Skip to main content

Advertisement

Log in

Physiologic Uterine Inflammation and Labor Onset: Integration of Endocrine and Mechanical Signals

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The mechanisms underlying the preparation of the uterus for labor are not fully understood. Our previous studies have shown that during pregnancy, the uterine muscle (myometrium) undergoes dramatic phenotypic modulation culminating in term labor. The current review will discuss the cellular mechanisms involved in the regulation of myometrial activity and its modulation by endocrine signals and by mechanical stimulation of the uterus by the growing fetus. In particular, the contribution of uterine inflammation to the onset of labor will be described. We provide evidence that increased production of cytokines/chemokines in pregnant myometrium is associated with uterine occupancy and regulated by progesterone, suggesting the integration of mechanical and endocrine signals. Myometrial cells can actively participate in the inflammatory process in the uterus through the release of multiple proinflammatory cytokines and chemokines, providing a strong signal for activation of immune cells, their subsequent infiltration into pregnant uterus, and the initiation of labor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gibb WL, Lye SJ, Challis J. Parturition. In: Knobil and Neill, eds Physiology of Reproduction. Elsevier Inc; 2006:2925–2974.

  2. Shynlova O, Mitchell JA, Tsampalieros A, Langille BL, Lye SJ. Progesterone and gravidity differentially regulate expression of extracellular matrix components in the pregnant rat myometrium. Biol Reprod. 2004;70(4):986–992.

    Article  CAS  PubMed  Google Scholar 

  3. MacPhee DJ, Mostachfi H, Han R, Lye SJ, Post M, Caniggia I. Focal adhesion kinase is a key mediator of human trophoblast development. Lab Invest. 2001;81(11):1469–1483.

    Article  CAS  PubMed  Google Scholar 

  4. Shynlova O, Williams SJ, Draper H, White BG, MacPhee DJ, Lye SJ. Uterine stretch regulates temporal and spatial expression of fibronectin protein and its alpha 5 integrin receptor in myometrium of unilaterally pregnant rats. Biol Reprod. 2007;77(5):880–888.

    Article  CAS  PubMed  Google Scholar 

  5. Shynlova O, Tsui P, Dorogin A, Chow M, Lye SJ. Expression and localization of alpha-smooth muscle and gamma-actins in the pregnant rat myometrium. Biol Reprod. 2005;73(4):773–780.

    Article  CAS  PubMed  Google Scholar 

  6. Shynlova O, Tsui P, Dorogin A, Lye SJ. Monocyte chemoattractant protein-1 (CCL-2) integrates mechanical and endocrine signals that mediate term and preterm labor. J Immunol. 2008;181(2):1470–1479.

    Article  CAS  PubMed  Google Scholar 

  7. Shynlova O, Nedd-Roderique TLY, Dorogin A, Lye SJ. Increase in uterine myeloid cells contribute to term parturition, inflammation-associated preterm labour and post-partum involution in mice. J Cell Mol Med. In press.

  8. Shynlova O, Oldenhof A, Dorogin A, Xu Q, Mu J, Nashman N, et al. Myometrial apoptosis: activation of the caspase cascade in the pregnant rat myometrium at midgestation. Biol Reprod. 2006;74(5):839–849.

    Article  CAS  PubMed  Google Scholar 

  9. Osman I, Young A, Ledingham MA, Thomson AJ, Jordan F, Greer IA, et al. Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Mol Hum Reprod. 2003;9(1):41–45.

    Article  CAS  PubMed  Google Scholar 

  10. Ledingham MA, Thomson AJ, Jordan F, Young A, Crawford M, Norman JE. Cell adhesion molecule expression in the cervix and myometrium during pregnancy and parturition. Obstet Gynecol. 2001;97(2):235–242.

    CAS  PubMed  Google Scholar 

  11. Thomson AJ, Telfer JF, Young A, Campbell S, Stewart CJ, Cameron IT, et al. Leukocytes infiltrate the myometrium during human parturition: further evidence that labour is an inflammatory process. Hum Reprod. 1999;14(1):229–236.

    Article  CAS  PubMed  Google Scholar 

  12. Mitchell BF, Taggart MJ. Are animal models relevant to key aspects of human parturition? Am J Physiol Regul Integr Comp Physiol. 2009;297(3):R525–R545.

    Article  CAS  PubMed  Google Scholar 

  13. Prematurity Statistics. March of Dimes Birth Defects Foundation; 2004.

  14. Mor G, Cardenas I, Abrahams V, Guller S. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci. 2011;1221:80–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sacks GP, Studena K, Sargent K, Redman CW. Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am J Obstet Gynecol. 1998;179(1):80–86.

    Article  CAS  PubMed  Google Scholar 

  16. Cardenas I, Means RE, Aldo P, Koga K, Lang SM, Booth CJ, et al. Viral infection of the placenta leads to fetal inflammation and sensitization to bacterial products predisposing to preterm labor. J Immunol. 2010;185(2):1248–1257.

    Article  CAS  PubMed  Google Scholar 

  17. Shynlova O, Tsui P, Jaffer S, Lye SJ. Integration of endocrine and mechanical signals in the regulation of myometrial functions during pregnancy and labour. Eur J Obstet Gynecol Reprod Biol. 2009;144(suppl 1):S2–S10.

    Article  CAS  PubMed  Google Scholar 

  18. Mor G, Cardenas I. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol. 2010;63(6):425–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dunk C, Smith S, Hazan A, Whittle W, Jones RL. Promotion of angiogenesis by human endometrial lymphocytes. Immunol Invest. 2008;37(5):583–610.

    Article  CAS  PubMed  Google Scholar 

  20. Romero R, Espinoza J, Goncalves LF, Kusanovic JP, Friel LA, Nien JK. Inflammation in preterm and term labour and delivery. Semin Fetal Neonatal Med. 2006;11(5):317–326.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kelly RW. Inflammatory mediators and parturition. Rev Reprod. 1996;1(2):89–96.

    Article  CAS  PubMed  Google Scholar 

  22. Bokstrom H, Brannstrom M, Alexandersson M, Norstrom A. Leukocyte subpopulations in the human uterine cervical stroma at early and term pregnancy. Hum Reprod. 1997;12(3):586–590.

    Article  CAS  PubMed  Google Scholar 

  23. Junqueira LC, Zugaib M, Montes GS, Toledo OM, Krisztan RM, Shigihara KM. Morphologic and histochemical evidence for the occurrence of collagenolysis and for the role of neutrophilic polymorphonuclear leukocytes during cervical dilation. Am J Obstet Gynecol. 1980;138(3):273–281.

    Article  CAS  PubMed  Google Scholar 

  24. Liggins G. Cervical ripening as an inflammatory reaction. In: Ellwood DA, Anderson ABM The Cervix in Pregnancy and Labour: Clinical and Biochemical Investigations. Edinburgh: Churchill Livingstone; 1981:1–9.

    Google Scholar 

  25. Osmers RG, Adelmann-Grill BC, Rath W, Stuhlsatz HW, Tschesche H, Kuhn W. Biochemical events in cervical ripening dilatation during pregnancy and parturition. J Obstet Gynaecol. 1995;21(2):185–194.

    Article  CAS  Google Scholar 

  26. Rajabi MR, Dean DD, Beydoun SN, Woessner JF Jr. Elevated tissue levels of collagenase during dilation of uterine cervix in human parturition. Am J Obstet Gynecol. 1988;159(4):971–976.

    Article  CAS  PubMed  Google Scholar 

  27. Keski-Nisula LT, Aalto ML, Kirkinen PP, Kosma VM, Heinonen ST. Myometrial inflammation in human delivery and its association with labor and infection. Am J Clin Pathol. 2003;120(2):217–224.

