Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-19T07:40:16.227Z Has data issue: false hasContentIssue false

Melatonin in the treatment of insomnia in children and adolescents

Published online by Cambridge University Press:  02 January 2018

David Armour
Affiliation:
Oxleas NHS Trust, Pinewood House, Pinewood Place, Dartford, Kent DA2 7WG
Carol Paton
Affiliation:
Oxleas NHS Trust
Rights & Permissions [Opens in a new window]

Abstract

Aims and Method

To review the efficacy and safety of melatonin in the treatment of insomnia in children and adolescents, through a Medline search covering the years 1966 to November 2003.

Results

Five placebo-controlled studies and several case series were identified. Melatonin reduces sleep latency, but does not consistently improve other aspects of sleep disturbance. Safety, particularly in the medium- and long-term, is poorly evaluated; short-term concerns include exacerbation of epilepsy and asthma.

Clinical Implications

Melatonin might be effective in the short-term treatment of sleep onset insomnia. The optimal dose is unknown. It cannot currently be recommended for the treatment of other forms of sleep disturbance or for routine long-term use. Melatonin is not a licensed medicine in the UK.

Type
Drug Information Quarterly
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © Royal College of Psychiatrists, 2004

From early childhood onwards, the cycle of wakefulness and sleepiness is regulated by a circadian ‘clock’ in the suprachiasmatic nucleus (SCN) of the hypothalamus. This clock is regulated (reset) by various cues, including that of the light-dark cycle of day and night.

In the neonate, there is little entrainment of the sleep-wake cycle to the light-dark cycle (Reference Garcia, Rosen and MahowaldGarcia et al, 2001). By the age of 6 months, circadian rhythms have become established and sleep patterns have taken on a roughly 24 hour cycle of nocturnal sleep plus daytime naps. By the age of 6 years, most children sleep only at night. Total sleep time gradually decreases with age and by adolescence has stabilised to a daily average of about 8 hours and the sleep-wake cycle to slightly more than 24 hours. This cycle is reset daily by the SCN.

Insomnia is a common problem in children with sensory deficits and some learning disability syndromes. It is also a symptom of childhood psychiatric disorders such as depression and attention-deficit hyperactivity disorder. Persistent sleep disturbance in a young child can adversely affect family life. Mothers of learning-disabled children with severe sleep problems have been reported to be more irritable and less affectionate towards their children than mothers of such children without sleep problems (Reference QuineQuine, 1992). Successful treatment of the child’s sleep problems generally leads to improvements in the mother’s mental state, confidence and relationship with the child, as well as in the child’s behaviour (Reference Minde, Faucon and FaulknerMinde et al, 1994).

In adolescence, delayed sleep phase syndrome, in which the sleep-wake cycle may be particularly prolonged, is common. About 10% of otherwise normal children (Reference Smits, Nagtegaal and van Der HeijdenSmits et al, 2001) and up to 80% of children with developmental disorders (Reference Jan and O'DonnellJan & O’Donnell, 1996) are affected.

The role of melatonin

Melatonin is an endogenous hormone chemically related to serotonin. It is produced by the pineal gland in the midbrain. Body levels follow a circadian course, being stimulated by the evening onset of dim light and suppressed by bright light. The evening rise in melatonin precedes the rise in sleepiness by about 1.5-2 hours (Reference Tzischinsky and LavieTzischinsky & Lavie, 1994). The circadian rhythm of sleep consolidation (the ability to stay asleep) may also be related to melatonin levels, but this has yet to be demonstrated. Melatonin acts by resetting any disruption of SCN rhythms. Given its association with circadian rhythms, oral melatonin could be expected to treat sleep disturbances. Many case studies, case series, open and controlled studies have been published. These are summarised below.

Case series

Jan & O’Donnell (Reference Jan and O'Donnell1996) gave melatonin (2.5-25 mg) to 100 children with developmental disorders, half of whom were visually impaired or blind. Benefits including fewer tantrums, better attention and improved socialisation were noted in 80%. In a further case series, Palm et al (Reference Palm, Blennow and Wetterberg1997) gave melatonin (0.5-4 mg) 30-60 min before the scheduled bedtime to eight children and young adults. All the children were learning-disabled and blind, and four also had hearing impairments. All improved in terms of sleep-wake timings.

In a case series of two children with Rett syndrome, a dramatically beneficial effect on the regulation of the sleep-wake cycle was seen in one child, with the other child showing marginal benefit (Reference Miyamoto, Oki and TakahashiMiyamoto et al, 1999). Jan (Reference Jan2000) gave melatonin (3 mg) to 10 children with developmental disorders and severe sleep disorders: 8 of the 10 improved with respect to delay of sleep onset, early morning waking, duration of unbroken sleep and total duration of sleep. In the most recent case series, Ivanenko et al (Reference Ivanenko, Crabtree and Tauman2003) gave melatonin (average dose 2 mg) an hour before bedtime to 32 children with chronic sleep problems. Partial or complete resolution of sleep problems was achieved in 29. Some children (number unstated) were receiving other unspecified medical and behavioural interventions.

