Skip to main content

Advertisement

Log in

Inflammation in Reproductive Disorders

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Inflammatory disorders account for a significant percentage of gynecologic disease, particularly in reproductive age women. Inflammation is a basic method by which we respond to infection, irritation, or injury. Inflammation is now recognized as a type of nonspecific immune response, either acute or chronic. In gynecology, inflammation leads to anatomic disorders primarily as a result of infectious disease; however inflammation can affect ovulation and hormone production as well as be associated with endometriosis. Similarly, immune cell trafficking is an important component of cyclic endometrial development in each menstrual cycle. These immune cells are required for endometrial function, producing a vast array of inflammatory cytokines. Inflammation alters endometrial receptivity, however it may also play a role in tissue repair and remodeling. Finally, inflammation affects the trophoblast and trophoblast—endometrial interaction. Some components of the immune response are required for optimal fertility and normal tissue remodeling. A better understanding of the necessary role of inflammation in reproduction will allow more rational and targeted treatment of inflammatory disorders in reproductive medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Miller WC, Ford CA, