook, E. H. and Leventhal, B. L. (1996) The serotonin system in autism. Curr. Opin. Pediatr. 8, 348–354.

    Article  PubMed  CAS  Google Scholar 

  73. McBride, P. A., Anderson, G. M., Hertzig, M. E., Snow, M. E., Thompson, S. M., Khait, V. D., Shapiro, T. and Cohen, D. J. (1998) Effects of diagnosis, race, and puberty on platelet serotonin levels in autism and mental retardation. J. Am. Acad. Child Adolesc. Psychiatry 37, 767–776.

    Article  PubMed  CAS  Google Scholar 

  74. Persico, A. M., Pascucci, T., Puglisi-Allegra, S., et al. (2002) Serotonin transporter gene promoter variants do not explain the hyperserotoninemia in autistic children. Mol. Psychiat. 7, 795–800.

    Article  CAS  Google Scholar 

  75. Anderson, G. M., Freedman, D. X., Cohen, D. J., et al. (1987) Whole blood serotonin in autistic and normal subjects. J. Child Psychol. Psychiatry 28, 885–900.

    Article  PubMed  CAS  Google Scholar 

  76. Ober, C., Abney, M., and McPeek, M. (2001) The genetic dissection of complex traits in a founder population. Am. J. Hum. Gene. 69, 1068–1079.

    Article  CAS  Google Scholar 

  77. Croonenberghs, J., Delmeire, L., Verkerk, R., et al. (2000) Peripheral markers of serotonergic and noradrenergic function in post- pubertal, caucasian males with autistic disorder. Neuropsychopharmacology 22, 275–283.

    Article  PubMed  CAS  Google Scholar 

  78. Marazziti, D., Muratori, F., Cesari, A., Masala, I., Baroni, S., Giannaccini, G., Dell’Osso, L., Cosenza, A., Pfanner, P., and Cassano, G. B. (2000) Increased density of the platelet serotonin transporter in autism. Pharmacopsychiatry 33, 165–168.

    Article  PubMed  CAS  Google Scholar 

  79. Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., Benjamin, J., Muller, C. R., Hamer, D. H., and Murphy, D. L. (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274, 1527–1531.

    Article  PubMed  CAS  Google Scholar 

  80. Cook, E. H. J., Courchesne, R., Lord, C., Cox, N. J., Yan, S., Lincoln, A., Haas, R., Courchesne, E., and Leventhal, B. L. (1997) Evidence of linkage between the serotonin transporter and autistic disorder. Mol. Psychiatry 2, 247–250.

    Article  PubMed  Google Scholar 

  81. Klauck, S. M., Poustka, F., Benner, A., Lesch, K. P., and Poutska, A. (1997) Serotonin transporter (5-HTT) gene variants associated with autism? Hum. Mol. Genet. 6, 2233–2238.

    Article  PubMed  CAS  Google Scholar 

  82. Betancur, C., Corbex, M., Spielewoy, C., et al. (2002) Serotonin transporter gene polymorphisms and hyperserotonemia in autistic disorder. Mol. Psychiatry 7, 67–71.

    PubMed  CAS  Google Scholar 

  83. Anderson, G. M., Gutknecht, L., Cohen, D. J., Brailly-Tabard, S., Cohen, J. H., Ferrari, P., Roubertoux, P. L., and Tordjman, S. (2002) Serotonin transporter promoter variants in autism: functional effects and relationship to platelet hyperserotonemia. Mol. Psychiatry 7, 831–836.

    Article  PubMed  CAS  Google Scholar 

  84. Kim, S. J., Cox, N., Courchesne, R., Lord, C., Corsello, C., Akshoomoff, N., Guter, S., Leventhal, B. L., Courchesne, E., and Cook Jr., E. H. (2002) Transmission disequilibrium mapping at the serotonin transporter gene (SLC6A4) region in autistic disorder. Mol. Psychiatry 7, 278–288.

    Article  PubMed  CAS  Google Scholar 

  85. Cases, O., Vitalis, T., Seif, I., De Maeyer, E., Sotelo, C., and Gaspar, P. (1996) Lack of barrels in the somatosensory cortex of monoamine oxidase A- deficient mice: role of a serotonin excess during the critical period. Neuron 16, 297–307.