    Article  PubMed  Google Scholar 

  28. Bollapragada S, Youssef R, Jordan F, Greer I, Norman J, Nelson S. Term labor is associated with a core inflammatory response in human fetal membranes, myometrium, and cervix. Am J Obstet Gynecol. 2009;200(1):104–111.

    PubMed  Google Scholar 

  29. Halgunset J, Johnsen H, Kjollesdal AM, Qvigstad E, Espevik T, Austgulen R. Cytokine levels in amniotic fluid and inflammatory changes in the placenta from normal deliveries at term. Eur J Obstet Gynecol Reprod Biol. 1994;56(3):153–160.

    Article  CAS  PubMed  Google Scholar 

  30. Hamilton S, Oomomian Y, Stephen G, Shynlova O, Tower CL, Garrod A, et al. Macrophages infiltrate the human and rat decidua during term and preterm labor: evidence that decidual inflammation precedes labor. Biol Reprod. 2012;86(2):39.

    Article  PubMed  CAS  Google Scholar 

  31. Garcia-Velasco JA, Arici A. Chemokines and human reproduction. Fertil Steril. 1999;71(6):983–993.

    Article  CAS  PubMed  Google Scholar 

  32. Orsi NM, Tribe RM. Cytokine networks and the regulation of uterine function in pregnancy and parturition. J Neuroendocrinol. 2008;20(4):462–469.

    Article  CAS  PubMed  Google Scholar 

  33. Kayisli UA, Mahutte NG, Arici A. Uterine chemokines in reproductive physiology and pathology. Am J Reprod Immunol. 2002;47(4):213–221.

    Article  PubMed  Google Scholar 

  34. Pollard JK, Mitchell MD. Intrauterine infection and the effects of inflammatory mediators on prostaglandin production by myometrial cells from pregnant women. Am J Obstet Gynecol. 1996;174(2):682–686.

    Article  CAS  PubMed  Google Scholar 

  35. Keelan JA, Blumenstein M, Helliwell RJ, Sato TA, Marvin KW, Mitchell MD. Cytokines, prostaglandins and parturition–a review. Placenta. 2003;24(suppl A):S33–S46.

    Article  CAS  PubMed  Google Scholar 

  36. Tribe RM, Moriarty P, Dalrymple A, Hassoni AA, Poston L. Interleukin-1beta induces calcium transients and enhances basal and store operated calcium entry in human myometrial smooth muscle. Biol Reprod. 2003;68(5):1842–1849.

    Article  CAS  PubMed  Google Scholar 

  37. Unal ER, Cierny JT, Roedner C, Newman R, Goetzl L. Maternal inflammation in spontaneous term labor. Am J Obstet Gynecol. 2011;204(3):223–225.

    Article  PubMed  Google Scholar 

  38. Shynlova O, Sabra S, Lye SA. Cytokine signature associated with the onset of term and preterm labour. Reprod Sci. 2011;183(suppl):151A.

    Google Scholar 

  39. Yuan M, Jordan F, McInnes IB, Harnett MM, Norman JE. Leukocytes are primed in peripheral blood for activation during term and preterm labour. Mol Hum Reprod. 2009;15(11):713–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sabra S, Shynlova O, Lye S. Immunophenotyping of maternal peripheral blood detects activated leukocyte subpopulations associated with preterm labor editor. Reprod Sci. 2011;183(suppl):269A.

    Google Scholar 

  41. Rinaldi SF, Hutchinson JL, Rossi AG, Norman JE. Anti-inflammatory mediators as physiological and pharmacological regulators of parturition. Expert Rev Clin Immunol. 2011;7(5):675–696.

    Article  CAS  PubMed  Google Scholar 

  42. Shynlova O, Dorogin A, Li Y, Lye T, Lye S. Broad spectrum chemokine inhibitor delays infection-induced preterm delivery in mice. Reprod Sci. 2012; 19 (3)(suppl):104A.

    Google Scholar 

  43. Mesiano S, Wang Y, Norwitz ER. Progesterone receptors in the human pregnancy uterus: do they hold the key to birth timing? Reprod Sci. 2011;18(1):6–19.

    Article  CAS  PubMed  Google Scholar 

  44. Pieber D, Allport VC, Hills F, Johnson M, Bennett PR. Interactions between progesterone receptor isoforms in myometrial cells in human labour. Mol Hum Reprod. 2001;7(9):875–879.

    Article  CAS  PubMed  Google Scholar 

  45. Merlino AA, Welsh TN, Tan H, Yi LJ, Cannon V, Mercer BM, et al. Nuclear progesterone receptors in the human pregnancy myometrium: evidence that parturition involves functional progesterone withdrawal mediated by increased expression of progesterone receptor-A. J Clin Endocrinol Metab. 2007;92(5):1927–1933.

    Article  CAS  PubMed  Google Scholar 

  46. Condon JC, Hardy DB, Kovaric K, Mendelson CR. Up-regulation of the progesterone receptor (PR)-C isoform in laboring myometrium by activation of nuclear factor-kappaB may contribute to the onset of labor through inhibition of PR function. Mol Endocrinol. 2006;20(4):764–775.

    Article  CAS  PubMed  Google Scholar 

  47. Allport VC, Pieber D, Slater DM, Newton R, White JO, Bennett PR. Human labour is associated with nuclear factor-kappaB activity which mediates cyclo-oxygenase-2 expression and is involved with the ‘functional progesterone withdrawal’. Mol Hum Reprod. 2001;7(6):581–586.

    Article  CAS  PubMed  Google Scholar 

  48. Dong X, Shylnova O, Challis JR, Lye SJ. Identification and characterization of the protein-associated splicing factor as a negative co-regulator of the progesterone receptor. J Biol Chem. 2005;280(14):13329–13340.

    Article  CAS  PubMed  Google Scholar 

  49. Ou CW, Chen ZQ, Qi S, Lye SJ. Increased expression of the rat myometrial oxytocin receptor messenger ribonucleic acid during labor requires both mechanical and hormonal signals. Biol Reprod. 1998;59(5):1055–1061.

    Article  CAS  PubMed  Google Scholar 

  50. Graham JD, Clarke CL. Physiological action of progesterone in target tissues. Endocr Rev. 1997;18(4):502–519.

    CAS  PubMed  Google Scholar 

  51. Shynlova O, Tsui P, Dorogin A, Langille BL, Lye SJ. The expression of transforming growth factor beta in pregnant rat myometrium is hormone and stretch dependent. Reproduction. 2007;134(3):503–511.

    Article  CAS  PubMed  Google Scholar 

  52. Orsino A, Taylor CV, Lye SJ. Connexin-26 and connexin-43 are differentially expressed and regulated in the rat myometrium throughout late pregnancy and with the onset of labor. Endocrinology. 1996;137(5):1545–1553.

    Article  CAS  PubMed  Google Scholar 

  53. Ou CW, Orsino A, Lye SJ. Expression of connexin-43 and connexin-26 in the rat myometrium during pregnancy and labor is differentially regulated by mechanical and hormonal signals. Endocrinology. 1997;138(12):5398–5407.

    Article  CAS  PubMed  Google Scholar 

  54. Petrocelli T, Lye SJ. Regulation of transcripts encoding the myometrial gap junction protein, connexin-43, by estrogen and progesterone. Endocrinology. 1993;133(1):284–290.

    Article  CAS  PubMed  Google Scholar 

  55. Elovitz M, Wang Z. Medroxyprogesterone acetate, but not progesterone, protects against inflammation-induced parturition and intrauterine fetal demise. Am J Obstet Gynecol. 2004;190(3):693–701.

    Article  CAS  PubMed  Google Scholar 

  56. Norman JE, Yuan M, Anderson L, Howie F, Harold G, Young A, et al. Effect of prolonged in vivo administration of progesterone in pregnancy on myometrial gene expression, peripheral blood leukocyte activation, and circulating steroid hormone levels. Reprod Sci. 2011;18(5):435–446.

    Article  CAS  PubMed  Google Scholar 

  57. Mackay CR. Chemokines: immunology’s high impact factors. Nat Immunol. 2001;2(2):95–101.

    Article  CAS  PubMed  Google Scholar 

  58. Salamonsen LA, Zhang J, Brasted M. Leukocyte networks and human endometrial remodelling. J Reprod Immunol. 2002;57(1–2):95–108.

    Article  CAS  PubMed  Google Scholar 

  59. Colobran R, Pujol-Borrell R, Armengol MP, Juan M. The chemokine network. I. How the genomic organization of chemokines contains clues for deciphering their functional complexity. Clin Exp Immunol. 2007;148(2):208–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thelen M. Dancing to the tune of chemokines. Nat Immunol. 2001;2(2):129–134.

    Article  CAS  PubMed  Google Scholar 

  61. Tornblom SA, Klimaviciute A, Bystrom B, Chromek M, Brauner A, Ekman-Ordeberg G. Non-infected preterm parturition is related to increased concentrations of IL-6, IL-8 and MCP-1 in human cervix. Reprod Biol Endocrinol. 2005;3:39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Dudley DJ, Edwin SS, Van Wagoner J, Augustine NH, Hill HR, Mitchell MD. Regulation of decidual cell chemokine production by group B streptococci and purified bacterial cell wall components. Am J Obstet Gynecol. 1997;177(3):666–672.

    Article  CAS  PubMed  Google Scholar 

  63. Kelly RW, Illingworth P, Baldie G, Leask R, Brouwer S, Calder AA. Progesterone control of interleukin-8 production in endometrium and chorio-decidual cells underlines the role of the neutrophil in menstruation and parturition. Hum Reprod. 1994;9(2):253–258.

    Article  CAS  PubMed  Google Scholar 

  64. Okawa T, Suzuki H, Yaanagida K, Sato A, Vedernikov Y, Saade G, et al. Effect of lipopolysaccharide on uterine contractions and prostaglandin production in pregnant rats. Am J Obstet Gynecol. 2001;184(2):84–89.

    Article  CAS  PubMed  Google Scholar 

  65. Orsi NM, Gopichandran N, Bulsara H, Ekbote UV, Walker JJ. Regulation of maternal serum and amniotic fluid cytokine profiles in the mouse: possible roles in the onset of labour. J Reprod Immunol. 2007;75(2):97–105.

    Article  CAS  PubMed  Google Scholar 

  66. Farina L, Winkelman C. A review of the role of proinflammatory cytokines in labor and noninfectious preterm labor. Biol Res Nurs. 2005;6(3):230–238.

    Article  PubMed  Google Scholar 

  67. Kemp B, Winkler M, Maas A, Maul H, Ruck P, Reineke T, et al. Cytokine concentrations in the amniotic fluid during parturition at term: correlation to lower uterine segment values and to labor. Acta Obstet Gynecol Scand. 2002;81(10):938–942.

    Article  PubMed  Google Scholar 

  68. Winkler M, Kemp B, Fischer DC, Maul H, Hlubek M, Rath W. Tissue concentrations of cytokines in the lower uterine segment during preterm parturition. J Perinat Med. 2001;29(6):519–527.

    Article  CAS  PubMed  Google Scholar 

  69. Osmers RG, Blaser J, Kuhn W, Tschesche H. Interleukin-8 synthesis and the onset of labor. Obstet Gynecol. 1995;86(2):223–229.

    Article  CAS  PubMed  Google Scholar 

  70. Liang Z, Sooranna SR, Engineer N, Tattersall M, Khanjani S, Bennett PR, et al. Prostaglandin F2-alpha receptor regulation in human uterine myocytes. Mol Hum Reprod. 2008;14(4):215–223.

    Article  CAS  PubMed  Google Scholar 

  71. Christiaens I, Zaragoza DB, Guilbert L, Robertson SA, Mitchell BF, Olson DM. Inflammatory processes in preterm and term parturition. J Reprod Immunol. 2008;79(1):50–57.

    Article  CAS  PubMed  Google Scholar 

  72. Khanjani S, Kandola MK, Lindstrom TM, Sooranna SR, Melchionda M, Lee YS, et al. NF-kappaB regulates a cassette of immune/inflammatory genes in human pregnant myometrium at term. J Cell Mol Med. 2011;15(4):809–824.

    Article  CAS  PubMed  Google Scholar 

  73. Esplin MS, Peltier MR, Hamblin S, Smith S, Fausett MB, Dildy GA, et al. Monocyte chemotactic protein-1 expression is increased in human gestational tissues during term and preterm labor. Placenta. 2005;26(8–9):661–671.

    Article  CAS  PubMed  Google Scholar 

  74. Gruden G, Setti G, Hayward A, Sugden D, Duggan S, Burt D, et al. Mechanical stretch induces monocyte chemoattractant activity via an NF-kappaB-dependent monocyte chemoattractant protein-1-mediated pathway in human mesangial cells: inhibition by rosiglitazone. J Am Soc Nephrol. 2005;16(3):688–696.

    Article  CAS  PubMed  Google Scholar 

  75. Lockwood CJ, Matta P, Krikun G, Koopman LA, Masch R, Toti P, et al. Regulation of monocyte chemoattractant protein-1 expression by tumor necrosis factor-alpha and interleukin-1beta in first trimester human decidual cells: implications for preeclampsia. Am J Pathol. 2006;168(2):445–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sozen I, Olive DL, Arici A. Expression and hormonal regulation of monocyte chemotactic protein-1 in myometrium and leiomyomata. Fertil Steril. 1998;69(6):1095–1102.

    Article  CAS  PubMed  Google Scholar 

  77. Romero R, Avila C, Santhanam U, Sehgal PB. Amniotic fluid interleukin 6 in preterm labor. Association with infection. J Clin Invest. 1990;85(5):1392–1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Witkin SS, Chervenak J, Bongiovanni AM, Herway C, Linhares IM, Skupski D. Influence of mid-trimester amniotic fluid on endogenous and lipopolysaccharide-mediated responses of mononuclear lymphoid cells. Am J Reprod Immunol. 2012;67(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  79. Mittal P, Romero R, Tarca AL, Gonzalez J, Draghici S, Xu Y, et al. Characterization of the myometrial transcriptome and biological pathways of spontaneous human labor at term. J Perinat Med. 2010;38(6):617–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hua R, Pease JE, Sooranna SR, Viney JM, Nelson SM, Myatt L, et al. Stretch and inflammatory cytokines drive myometrial chemokine expression via NF-kappaB activation. Endocrinology. 2012;153(1):481–491.

    Article  CAS  PubMed  Google Scholar 

  81. Tattersall M, Engineer N, Khanjani S, Sooranna SR, Roberts VH, Grigsby PL, et al. Pro-labour myometrial gene expression: are preterm labour and term labour the same? Reproduction. 2008;135(4):569–579.

    Article  CAS  PubMed  Google Scholar 

  82. Wu X, Morgan KG, Jones CJ, Tribe RM, Taggart MJ. Myometrial mechanoadaptation during pregnancy: implications for smooth muscle plasticity and remodelling. J Cell Mol Med. 2008;12(4):1360–1373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cunningham FG, Hauth JCH, Leveno KJ, Gilstrap L III, Bloom SL, Wenstrom KD. Williams Obstetrics. Chapter 38. In: Fetal Growth Disorders. 2nd ed. New York, NY: McGraw-Hill; 2005:893.

