Skip to main content
Log in

Death receptors and caspases

Role in lymphocyte proliferation, cell death, and autoimmunity

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The role of death receptors and caspases as mediators of programmed cell death is well established. This review focuses on new insights into alternative functions of these molecules in activation and proliferation of lymphocytes and other hematopoietic cell types. The involvement of the death receptor Fas and caspases in immunodeficiency and autoimmunity is discussed. Elucidation of the mechanisms that control the decision whether death receptors and caspases drive activation/proliferation or apoptosis may broaden our knowledge about the pathogenesis of numerous diseases and facilitate the development of novel therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal BB: Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 2003; 3:745–756.

    PubMed  CAS  Google Scholar 

  2. Dinarello CA: Proinflammatory cytokines. Chest 2000; 118:503–508.

    PubMed  CAS  Google Scholar 

  3. Locksley RM, Killeen N, Lenardo MJ: The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001;104:487–501.

    PubMed  CAS  Google Scholar 

  4. Bodmer JL, Schneider P, Tschopp J: The molecular architecture of the TNF superfamily. Trends Biochem Sci 2002;27:19–26.

    PubMed  CAS  Google Scholar 

  5. Black RA, Rauch CT, Kozlosky CJ, et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 1997;385:729–733.

    PubMed  CAS  Google Scholar 

  6. Lum L, Wong BR, Josien R, et al.: Evidence for a role of a tumor necrosis factor-alpha (TNF-alpha)-converting enzyme-like protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival. J Biol Chem 1999;274:13613–13618.

    PubMed  CAS  Google Scholar 

  7. Powell WC, Fingleton B, Wilson CL, Boothby M, Matrisian LM: The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Curr Biol 1999; 9:1441–1447.

    PubMed  CAS  Google Scholar 

  8. Chen Y, Molloy SS, Thomas L, et al.: Mutations within a furin consensus sequence block proteolytic release of ectodysplasin-A and cause X-linked hypohidrotic ectodermal dysplasia. Proc Natl Acad Sci USA 2001; 98:7218–7223.

    PubMed  CAS  Google Scholar 

  9. Schneider P, Mackay F, Steiner V, et al.: BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 1999;189:1747–1756.

    PubMed  CAS  Google Scholar 

  10. Chan FK, Chun HJ, Zheng L, Siegel RM, Bui KL, Lenardo MJ: A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 2000;288:2351–2354.

    PubMed  CAS  Google Scholar 

  11. Banner DW, D'Arcy A, Janes W, et al.: Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell 1993;73:431–445.

    PubMed  CAS  Google Scholar 

  12. Cha SS, Sung BJ, Kim YA, et al.: Crystal structure of TRAIL-DR5 complex identifies a critical role of the unique frame insertion in conferring recognition specificity. J Biol Chem 2000;275:31171–31177.

    PubMed  CAS  Google Scholar 

  13. Hymowitz SG, Christinger HW, Fuh G, et al.: Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol Cell 1999;4: 563–571.

    PubMed  CAS  Google Scholar 

  14. Mongkolsapaya J, Grimes JM, Chen N, et al.: Structure of the TRAIL-DR5 complex reveals mechanisms conferring specificity in apoptotic initiation. Nat Struct Biol 1999;6:1048–1053.

    PubMed  CAS  Google Scholar 

  15. Naismith JH, Devine TQ, Kohno T, Sprang SR: Structures of the extracellular domain of the type I tumor necrosis factor receptor. Structure 1996;4:1251–1262.

    PubMed  CAS  Google Scholar 

  16. Adam D, Kessler U, Krönke M: Cross-linking of the p55 tumor necrosis factor receptor cytoplasmic domain by a dimeric ligand induces nuclear factor-kappa B and mediates cell death. J Biol Chem 1995; 270:17482–17487.

    Google Scholar 

  17. Bazzoni F, Alejos E, Beutler B: Chimeric tumor necrosis factor receptors with constitutive signaling activity. Proc Natl Acad Sci USA 1995;92:5376–5380.

    Google Scholar 

  18. Chan KF, Siegel MR, Lenardo JM: Signaling by the TNF receptor superfamily and T cell homeostasis. Immunity 2000;13:419–422.

