Skip to main content
Log in

Effects of angiotensin-converting enzyme inhibitor on delayed-onset doxorubicin-induced cardiotoxicity

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Childhood survivors of cancer who are treated with anthacycline chemotherapy, such as doxorubicin (DOX), can develop late-onset cardiomyopathy years after chemotherapy. The mechanism(s) for progression of anthracycline cardiotoxicity to late cardiomyopathy is unknown. Because angiotensin II has been implicated in the progression of other cardiomyopathies, this investigation was undertaken to determine whether treatment with an angiotensin-converting enzyme (ACE) inhibitor, lisinopril, reduces the time-dependent effects of doxorubicin on cardiac gene expression and myocellular apoptosis. A single dose of saline (control) or doxorubicin (DOX treated; 2 mg/kg iv) was administered to rabbits. Control and DOX-treated groups were also subgrouped to receive lisinopril and designated as lisinopril or DOX+lisinopril, respectively (1 mg/kg/d oral), for 10 wk. Histopathology, as determined at the light and ultrastructural level, was consistent with a reduced number of cardiomyocytes relative to interstitial cells in the left ventricle (LV) of the DOX-treated group compared with control and DOX+lisinopril groups. Gene expression of the pro-atrial naturetic peptide (NAP), quantified by steady-state messenger ribonucleic acid (mRNA) levels with reverse transcriptase polymerase chain reaction (RT-PCR) and Southern blotting, increased approx 12-fold (n=10; p<0.05) in the LV of DOX-treated groups compared to control and DOX+lisinopril groups. Increased ANP mRNA expression following doxorubicin dosing was localized predominantly in ventricular myocytes by in situ hybridization. Deoxyribonucleic acid (DNA) fragmentation, determined by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling), was increased in both DOX-treated and DOX+lisinopril groups compared to the control group. Lisinopril prevented both late-onset increased ventricular ANP expression and subsequent DOX-induced myocyte loss. The authors speculate that these protective effects of lisinopril are related to reduced ANP expression and myocyte loss, the latter possibly mediated by effects on myocellular apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singal, P.K. and Iliskovic, N. (1998). Doxorubicin-induced cardiomyopathy. N. Engl. J. Med. 339:900–905.

    Article  PubMed  CAS  Google Scholar 

  2. Boucek, R.J. (1998). Mechanisms for anthracycline-induced cardiomyopathy: clinical and laboratory correlations. Prog. Pediatr. Cardio. 8:59–70.

    Article  Google Scholar 

  3. Iarussi, D, Indolfi, P., Galderisi, M., and Bossone, E. (2000). Cardiactoxicity after anthracycline chemotherapy in childhood. Hez. 25:676–688.

    CAS  Google Scholar 

  4. Steinherz, L.J., Steinherz, P.G., Tan, C.T., Heller, G., and Murphy, M.L. (1991). Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA 266:1672–1677.

    Article  PubMed  CAS  Google Scholar 

  5. Lipshultz, S., Colan, S., Gelber, R., Perez-Atayde, A., Sallan, S., and Sanders, S. (1991). Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in chidhood [see comments]. N. Engl. J. Med. 324:808–815.

    Article  PubMed  CAS  Google Scholar 

  6. Steinherz, L.J., Steinher, P.G., and Tan, C. (1995). Cardiac failure and dysrhythmias 6–19 years after anthracycline therapy: a series of 15 patients. Med. Pediatr. Oncol. 24:352–361.

    Article  PubMed  CAS  Google Scholar 

  7. Nysom, K., Colan, S.D., and Lipshiltz, S.E. (1998). Late cardiotoxicity following anthracycline therapy for childhood cancer. Prog. Pediatr. Cardiol. 8:121–138.

    Article  Google Scholar 

  8. Jaenke, R.S. (1976). Delayed and progressive myocardial lesions after adriamycin administration in the rabbit. Cancer Res. 36:2958–2966.

    PubMed  CAS  Google Scholar 

  9. Boucek, R.J., Miracle, A., Anderson, M., Engelman, R., Atkinson, J., and Dodd, D. (1999). Persistent effects of doxorubicin on cardiac gene expression. J. Mol. Cell. Cardiol. 31:1435–1446.

    Article  PubMed  CAS  Google Scholar 

  10. Packer, M. (1992). The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J. Am. Coll. Cardiol. 20:248–254.

    Article  PubMed  CAS  Google Scholar 

  11. Jaenke, R.S. (1974). An anthracycline antibiotic-induced cardiomyopathy in rabbits. Lab. Invest. 30:292–304.

    PubMed  CAS  Google Scholar 

  12. Favara, B. and Steele, A. (1997). Langerhans cell histiocytosis of lymph nodes: a morphological assessment of 43 biopsies. Pediatr. Pathol. Lab. Med. 17:769–787.

    Article  PubMed  CAS  Google Scholar 

  13. Billingham, M.E., Mason, J.W., Bristow, M.R., and Daniels, J.R. (1978). Anthracycline cardiomyopathy monitored by morphologic changes. Cancer Treat. Rep. 62:865–872.

    PubMed  CAS  Google Scholar 

  14. Chomczynski, P. and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thioicyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.

    Article  PubMed  CAS  Google Scholar 

  15. Arai, M., Tomaru, K., Takizawa, T., Sekiguchi, K., Yokoyama, T., Suzuki, T., et al. (1998). Sarcoplasmic reticulum genes are selectively down-regulated in cardiomyopathy produced by doxorubicin in rabbits. J. Mol. Cell. Cardiol. 30:243–254.

    Article  PubMed  CAS  Google Scholar 

  16. Dodd, D.A., Atkinson, J.B., Olson, R.D., Buck, S., Cusack, B.J., Fleischer, S., et al. (1993). Doxorubicin cardiomyopathy is asociated with a decrease in calcium release channel of the sarcoplasmic reticulum in a chronic rabbit model. J. Clin. Invest. 91:1697–1705.

    PubMed  CAS  Google Scholar 

  17. Rockman, H., Wachhorst, S., Mao, L., and Ross, J. (1994). ANG II receptor blockade prevents ventricular hypertrophy and ANP gene expression with pressure overload in mice. Am. J. Physiol. 266:H2468-H2475.

    PubMed  CAS  Google Scholar 

  18. Kunisada, K., Negoro, S., Tone, E. et al. (2000). Signal tranducer and activator of transcription 3 in the heart transduces not only a hypertrophic signal but a protective signal against doxorubicin-induced cardiomyopathy. PNAS 97:315–319.

    Article  PubMed  CAS  Google Scholar 

  19. Boucek, R.J. and Steele, A. (1999). ACE inhibitor therapy can reduce the progression of anthracycline cardiotoxicity. Circ. 100:I-530.

    Google Scholar 

  20. Anversa, P. and Kajstura, J. (1998). Myocyte cell death in the diseased heart. Circ. Res. 82:1231–1233.

    PubMed  CAS  Google Scholar 

  21. Rayment, N.B., Haven, A.J., Madden, B., et al. (1999). Myocyte loss in chronic heart failure. J. Pathol. 188:213–219.

    Article  PubMed  CAS  Google Scholar 

  22. Sawyer, D.B., Fukazawa, R., Arstall, M.A., and Kelly, R.A. (1999). Daunorubicin-induced apoptosis in rat cardiac myocytes is inhibited by dexrazoxane. Circ. Res. 84:257–265.

    PubMed  CAS  Google Scholar 

  23. Arola, O., Saraste, A., Pulkki, K., et al. (2000). Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Res. 60:1789–1792.

    PubMed  CAS  Google Scholar 

  24. Colucci, W. (1997). Molecular and cellular mechanisms of myocardial failure. Am. J. Card. 80:15L-25L.

    Article  PubMed  CAS  Google Scholar 

  25. Arnolda, L., McGrath, B., Cocks, M., Sumithran, E., and Johnston, C. (1985). Adriamycin cardiomyopathy in the rabbit: an animal model of low output cardiac failure with activation of vasoconstrictor mechanisms. Cardiovasc. Res. 19:378–382.