    Google Scholar 

  84. Challis JRG, Matthews SG, Gibb W, Lye SJ. Endocrine and paracrine regulation of birth at term and preterm. Endocr Rev. 2000;21(5):514–550.

    CAS  PubMed  Google Scholar 

  85. Slattery MM, Morrison JJ. Preterm delivery. Lancet. 2002;360(9344):1489–1497.

    Article  PubMed  Google Scholar 

  86. Lye SJ, Mitchell J, Nashman N, Oldenhof A, Ou R, Shynlova O, et al. Role of mechanical signals in the onset of term and preterm labor. Front Horm Res. 2001;27:165–178.

    Article  CAS  PubMed  Google Scholar 

  87. Li Y, Gallant C, Malek S, Morgan KG. Focal adhesion signaling is required for myometrial ERK activation and contractile phenotype switch before labor. J Cell Biochem. 2007;100(1):129–140.

    Article  CAS  PubMed  Google Scholar 

  88. Oldenhof AD, Shynlova OP, Liu M, Langille BL, Lye SJ. Mitogen-activated protein kinases mediate stretch-induced c-fos mRNA expression in myometrial smooth muscle cells. Am J Physiol Cell Physiol. 2002;283(5):C1530–C1539.

    Article  CAS  PubMed  Google Scholar 

  89. Kumar A, Knox AJ, Boriek AM. CCAAT/enhancer-binding protein and activator protein-1 transcription factors regulate the expression of interleukin-8 through the mitogen-activated protein kinase pathways in response to mechanical stretch of human airway smooth muscle cells. J Biol Chem. 2003;278(21):18868–18876.

    Article  CAS  PubMed  Google Scholar 

  90. Zampetaki A, Zhang Z, Hu Y, Xu Q. Biomechanical stress induces IL-6 expression in smooth muscle cells via Ras/Rac1-p38 MAPK-NF-kappaB signaling pathways. Am J Physiol Heart Circ Physiol. 2005;288(6):H2946–H2954.

    Article  CAS  PubMed  Google Scholar 

  91. Yamamoto H, Teramoto H, Uetani K, Igawa K, Shimizu E. Cyclic stretch upregulates interleukin-8 and transforming growth factor-beta1 production through a protein kinase C-dependent pathway in alveolar epithelial cells. Respirology. 2002;7(2):103–109.

    Article  PubMed  Google Scholar 

  92. Loudon JA, Sooranna SR, Bennett PR, Johnson MR. Mechanical stretch of human uterine smooth muscle cells increases IL-8 mRNA expression and peptide synthesis. Mol Hum Reprod. 2004;10(12):895–899.

    Article  CAS  PubMed  Google Scholar 

  93. Lei K, Chen L, Cryar BJ, Hua R, Sooranna SR, Brosens JJ, et al. Uterine stretch and progesterone action. J Clin Endocrinol Metab. 2011;96(6):E1013–E1024.

    Article  CAS  PubMed  Google Scholar 

  94. Lee YH, Shynlova O, Lye SJ. Mechanical stretch induces proinflammatory cytokine expression and leukocyte transendothelial migration into the myometrium. Reprod Sci. 2012; 19 (3)(suppl):104A.

    Google Scholar 

  95. Sooranna SR, Engineer N, Loudon JA, Terzidou V, Bennett PR, Johnson MR. The mitogen-activated protein kinase dependent expression of prostaglandin H synthase-2 and interleukin-8 messenger ribonucleic acid by myometrial cells: the differential effect of stretch and interleukin-1{beta}. J Clin Endocrinol Metab. 2005;90(6):3517–3527.