    PubMed  CAS  Google Scholar 

  19. Bazzoni F, Beutler B: How do tumor necrosis factor receptors work? J Inflamm 1995;45:221–238.

    Google Scholar 

  20. Wajant H: Death receptors. Essays Biochem 2003; 39:53–71.

    PubMed  CAS  Google Scholar 

  21. Itoh N, Yonehara S, Ishii A, et al.: The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 1991;66:233–243.

    PubMed  CAS  Google Scholar 

  22. Itoh N, Nagata S: A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 1993;268:10932–10937.

    PubMed  CAS  Google Scholar 

  23. Tartaglia LA, Ayres TM, Wong GH, Goeddel DV: A novel domain within the 55 kd TNF receptor signals cell death. Cell 1993;74:845–853.

    PubMed  CAS  Google Scholar 

  24. Aravind L, Dixit VM, Koonin EV: Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisoms. Science 2001; 291:1279–1284.

    PubMed  CAS  Google Scholar 

  25. Peter ME, Krammer PH: The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 2003;10:26–35.

    PubMed  CAS  Google Scholar 

  26. Scaffidi C, Kirchhoff S, Krammer PH, Peter ME: Apoptosis signaling in lymphocytes. Curr Opin Immunol 1999;11:277–285.

    PubMed  CAS  Google Scholar 

  27. Ashkenazi A, Dixit VM: Death receptors: signaling and modulation. Science 1998;281:1305–1308.

    PubMed  CAS  Google Scholar 

  28. Denecker G, Vercammen D, Declercq W, Vandenabeele P: Apoptotic and necrotic cell death induced by death domain receptors. Cell Mol Life Sci 2001; 58:356–370.

    PubMed  CAS  Google Scholar 

  29. Fischer U, Jänicke RU, Schulze-Osthoff K: Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 2003;10:76–100.

    PubMed  CAS  Google Scholar 

  30. Villa P, Kaufmann SH, Earnshaw WC: Caspases and caspase inhibitors. Trends Biochem Sci 1997; 22:388–393.

    PubMed  CAS  Google Scholar 

  31. Hsu H, Shu HB, Pan MG, Goeddel DV: TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 1996;84:299–308.

    PubMed  CAS  Google Scholar 

  32. Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, Smyth MJ: Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol 2002; 168:1356–1361.

    PubMed  CAS  Google Scholar 

  33. Thomé M, Tschopp J: Regulation of lymphocyte proliferation and death by FLIP. Nat Rev Immunol 2001; 1:50–58.

    PubMed  Google Scholar 

  34. Micheau O, Thomé M, Schneider P, et al.: The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem 2002; 277:45162–45171.

    PubMed  CAS  Google Scholar 

  35. Wajant H, Pfizenmaier K, Scheurich P: Non-apoptotic Fas signaling. Cytokine Growth Factor Rev 2003; 14:53–66.

    PubMed  CAS  Google Scholar 

  36. Schimmer AD: Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res 2004;64:7183–7190.

    PubMed  CAS  Google Scholar 

  37. Leist M, Jäättelä M: Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2001;2:589–598.

    PubMed  CAS  Google Scholar 

  38. Jäättelä M, Tschopp J: Caspase-independent cell death in T lymphocytes. Nat Immunol 2003;4:416–423.

    PubMed  Google Scholar 

  39. Holler N, Zaru R, Micheau O, et al.: Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 2000;1:489–495.

    PubMed  CAS  Google Scholar 

  40. Vanden Berghe T, Kalai M, Van Loo G, Declercq W, Vandenabeele P: Disruption of HSP90 function reverts tumor necrosis factor-induced necrosis to apoptosis. J Biol Chem 2003;278:5622–5629.

    Google Scholar 

  41. Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P: Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 1997;185:1481–1486.

    PubMed  CAS  Google Scholar 

  42. Eguchi Y, Shimizu S, Tsujimoto Y: Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 1997;57:1835–1840.

    PubMed  CAS  Google Scholar 

  43. Ferrari D, Stepczynska A, Los M, Wesselborg S, Schulze-Osthoff K: Differential regulation and ATP requirement for caspase-8 and caspase-3 activation during. J Exp Med 1998;188:979–984.

    PubMed  CAS  Google Scholar 

  44. Ha HC, Snyder SH: Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci USA 1999;96:13978–13982.

    PubMed  CAS  Google Scholar 

  45. Denecker G, Vercammen D, Steemans M, et al: Death receptor-induced apoptotic and necrotic cell death: differential role of caspases and mitochondria. Cell Death Differ 2001;8:829–840.

    PubMed  CAS  Google Scholar 

  46. Kim JW, Choi EJ, Joe CO: Activation of death-inducing signaling complex (DISC) by pro-apoptotic C-terminal fragment of RIP. Oncogene 2000;19:4491–4499.

    PubMed  CAS  Google Scholar 

  47. Lin Y, Devin A, Rodriguez Y, Liu ZG: Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev 1999;13:2514–2526.

    PubMed  CAS  Google Scholar 

  48. Martinon F, Holler N, Richard C, Tschopp J: Activation of a pro-apoptotic amplification loop through inhibition of NF-kappaB-dependent survival signals by caspasemediated inactivation of RIP. FEBS Lett 2000;468:134–136.

    PubMed  CAS  Google Scholar 

  49. Zhang J, Cado D, Chen A, Kabra NH, Winoto A: Fasmediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mortl. Nature 1998;392:296–300.

    PubMed  CAS  Google Scholar 

  50. Yeh WC, Pompa JL, McCurrach ME, et al.: FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 1998;279:1954–1958.

    PubMed  CAS  Google Scholar 

  51. Kabra NH, Kang C, Hsing LC, Zhang J, Winoto A: T cell-specific FADD-deficient mice: FADD is required for early T cell development. Proc Natl Acad Sci USA 2001;98:6307–6312.

    PubMed  CAS  Google Scholar 

  52. Newton K, Harris AW, Bath ML, Smith KG, Strasser A: A dominant interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes. EMBO J 1998;17:706–718.

    PubMed  CAS  Google Scholar 

  53. Zörnig M, Hueber AO, Evan G: p53-dependent impairment of T-cell proliferation in FADD dominant-negative transgenic mice. Curr Biol 1998;8:467–470.

    PubMed  Google Scholar 

  54. Walsh CM, Wen BG, Chinnaiyan AM, O'Rourke K, Dixit VM, Hedrick SM: A role for FADD in T cell activation and development. Immunity 1998;8:439–449.

    PubMed  CAS  Google Scholar 

  55. Scaffidi C, Volkland J, Blomberg I, Hoffmann I, Krammer PH, Peter ME: Phosphorylation of FADD/MORT1 at serine 194 and association with a 70-kDa cell cyclereguated protein kinase. J. Immunol 2000;164:1236–1242.

    PubMed  CAS  Google Scholar 

  56. Hua ZC, Sohn SJ, Kang C, Cado D, Winoto A: A function of Fas-associated death domain protein in cell cycle progression localized to a single amino acid at its C-terminal region. Immunity 2003;18:513–521.

    PubMed  CAS  Google Scholar 

  57. Miossec C, Dutilleul V, Fassy F, Diu-Hercend A: Evidence for CPP32 activation in the absence of apoptosis during T lymphocyte stimulation. J Biol Chem 1997;272:13459–13462.

    PubMed  CAS  Google Scholar 

  58. Wilhelm S, Wagner H, Häcker, G: Activation of caspase-3-like enzymes in non-apoptotic T cells. Eur J Immunol 1998;28:891–900.

    PubMed  CAS  Google Scholar 

  59. Alam A, Cohen LY, Aouad S, Sekaly RP: Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells. J Exp Med 1999;190:1879–1890.

    PubMed  CAS  Google Scholar 

  60. Kennedy NJ, Kataoka T, Tschopp J, Budd RC: Caspase activation is required for T cell proliferation. J Exp Med 1999;190:1891–1896.

    PubMed  CAS  Google Scholar 

  61. Chun HJ, Zheng L, Ahmad M, et al.: Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 2002;419:395–399.

    PubMed  CAS  Google Scholar 

  62. Salmena L, Lemmers B, Hakem A, et al.: Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev 2003;17:883–895.

    PubMed  CAS  Google Scholar 

  63. Beisner DR, Chu IH, Arechiga AF, Hedrick SM, Walsh CM: The requirements for Fas-associated death domain signaling in mature T cell activation and survival. J Immunol 2003;171:247–256.

    PubMed  CAS  Google Scholar 

  64. Newton K, Kurts C, Harris AW, Strasser A: Effects of a dominant interfering mutant of FADD on signal transduction in activated T cells. Curr Biol 2001;11:273–276.