    Article  PubMed  CAS  Google Scholar 

  86. Persico, A. M., Mengual, E., Moessner, R., et al. (2001) Barrel pattern formation requires serotonin uptake by thalamocortical afferents, and not vesicular monoamine release. J. Neurosci. 21, 6862–6873.

    PubMed  CAS  Google Scholar 

  87. Lo Turco, J. J. and Kriegstein, A. R. (1991) Clusters of coupled neuroblasts in embryonic neocortex. Science 252, 563–566.

    Article  PubMed  Google Scholar 

  88. Radnikow, G., Feldmeyer, D., and Lubke, J. (2002) Axonal projection, input and output synapses, and synaptic physiology of Cajal-Retzius cells in the developing rat neocortex. J. Neurosci. 22, 6908–6919.

    PubMed  CAS  Google Scholar 

  89. Behar, T. N., Schaffner, A. E., Scott, C. A., O’Connel, C., and Barker, J. L. (1998) Differential Response of Cortical Plate and Ventricular Zone Cells to GABA as a Migration Stimulus. J. Neurosci. 18, 6378–6387.

    PubMed  CAS  Google Scholar 

  90. Behar, T. N., Smith, S. V., Kennedy, R. T., McKenzie, J. M., Maric, I., and Barker, J. L. (2001) GABA(B) receptors mediate motility signals for migrating embryonic cortical cells. Cereb. Cortex 11, 744–753.

    Article  PubMed  CAS  Google Scholar 

  91. Blatt, G. J., Fitzgerald, C. M., Guptill, J. T., Booker, A. B., Kemper, T. L., and Bauman, M. L. (2001) Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J. Autism. Dev. Disord. 31, 537–543.

    Article  PubMed  CAS  Google Scholar 

  92. Fatemi, S. H., Halt, A. R., Stary, J. M., Kanodia, R., Schulz, S. C., and Realmuto, G. R. (2002) Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol. Psychiatry 52, 805–810.

    Article  PubMed  CAS  Google Scholar 

  93. Cook, E. H. J., Courchesne, R. Y., Cox, N. J., Lord, C., Gonen, D., Guter, S. J., Lincoln, A., Nix, K., Haas, R., Leventhal, B. L., and Courchesne, E. (1998) Linkage-disequilibrium mapping of autistic disorder, with 15q11-13 markers. Am. J. Hum. Genet. 62, 1077–1083.

    Article  PubMed  CAS  Google Scholar 

  94. Martin, E. R., Menold, M. M., Wolpert, C. M., et al. (2000) Analysis of linkage disequilibrium in gamma-aminobutyric acid receptor subunit genes in autistic disorder. Am. J. Med. Genet. 96, 43–48.

    Article  PubMed  Google Scholar 

  95. Menold, M. M., Shao, Y., Wolpert, C. M., et al. (2001) Association analysis of chromosome 15 GABAA receptor subunit genes in autistic disorder. J. Neurogenet. 15, 254–249.

    Article  Google Scholar 

  96. Buxbaum, J. D., Silverman, J. M., Smith, C. J., Greenberg, D. A., Kilifarski, M., Reichert, J., Cook, E. H. J., Fang, Y., Song, C. Y., and Vitale, R. (2002) Association between a GABRB3 polymorphism and autism. Mol. Psychiatry 7, 311–316.

    Article  PubMed  CAS  Google Scholar 

  97. Wassink, T. H., Piven, J., Vieland, V. J., Huang, J., Swiderski, R. E., Pietila, J., Braun, T., Beck, G., Folstein, S. E., Haines, J. L., and Sheffield, V. C. (2001) Evidence supporting WNT2 as an autism susceptibility gene. Am. J. Med. Genet. 105, 406–413.

    Article  PubMed  CAS  Google Scholar 

  98. Monkley, S. J., Delaney, S. J., Pennisi, D. J., Christiansen, J. H., and Wainwright, B. J. (1996) Targeted disruption of the Wnt2 gene results in placentation defects. Development 122, 3343–3353.

    PubMed  CAS  Google Scholar 

  99. Lijam, N., Paylor, R., McDonald, M. P., Crawley, J. N., Deng, C. X., Herrup, K., Stevens, K. E., Maccaferri, G., McBain, C. J., Sussman, D. J., and Wynshaw-Boris, A. (1997) Social interaction and sensorimotor gating abnormalities in mice lacking Dv11. Cell 90, 895–905.