    Article  CAS  PubMed  Google Scholar 

  96. Albelda SM, Smith CW, Ward PA. Adhesion molecules and inflammatory injury. FASEB J. 1994;8(8):504–512.

    Article  CAS  PubMed  Google Scholar 

  97. Kauppinen H, Soots A, Krogerus L, Loginov R, Holma K, Ahonen J, et al. Sequential analysis of adhesion molecules and their ligands in rat renal allografts during the development of chronic rejection. Transpl Int. 2000;13(4):247–254.

    Article  CAS  PubMed  Google Scholar 

  98. Rijcken E, Mennigen RB, Schaefer SD, Laukoetter MG, Anthoni C, Spiegel HU, et al. PECAM-1 (CD 31) mediates transendothelial leukocyte migration in experimental colitis. Am J Physiol Gastrointest Liver Physiol. 2007;293(2):G446–G452.

    Article  CAS  PubMed  Google Scholar 

  99. Leong AS, Norman JE, Smith R. Vascularandmyometrial changes in the human uterus at term. Reprod Sci. 2008;15(1):59–65.

    Article  PubMed  Google Scholar 

  100. Kim CJ, Kim JS, Kim YM, Cushenberry E, Richani K, Espinoza J, et al. Fetal macrophages are not present in the myometrium of women with labor at term. Am J Obstet Gynecol. 2006;195(3):829–833.

    Article  PubMed  Google Scholar 

  101. Condon JC, Jeyasuria P, Faust JM, Mendelson CR. Surfactant protein secreted by the maturing mouse fetal lung acts as a hormone that signals the initiation of parturition. Proc Natl Acad Sci USA. 2004;101(14):4978–4983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tidball JG. Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol. 2005;288(2):R345–R353.

    Article  CAS  PubMed  Google Scholar 

  103. Mendelson CR. Minireview: fetal-maternal hormonal signaling in pregnancy and labor. Mol Endocrinol. 2009;23(7):947–954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Soloff MS, Cook DL Jr, Jeng YJ, Anderson GD. In situ analysis of interleukin-1-induced transcription of cox-2 and il-8 in cultured human myometrial cells. Endocrinology. 2004;145(3):1248–1254.

    Article  CAS  PubMed  Google Scholar 

  105. Chow L, Lye SJ. Expression of the gap junction protein connexin-43 is increased in the human myometrium toward term and with the onset of labor. Am J Obstet Gynecol. 1994;170(3):788–795.

    Article  CAS  PubMed  Google Scholar 

  106. Casey ML, MacDonald PC. Biomolecular processes in the initiation of parturition: decidual activation. Clin Obstet Gynecol. 1988;31(3):533–552.

    Article  CAS  PubMed  Google Scholar 

  107. Salafia CM, Weigl C, Silberman L. The prevalence and distribution of acute placental inflammation in uncomplicated term pregnancies. Obstet Gynecol. 1989;73(3 pt 1):383–389.

    CAS  PubMed  Google Scholar 

  108. Sindram-Trujillo AP, Scherjon SA, van Hulst-van Miert PP, Kanhai HH, Roelen DL, Claas FH. Comparison of decidual leukocytes following spontaneous vaginal delivery and elective cesarean section in uncomplicated human term pregnancy. J Reprod Immunol. 2004;62(1–2):125–137.

    Article  PubMed  Google Scholar 

  109. Norman JE, Bollapragada S, Yuan M, Nelson SM. Inflammatory pathways in the mechanism of parturition. BMC Pregnancy Childbirth. 2007;7(suppl 1):S7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Matta P, Lockwood CJ, Schatz F, Krikun G, Rahman M, Buchwalder L, et al. Thrombin regulates monocyte chemoattractant protein-1 expression in human first trimester and term decidual cells. Am J Obstet Gynecol. 2007;196(3):268.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oksana Shynlova PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shynlova, O., Lee, YH., Srikhajon, K. et al. Physiologic Uterine Inflammation and Labor Onset: Integration of Endocrine and Mechanical Signals. Reprod. Sci. 20, 154–167 (2013). https://doi.org/10.1177/1933719112446084

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112446084

Keywords

Navigation