    PubMed  CAS  Google Scholar 

  65. Mack A, Häcker G: Inhibition of caspase, or FADD function blocks proliferation but not MAP kinase-activation and interleukin-2-production during primary stimulation of T cells. Eur J Immunol 2002;32:1986–1992.

    PubMed  CAS  Google Scholar 

  66. Zhang J, Kabra NH, Cado D, Kang C, Winoto A: FADD-deficient T cells exhibit a disaccord in regulation of the cell cycle machinery. J Biol Chem 2001;276:29815–29818.

    PubMed  CAS  Google Scholar 

  67. Falk M, Ussat S, Reiling N, Wesch, D, Kabelitz D, Adam-Klages S: Caspase inhibition blocks human T cell proliferation by suppressing appropriate regulation of IL-2, CD25, and cell cycle-associated proteins. J Immunol 2004;173:5077–5085.

    PubMed  CAS  Google Scholar 

  68. Jain J, Loh C, Rao A: Transcriptional regulation of the IL-2 gene. Curr Opin Immunol 1995;7:333–342.

    Google Scholar 

  69. Su H, Bidere N, Zheng L, et al.: Requirement for caspase-8 in NF-kappaB activation by antigen receptor. Science 2005;307:1465–1468.

    PubMed  CAS  Google Scholar 

  70. Yeh WC, Itie A, Elia AJ, et al.: Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 2000;12:633–642.

    PubMed  CAS  Google Scholar 

  71. Lens SM, Kataoka T, Fortner KA, et al.: The caspase 8 inhibitor c-FLIP(L) modulates T-cell receptor-induced proliferation but not activation-induced cell death of lymphocytes. Mol Cell Biol 2002;22:5419–5433.

    PubMed  CAS  Google Scholar 

  72. Kataoka T, Budd RC, Holler N, et al.: The caspase-8 inhibitor FLIP promotes activation of NF-kappaB and Erk signaling pathways. Curr Biol 2000;10:640–648.

    PubMed  CAS  Google Scholar 

  73. Los M, Stroh C, Jänicke RU, Engels IH, Schulze-Osthoff K: Caspases: more than just killers? Trends Immunol 2001;22:31–34.

    PubMed  CAS  Google Scholar 

  74. Datta R, Kojima H, Yoshida K, Kufe D: Caspase-3-mediated cleavage of protein kinase C theta in induction of apoptosis J Biol Chem 1997;272:20317–20320.

    PubMed  CAS  Google Scholar 

  75. Altman A, Isakov N, Baier G: Protein kinase Ctheta: a new essential superstar on the T-cell stage. Immunol Today 2000;21:567–573.

    PubMed  CAS  Google Scholar 

  76. Hu WH, Johnson H, Shu HB: Activation of NF-kappaB by FADD, Casper, and caspase-8. J Biol Chem 2000;275:10838–10844.

    PubMed  CAS  Google Scholar 

  77. Caudhary PM, Eby MT, Jasmin A, Kumar A, Liu L, Hood L: Activation of the NF-kappaB pathway by caspase 8 and its homologs. Oncogene 2000;19:4451–4460.

    Google Scholar 

  78. Mukerjee N, McGinnis KM, Gnery ME, Wang KK: Caspase-mediated calcineurin activation contributes to IL-2 release during T cell activation. Biochem Biophys Res Commun 2001;285:1192–1199.

    PubMed  CAS  Google Scholar 

  79. Biossonnas A, Bonduelle O, Lucas B, Debre P, Autran B, Combadiere B: Differential requirement of caspases during naive T cell proliferation. Eur J Immunol 2002;32:3007–3015.

    Google Scholar 

  80. Müller M, Grunewald J, Gigliotti D, Eklund A, Stridh H: T-cell activation and the development of an apoptosis-resistant CD45RO+ T-cell population. Scand J Immunol 2003;57:254–260.

    PubMed  Google Scholar 

  81. Mouhamad S, Arnoult D, Auffredou MT, Estaquier J, Vazquez A: Differential modulation of interleukin-2-and interleukin 4-mediated early activation of normal human B lymphocytes by the caspase inhibitor zVAD-fmk. Eur Cytokine Netw 2002;13:439–445.

    PubMed  CAS  Google Scholar 

  82. Olson NE, Graves JD, Shu GL, Ryan EJ, Clark EA: Caspase activity is required for stimulated B lymphocytes to enter the cell cycle. J Immunol 2003;170:6065–6072.