Controlled studies

Five placebo-controlled studies have been published. Camfield et al (Reference Camfield, Gordon and Dooley1996) gave melatonin (0.5 mg or 1mg) or placebo in 2-week alternating phases at 18.00 to six children with fragmented sleep and developmental disorders, none of whom showed any significant improvement in sleep patterns. McArthur & Budden (Reference Mcarthur and Budden1998) gave nine children with Rett syndrome variable doses of melatonin or placebo for a 4-week period with a 1-week drug wash-out period between the treatment and placebo phases. Sleep latency was reduced significantly in the treatment phase, although individual response varied greatly. Dodge & Wilson (Reference Dodge and Wilson2001), in a 6-week double-masked, placebo-controlled study, compared melatonin with placebo in 20 children with developmental disorders. Significant reductions in sleep latency were observed, but sleep duration and number of awakenings did not change.

Smits et al (Reference Smits, Nagtegaal and van Der Heijden2001) gave 40 children with sleep onset insomnia either 5 mg melatonin or placebo once daily at 18.00 for 4 weeks. Children with developmental disorders were excluded. Melatonin was significantly better than placebo with respect to lights-off time, sleep onset and sleep duration, but not sleep latency or wake-up time. Two children had mild headache during the first 2 days of treatment with melatonin, and one child developed mild generalised epilepsy while taking open-label melatonin 4 months after the start of the trial. On 18-month follow-up, 13 children were able to stop taking melatonin without further sleep disturbance.

In a further similar study (Reference Smits, van Stel and Vander HeijdenSmits et al, 2003), 62 children with idiopathic chronic sleep-onset disorder were given melatonin 5 mg or placebo for 4 weeks after a 1-week baseline period. The active group improved significantly in measures of general health, sleep onset time and sleep offset time. There was no change in lights-off time or total sleep time. Children with comorbid psychiatric illness were excluded from this study, with the exception of those treated with methylphenidate. The active and placebo groups contained markedly different numbers of children prescribed methylphenidate (22% v. 54%). This could have biased the result, as methylphenidate is independently associated with insomnia.

Melatonin is widely prescribed by child psychiatrists in the UK, although it is not a licensed medicine.

Side-effects

Since melatonin is a natural substance, it is often assumed that its side-effect profile is benign. However, most other endogenous hormones produce considerable adverse effects in high or inappropriately phased doses and it should be anticipated that melatonin might behave similarly. Many of the published reports involved children with developmental abnormalities, which limited the scope for detection of subtle adverse effects. Most studies involved short-term use of melatonin and did not systematically inquire about side-effects.

Sheldon (Reference Sheldon1998) reported that melatonin increased seizure frequency in neurologically disabled children, an effect that disappeared when melatonin was discontinued and reappeared on further challenge. Also, Smits et al (Reference Smits, Nagtegaal and van Der Heijden2001) reported the development of mild epilepsy in one child. Whether seizure threshold is affected in the general population is unknown.

Melatonin raises levels of inflammatory cytokines such as interleukins 1 and 6 and tumour necrosis factor alpha (Reference MaestroniMaestroni, 1993), and this effect may have adverse consequences for people with inflammatory-mediated conditions such as asthma. Sutherland et al (Reference Sutherland, Ellison and Kraft2003) and Sutherland et al (Reference Sutherland, Martin and Ellison2002) reported that peak endogenous levels of melatonin were elevated in people with nocturnal asthma and were inversely correlated with measures of respiratory function; they concluded that the ‘avoidance of exogenous melatonin supplementation by persons with asthma might be warranted’.

Melatonin has contraceptive properties and can affect the onset of puberty (Reference WeaverWeaver, 1997). It also has antioxidant (Reference Pieri, Marra and MoroniPieri et al, 1994) and cytostatic (Reference BrzezinskiBrzezinski, 1997) properties. These effects are minimal at physiological levels, but may become more apparent when synthetic melatonin is taken in supraphysiological doses: the cut-off point between physiological and pharmacological levels in adults is estimated to be produced by doses of 500 μg, and this is likely to be less in children.

In clinical depression in adults, there is evidence that the risk-benefit ratio for melatonin may be adverse. Carman et al (Reference Carman, Post and Buswell1976) found that melatonin exacerbated symptoms of dysphoria, reduced sleep and led to weight loss in a small, double-blind, cross-over study in moderately to severely depressed adult patients. It has been suggested that seasonal affective disorder might respond to propranolol through the suppression of endogenous melatonin production (National Institute of Mental Health USA, 2003).

Overview

Five placebo-controlled trials in children have been identified. Most of the published literature consists of case reports and case series, which used a variety of doses and formulations of melatonin. The nature of the populations treated is diverse, and most studies report shortterm use in which the placebo effect would be highest. Oral melatonin may reduce sleep latency, but its effects on other aspects of sleep are inconsistent between studies. The optimal dosages and duration of treatment are unknown. Side-effects have been poorly evaluated to date, although worsening of seizures and asthma have been reported in the short term. Long-term side-effects are not established, although melatonin is known to have significant effects on many body systems. Melatonin is not a licensed medicine in the UK and the prescriber is fully accountable for any problems that might result from its use.