    Article  PubMed  CAS  Google Scholar 

  100. Carpenter, E. M., Goddard, J. M., Chisaka, O., Manley, N. R., and Capecchi, M. R. (1993) Loss of Hox-A1 (Hox-1.6) function results in the reorganization of the murine hindbrain. Development 118, 1063–1075.

    PubMed  CAS  Google Scholar 

  101. Mark, M., Lufkin, T., Vonesch, J. L., Ruberte, E., Olivo, J. C., Dolle, P., Gorry, P., Lumsden, A., and Chambon, P. (1993) Two rhombomeres are altered in Hoxa-1 mutant mice. Development 119, 319–338.

    PubMed  CAS  Google Scholar 

  102. Persico, A. M., D’Agruma, L., Maiorano, N., et al. (2001) Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol. Psychiatry. 6, 150–159.

    Article  PubMed  CAS  Google Scholar 

  103. Pericak-Vance, M. A., personal communication.

  104. Zhang, H., Liu, X., Zhang, C., Mundo, E., Macciardi, F., Grayson, D. R., Guidotti, A. R., and Holden, J. J. R. (2002) Reelin gene alleles and susceptibility fo autism spectrum disorders. Mol. Psychiatry 7, 1012–1017.

    Article  PubMed  CAS  Google Scholar 

  105. Krebs, M. O., Betancur, C., Leroy, S., Bourdel, M. C., Gillberg, C., Leboyer, M., and The Paris Autism Research International Sibpair (PARIS) study. (2002) Absence of association between a polymorphic GGC repeat in the 5′ untranslated region of the reelin gene and autism. Mol. Psychiat. 7, 801–804.

    Article  CAS  Google Scholar 

  106. Petek, E., Windpassinger, C., Vincent, J. B., Cheung, J., Boright, A. P., Scherer, S. W., Kroisel, P. M., and Wagner, K. (2001) Disruption of a novel gene (IMMP2L) by a breakpoint in 7q31 associated with Tourette syndrome. Am. J. Hum. Genet. 68, 848–858.

    Article  PubMed  CAS  Google Scholar 

  107. Fatemi, S. H., Stary, J. M., and E. A., E. (2002) Reduced blood levels of reelin as a vulnerability factor in pathophysiology fo autistic disorder. Cell Mol. Neurobiol. 22, 139–152.

    Article  PubMed  CAS  Google Scholar 

  108. D’Arcangelo, G., Miao, G. G., Chen, S. C., Soares, H. D., Morgan, J. I., and Curran, T. (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374, 719–723.

    Article  PubMed  CAS  Google Scholar 

  109. Tueting, P., Costa, E., Dwivedi, Y., Guidotti, A., Impagnatiello, F., Manev, R., and Pesold, C. (1999) The phenotypic characteristics of heterozygous reeler mouse. Neuroreport 10, 1329–1334.

    Article  PubMed  CAS  Google Scholar 

  110. Hadj-Sahraoui, N., Frederic, F., Delhaye-Bouchaud, N., and Mariani, J. (1996) Gender effect on Purkinje cell loss in the cerebellum of the heterozygous reeler mouse. J. Neurogenet. 11, 45–58.

    PubMed  CAS  Google Scholar 

  111. Rice, D. S., Nusinowitz, S., Azimi, A. M., Martinez, A., Soriano, E., and Curran, T. (2001) The Reelin pathway modulates the structure and function of retinal synaptic circuit. Neuron 31, 929–941.

    Article  PubMed  CAS  Google Scholar 

  112. Weeber, E. J., Beffert, U., Jones, C., Christian, J. M., Förster, E., Sweatt, J. D., and Herz, J. (2002) Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J. Biol. Chem. 277, 39,944–39,952.

    CAS  Google Scholar 

  113. Quattrocchi, C. C., Huang, C., Niu, S., Sheldon, M., Benhayon, D., Cartwright Jr., J., Mosier, D. R., Keller, F., and D’Arcangelo, G. (2003) Reelin promotes peripheral synapse elimination and maturation. Science, in press.

  114. Quattrocchi, C. C., Wannenes, F., Persico, A. M., Ciafré, S. A., D’Arcangelo, G., Farace, M. G., and Keller, F. (2002) Reelin is a serine protease of the extracellular matrix. J. Biol. Chem. 277, 303–309.