    PubMed  CAS  Google Scholar 

  83. Woo M, Hakem R, Furlonger C, et al.: Caspase-3 regulates cell cycle in B cells: a consequence of substrate specificity. Nat Immunol 2003;4:1016–1022.

    PubMed  CAS  Google Scholar 

  84. Ussat S, Werner U, Adam-Klages S: Species-specific differences in the usage of several caspase substrates. Biochem Biophys Res Commun 2002;297:1186–1190.

    PubMed  CAS  Google Scholar 

  85. Sordet O, Rebe C, Plenchette S, et al.: Specific involvement of caspases in the differentiation of monocytes into macrophages. Blood 2002;100:4446–4453.

    PubMed  CAS  Google Scholar 

  86. Park DR, Thomsen AR, Frevert CW, et al.: Fas (CD95) induces proinflammatory cytokine responses by human monocytes and monocyte-derived macrophages. J Immunol 2003;170:6209–6216.

    PubMed  CAS  Google Scholar 

  87. Kang TB, Ben Moshe T, Varfolomeev EE, et al.: Caspase-8 serves both apoptotic and nonapoptotic roles. J Immunol 2004;173:2976–2984.

    PubMed  CAS  Google Scholar 

  88. Zermati Y, Garrido C, Amsellem S, t al.: Caspase activation is required for terminal erythroid differentiation. J Exp Med 2001;193:247–254.

    PubMed  CAS  Google Scholar 

  89. Miura M, Chen XD, Allen MR, et al.: A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest 2004;114:1704–1713.

    PubMed  CAS  Google Scholar 

  90. Hueber AQ, Zörnig M, Bernard AM, Chautan M, Evan G: A dominant negative Fas-associated death domain protein mutant inhibits proliferation and leads to impaired calcium mobilization in both T-cells and fibroblasts. J Biol Chem 2000;275:10453–10462.

    PubMed  CAS  Google Scholar 

  91. Alderson MR, Armitage RJ, Maraskovsky E, et al.: Fas transduces activation signals in normal human T lymphocytes. J Exp Med 1993;178:2231–2235.

    PubMed  CAS  Google Scholar 

  92. Cohen PL, Eisenberg RA: The Ipr and gld genes in systemic autoimmunity: life and death in the Fas lane. Immunol Today 1992;13:427–428.

    PubMed  CAS  Google Scholar 

  93. Cohen PL, Eisenberg RA: Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu Rev Immunol 1991;9:243–269.

    PubMed  CAS  Google Scholar 

  94. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S: Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 1992;356:314–317.

    PubMed  CAS  Google Scholar 

  95. Adachi M, Watanabe-Fukunaga R, Nagata S: Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of Ipr mice. Proc Natl Acad Sci USA 1993;90:1756–1760.

    PubMed  CAS  Google Scholar 

  96. Adachi M, Suematsu S, Suda T, et al: Enhanced and accelerated lymphoproliferation in Fas-null mice. Proc Natl Acad Sci USA 1996;93:2131–2136.

    PubMed  CAS  Google Scholar 

  97. Ramsdell F, Seaman MS, Miller RE, Tough TW, Alderson MR, Lynch DH: gld/gld mice are unable to express a functional ligand for Fas. Eur J Immunol 1994;24:928–933.

    PubMed  CAS  Google Scholar 

  98. Takahashi T, Tanaka M, Brannan CI, et al.: Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 1994;76:969–976.

    PubMed  CAS  Google Scholar 

  99. Karray S, Kress C, Cuvellier S, et al.: Complete loss of Fas ligand gene causes massive lymphoprolferation and early death, indicating a residual activity of gld allele. J Immunol 2004;172:2118–2125.

    PubMed  CAS  Google Scholar 

  100. Canale VC, Smith CH: Chronic lymphadenopathy simulating malignant lymphoma. J Pediatr 1967;70:891–899.

    PubMed  CAS  Google Scholar 

  101. Sneller MC, Straus SE, Jaffe ES, et al: A novel lymphoproliferative/autoimmune syndrome resembling murine Ipr/gld disease. J Clin Invest 1992;90:334–341.

    PubMed  CAS  Google Scholar 

  102. Fisher GH, Rosenberg FJ, Straus SE, et al.: Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 1995;81:935–946.

    Google Scholar 

  103. Drappa J, Vaishnaw AK, Sullivan KE, Chu JL, Elkon KB: Fas gene mutations in the Canale-Smith syndrome, aninherited lymphoproliferative disorder associated with autoimmunity. N Engl J Med 1996;335:1643–1649.