Footnotes

Declaration of interest

None.

References

Brzezinski, A. (1997) Mechanisms of disease: melatonin in humans. New England Journal of Medicine, 336, 186195.CrossRefGoogle Scholar
Camfield, P., Gordon, K. & Dooley, J. (1996) Melatonin appears ineffective in children with intellectual deficits and fragmented sleep: six ‘N of1’ trials. Journal of Child Neurology, 11, 341343.CrossRefGoogle Scholar
Carman, J. S., Post, R. M., Buswell, R., et al (1976) Negative effects of melatonin on depression. American Journal of Psychiatry, 133, 11811186.Google ScholarPubMed
Dodge, N. N. & Wilson, G. A. (2001) Melatonin for treatment of sleep disorders in children with developmental disabilities. Journal of Child Neurology, 16, 581584.CrossRefGoogle ScholarPubMed
Garcia, J., Rosen, G. & Mahowald, M. (2001) Circadianrhythm disorders in children and adolescents. Seminars in Paediatric Neurology, 8, 229240.CrossRefGoogle Scholar
Ivanenko, A., Crabtree, V. M., Tauman, R., et al (2003) Melatonin in children and adolescents with insomnia: a retrospective study. Clinical Paediatrics, 42, 5158.CrossRefGoogle ScholarPubMed
Jan, M. S. (2000) Melatonin for the treatment of handicapped children with severe sleep disorder. Paediatric Neurology, 23, 229232.CrossRefGoogle Scholar
Jan, J. E. & O'Donnell, M. E. (1996) Use of melatonin in the treatment of paediatric sleep disorders. Journal of Pineal Research, 21, 193199.CrossRefGoogle ScholarPubMed
Maestroni, G. J. M. (1993) The immunoendocrine role of melatonin. Journal of Pineal Research, 14, 110.CrossRefGoogle Scholar
Mcarthur, A. J. & Budden, S. S. (1998) Sleep dysfunction in Rett syndrome: a trial of exogenous melatonin treatment. Developmental Medicine and Child Neurology, 49, 186192.CrossRefGoogle Scholar
Minde, K., Faucon, A. & Faulkner, S. (1994) Sleep problems in toddlers, effects of treatment on their daytime behaviour. Journal of the American Academy of Child and Adolescent Psychiatry, 33, 11141121.CrossRefGoogle Scholar
Miyamoto, A., Oki, J., Takahashi, S., et al (1999) Serum melatonin kinetics and long-term melatonin treatment for sleep disorders in Rett syndrome. Brain and Development, 21, 5962.CrossRefGoogle ScholarPubMed
National Institute for Mental Health USA (2003) Treatment of Winter Depression with Pharmacological Suppression of Melatonin Secretion. London: National Institute for Mental Health.Google Scholar
Palm, L., Blennow, G. & Wetterberg, L. (1997) Long-term melatonin treatment in blind children and young adults with circadian sleep-wake disturbances. Developmental Medicine and Child Neurology, 39, 319325.CrossRefGoogle Scholar
Pieri, C., Marra, M., Moroni, F., et al (1994) Melatonin: a peroxylradical scavenger more effective than Vitamin E. Life Sciences, 55, 271276.CrossRefGoogle Scholar
Quine, L. (1992) Severity of sleep problems in children with severe learning disabilities: description and correlates. Journal of Community and Applied Social Psychology, 2, 247268.CrossRefGoogle Scholar
Sheldon, S. H. (1998) Pro-convulsant effects of oral melatonin in neurologically disabled children. Lancet, 351, 1254.CrossRefGoogle ScholarPubMed
Smits, M. G., Nagtegaal, E. E., van Der Heijden, R., et al (2001) Melatonin for chronic sleep onset disorder in children: a randomised placebo-controlled trial. Journal of Child Neurology, 16, 8692.CrossRefGoogle Scholar
Smits, M. G., van Stel, H. F., Vander Heijden, K., et al (2003) Melatonin improves health status and sleep in children with idiopathic chronic sleep-onset insomnia: a randomised placebo-controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 42, 12861293.CrossRefGoogle Scholar
Sutherland, E. R., Martin, R. J., Ellison, M. C., et al (2002) Immunomodulatory effects of melatonin in man. American Journal of Respiratory and Critical Care Medicine, 166, 10551061.CrossRefGoogle Scholar
Sutherland, E. R., Ellison, M. C., Kraft, M., et al (2003) Elevated serum melatonin is associated with the nocturnal worsening of asthma. Journal of Allergy and Clinical Immunology, 112, 513517.CrossRefGoogle ScholarPubMed
Tzischinsky, O. & Lavie, P. (1994) Melatonin possesses time-dependent hypnotic effects. Sleep, 17, 638645.CrossRefGoogle ScholarPubMed
Weaver, D. R. (1997) Reproductive safety of melatonin: a ‘wonder drug’ to wonder about. Journal of Biological Rhythms, 12, 682689.CrossRefGoogle Scholar
Submit a response

eLetters

No eLetters have been published for this article.