    Article  PubMed  CAS  Google Scholar 

  115. Whyatt, R. M. and Barr, D. A. (2001) Measurement of organophosphate metabolites in postpartum meconium as a potential biomarker of prenatal exposure: a validation study. Environm. Health Persp. 109, 417–420.

    Article  CAS  Google Scholar 

  116. Fatemi, S. H., Emamian, E. S., Kist, D., Sidwell, R. W., Nakajima, K., Akhter, P., Shier, A., Sheikh, S., and Bailey, K. (1999) Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol. Psychiatry 4, 145–154.

    Article  PubMed  CAS  Google Scholar 

  117. Insel, T. R. (1997) A neurobiological basis of social attachment. Am. J. Psychiatry 154, 726–735.

    PubMed  CAS  Google Scholar 

  118. Young, L. J., Huot, B., Nilsen, R., Wang, Z., and Insel, T. R. (1996) Species differences in central oxytocin gene expression: comparative analysis of promoter sequences. J. Neuroendocrinol. 8, 777–783.

    Article  PubMed  CAS  Google Scholar 

  119. Winslow, J. T. and Insel, T. R. (2002) The social deficits of the oxytocin knockout mouse. Neuropeptides 36, 221–229.

    Article  PubMed  CAS  Google Scholar 

  120. Green, L., Fein, D., Modahl, C., Feinstein, C., Waterhouse, L., and Morris, M. (2001) Oxytocin and autistic disorder: alterations in peptide forms. Biol. Psychiatry 50, 609–613.

    Article  PubMed  CAS  Google Scholar 

  121. Schroer, R. J., Phelan, M. C., Michaelis, R. C., et al. (1998) Autism and maternally derived aberrations of chromosome 15q. Am. J. Med. Genet. 76, 327–336.

    Article  PubMed  CAS  Google Scholar 

  122. Swaab, D. F., Purba, J. S., and Hofman, M. A. (1995) Alterations in the hypothalamic paraventricular nucleus and its oxytocin neurons (putative satiety cells) in Prader-Willi syndrome: a study of five cases. J. Clin. Endocrinol. Metab. 80, 573–579.

    Article  PubMed  CAS  Google Scholar 

  123. Lauder, J. M. and Schambra, U. B. (1999) Morphogenetic roles of acetylcholine. Environ. Health Perspect. 107 (Suppl 1), 65–69.

    Article  PubMed  CAS  Google Scholar 

  124. Perry, E. K., Lee, M. L., Martin-Ruiz, C. M., Court, J. A., Volsen, S. G., Merrit, J., Folly, E., Iversen, P. E., Bauman, M. L., Perry, R. H., and Wenk, G. L. (2001) Cholinergic activity in autism: abnormalities in the cerebral cortex and basal forebrain. Am. J. Psychiatry. 158, 1058–1066.

    Article  PubMed  CAS  Google Scholar 

  125. Lee, M., Martin-Ruiz, C., Graham, A., Court, J., Jaros, E., Perry, R., Iversen, P., Bauman, M., and Perry, E. (2002) Nicotinic receptor abnormalities in the cerebellar cortex in autism. Brain 125, 1483–1495.

    Article  PubMed  CAS  Google Scholar 

  126. Jones, M. B., Szatmari, P., and Piven, J. (1996) Nonfamiliality of sex ratio in autism. Am. J. Med. Genet. 67, 499–500.

    Article  PubMed  CAS  Google Scholar 

  127. Shao, Y., Wolpert, C. M., Raiford, K. L., et al. (2002) Genomic screen and follow-up analysis for autistic disorder. Am. J. Hum. Genet. 114, 99–105.

    Google Scholar 

  128. Liu, W. S., Pesold, C., Rodriguez, M. A., Carboni, G., Auta, J., Lacor, P., Larson, J., Condie, B. G., Guidotti, A., and Costa, E. (2001) Dwnregulation of dentritic spine and glutamic acid decarboxylase 67 expression in the reelin haploinsufficientheterozygous reeler mouse. Proc. Natl. Acad. Sci. USA 98, 3477–3482.

    Article  PubMed  CAS  Google Scholar 

  129. Jamain, S., Quach, H., Betancur, C., Rastam M., Colineaux, C., Gillberg, I. C., et al. (2003) Paris Autism Research International Sibpair Study. Related Articles, Links Abstract Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat. Genet. 34, 27–29.