    PubMed  CAS  Google Scholar 

  104. Rieux-Laucat F, Le Deist F, Fischer A: Autoimmune lymphoproliferative syndromes: genetic defects of apoptosis pathways. Cell Death Differ 2003;10:124–133.

    PubMed  CAS  Google Scholar 

  105. Rieux-Laucat F, Fischer A, Deist FL: Cell-death signaling and human disease. Curr Opin Immunol 2003;15:325–331.

    PubMed  CAS  Google Scholar 

  106. Sneller MC, Dale JK, Straus SE: Autoimmune lymphoprolifertive syndrome. Curr Opin Rheumatol 2003;15:417–421.

    PubMed  CAS  Google Scholar 

  107. Oliveira JB, Fleisher T: Autoimmune lymphoproliferative syndrome. Curr Opin Allergy Clin Immunol 2004;4:497–503.

    PubMed  CAS  Google Scholar 

  108. Rieux-Laucat F, Le Deist F, Hivroz C, et al.: Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 1995;268:1347–1349.

    Google Scholar 

  109. Martin DA, Zheng L, Siegel RM, et al.: Defective CD95/APO-1/Fas signal complex formation in the human autoimmune lymphoproliferative syndrome, type Ia. Proc Natl Acad Sci USA 1999;96:4552–4557.

    PubMed  CAS  Google Scholar 

  110. Vaishnaw AK, Orlinick JR, Chu JL, Krammer PH, Chao MV, Elkon KB: The molecular basis for apoptotic defects in patients with CD95 (Fas/Apo-1) mutations. J Clin Invest 1999;103:355–363.

    PubMed  CAS  Google Scholar 

  111. Infante AJ, Britton HA, DeNapoli T, et al.: The clinical spectrum in a large kindred with autoimmune lymphoproliferative syndrome caused by a Fas mutation that impairs lymphocyte apoptosis. J Pediatr 1998;133:629–633.

    PubMed  CAS  Google Scholar 

  112. Rieux-Laucat F, Blachere S, Danielan S, et al.: Lymphoproliferative syndrome with autoimmunity: A possible genetic basis for dominant expression of the clinical manifestations. Blood 1999;94:2575–2582.

    PubMed  CAS  Google Scholar 

  113. Jackson CE, Fischer RE, Hsu AP, et al.: Autoimmune lymphoproliferative syndrome with defective Fas: genotype influences penetrance. Am J Hum Genet 1999; 64:1002–1014.

    PubMed  CAS  Google Scholar 

  114. Wu J, Wilson J, He J, Xiang L, Schur PH, Mountz JD: Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J Clin Invest 1996;98:1107–1113.

    PubMed  CAS  Google Scholar 

  115. Janssen O, Qian J, Linkermann A, Kabelitz D: CD95 ligand—death factor and costimulatory molecule? Cell Death Differ 2003;10:1215–1225.

    PubMed  CAS  Google Scholar 

  116. Linkermann A, Qian J, Kabelitz D, Lettau M, Janssen O: Considering Fas Ligand as a target for therapy. Expert Opin Ther Targets 2005;9:119–134.

    PubMed  CAS  Google Scholar 

  117. Wang J, Zheng L, Lobito A, et al.: Inherited human caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 1999;98:47–58.

    PubMed  CAS  Google Scholar 

  118. Boursalian TE, Fink PJ: Mutation in fas ligand impairs maturation of thymocytes bearing moderate affinity T cell receptors. J Exp Med 2003;198:349–360.

    PubMed  CAS  Google Scholar 

  119. Suzuki I, Fink PJ: The dual functions of fas ligand in the regulation of peripheral CD8+ and CD4+ T cells. Proc Natl Acad Sci USA 2000;97:1707–1712.

    PubMed  CAS  Google Scholar 

  120. Linkermann A, Qian J, Kabelitz D, Janssen O: The Fas ligand as a death factor and signal transducer? Signal Transduction 2003;3:33–46.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adam-Klages, S., Adam, D., Janssen, O. et al. Death receptors and caspases. Immunol Res 33, 149–166 (2005). https://doi.org/10.1385/IR:33:2:149

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:33:2:149

Key Words

Navigation