    Article  PubMed  CAS  Google Scholar 

  26. Bauch, M, Ester, A., Kimura, B., Victorica, B., Kedar, A., and Phillips, I. (1991). Atrial naturetic peptide as a marker for doxorubicin-induced cardiotoxic effects. Cancer 69:1492–1497.

    Article  Google Scholar 

  27. Bocherens-Gadient, S.A., Quast, U., Nussberger, J., Brunner, H.R., and Hof, R.P. (1992). Chronic adriamycin treatment and its effect on the cardiac beta-adrenergic system in the rabbit. J. Cardiovasc. Pharmacol. 19:770–778.

    Article  PubMed  CAS  Google Scholar 

  28. Neri, B., De Scalzi, M., De Leonardis, V., Gemelli, M.T., Ghezzi, P., and Pacini, P. (1991). Preliminary study on behaviour of atrial natriuretic factor in anthracycline-related cardiac toxicity. Int. J. Clin. Pharmacol. Res. 11:75–81.

    PubMed  CAS  Google Scholar 

  29. Tokudome, T., Mizushige, K., Noma, T., et al. (2000). Prevention of doxorubicin (adriamycin)-induced cardiomyopathy by simultaneous administration of angiotensin-converting enzyme inhibitor assessed by acoustic densitometry. J. Cardiovasc. Pharmacol. 36:361–368.

    Article  PubMed  CAS  Google Scholar 

  30. Malhotra, R., Sadoshima, J., Brosius, F.C. III, and Izumo, S. (1999). Mechanical stretch and angiotensin II differentially upregulate the renin-angiotensin system in cardiac myocytes in vitro. Circ. Res. 85:137–146.

    PubMed  CAS  Google Scholar 

  31. Wolf, K. and Kurtz, A. (1995). Renal artery stenosis rapidly enhances atrial natriuretic peptide gene expression. Hypertension 26:1011–1017.

    PubMed  CAS  Google Scholar 

  32. Kockx, M.M., Muhring, J., Knaapen, M.W., and de Meyer, G.R. (1998). RNA synthesis and splicing interferes with DNA in situ end labling techniques used to detect apoptosis [see comments]. Am. J. Pathol. 152:885–888.

    PubMed  CAS  Google Scholar 

  33. Wollert, K.C., Studer, R., von Bulow, B., and Drexler, H. (1994). Survival after myocardial infarction in the rat: role of tissue angiotensin-converting enzyme inhibition. Circulation 90:2457–2467.

    PubMed  CAS  Google Scholar 

  34. Dostal, D.E. and Baker, K.M. (1999). The cardiac reninangiotensin system: conceptual, or a regulator of cardiac function? Circ. Res. 85:643–650.

    PubMed  CAS  Google Scholar 

  35. Jensen, B., Nielsen, S., and Skovsgaard, T. (1996). Treatment with angiotensin-converting-enzyme inhibitor for epirubicin-induced dilated cardiomyopathy. Lancet 347:297–299.

    Article  PubMed  CAS  Google Scholar 

  36. Hauser, M. and Wilson, N. (2000). Anthracycline-induced cardiomyopathy: successful treatment with angiotensin converting enzyme inhibitors. Eur. J. Peds. 159:389.

    Article  CAS  Google Scholar 

  37. Shaddy, R.E., Olsen, S.L., Bristow, M.R., et al. (1995). Efficacy and safety of metoprolol in the treatment of doxorubicin-induced cardiomyopathy in pediatric patients. Am. Heart J. 129:197–199.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Boucek Jr. MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boucek, R.J., Steele, A., Miracle, A. et al. Effects of angiotensin-converting enzyme inhibitor on delayed-onset doxorubicin-induced cardiotoxicity. Cardiovasc Toxicol 3, 319–329 (2003). https://doi.org/10.1385/CT:3:4:319

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:3:4:319

Key Words

Navigation