    Article  PubMed  CAS  Google Scholar 

  130. Skuse, D. H., James, R. S., Bishop, D. V., Coppin, B., Dalton, P., Aamodt-Leeper, G., Bacarese-Hamilton, M., Creswell, C., McGurk, R., and Jacobs, P. A. (1997) Evidence from Turner’s syndrome of an imprinted X-linked locus affecting cognitive function. Nature 387, 705–708.

    Article  PubMed  CAS  Google Scholar 

  131. Manning, J. T., Baron-Cohen, S., Wheelwright, S., and Sanders, G. (2001) The 2nd to 4th digit ratio and autism. Dev. Med. Child Neurol. 43, 160–164.

    Article  PubMed  CAS  Google Scholar 

  132. Baron-Cohen, S. (2002) The extreme male theory of autism. Trends Cogn. Sci. 6, 248–254.

    Article  PubMed  Google Scholar 

  133. Doulazmi, M., Frederic, F., Lemaigre-Dubreuil, Y., Hadj-Sahraoui, N., Delhaye-Bouchaud, N., and Mariani, J. (1999) Cerebellar Purkinje cell loss during life span of the heterozygous staggerer mouse (Rora(+)/Rora(sg)) is gender-related. J. Comp. Neurol. 411, 267–273.

    Article  PubMed  CAS  Google Scholar 

  134. Rutter, M. (2000) Genetic studies of autism: from the 1970s into the Millennium. J. Abn. Child Psychol. 28, 3–14.

    Article  CAS  Google Scholar 

  135. Plomin, R. and and McGuffin, P. (2003) Psychopathology in the postgenomic era. Ann. Rev. Psychol. 54, 205–228.

    Article  Google Scholar 

  136. Janus, C. and Westaway, D. (2001) Transgenic mouse models of Alzheimer’s disease. Physiology and Behavior 73, 873–886.

    Article  PubMed  CAS  Google Scholar 

  137. Ingram, J. L., Peckham, S. M., Tisdale, B., and Rodier, P. M. (2000) Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism. Neurotoxicol. Teratol 22, 319–324.

    Article  PubMed  CAS  Google Scholar 

  138. [No authors listed] (1994) Fmr1 knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian Fragile X Consortium. Cell 78, 23–33.

    Google Scholar 

  139. Nimchinsky, E. A., Oberlander, A. M., and Svoboda, K. (2001) Abnormal development of dendritic spines in FMR1 knock-out mice. J. Neurosci. 21, 5139–5146.

    PubMed  CAS  Google Scholar 

  140. Qin, M., Kang, J. and Smith, C. B. (2002) Increased rates of cerebral glucose metabolism in a mouse model of fragile X mental retardation. Proc. Natl. Acad. Sci. USA 99, 15,758–15,763.

    Article  CAS  Google Scholar 

  141. Brainard, M. S. and Doupe, A. J. (2002) What songbirds teach us about lernaning. Nature 417, 351–358.

    Article  PubMed  CAS  Google Scholar 

  142. Leonardo, A. and Konishi, M. (1999) Decrystallization of adult birdsong by perturbation of auditory feedback. Nature 399, 466–470.

    Article  PubMed  CAS  Google Scholar 

  143. Bachevalier, J. (1996) Brief report: medial temporal lobe and autism: a putative animal model in primates. J. Autism Dev. Disord. 26, 217–220.

    Article  PubMed  CAS  Google Scholar 

  144. Prather, M. D., Lavenex, P., Mauldin-Jourdain, M. L., Mason, W. A., Capitanio, J. P., Mendoza, S. P., and Amaral, D. G. (2001) Increased social fear and decreased fear of objects in monkeys with neonatal amygdala lesions. Neuroscience 106, 653–658.

    Article  PubMed  CAS  Google Scholar 

  145. Polanyi, M. (1968) Life’s irreducible structure. Live mechanisms and information in DNA are boundary conditions with a sequence of boundaries above them. Science 160, 1308–1312.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Keller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, F., Persico, A.M. The neurobiological context of autism. Mol Neurobiol 28, 1–22 (2003). https://doi.org/10.1385/MN:28:1:1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:28:1:1

Index Entries

Navigation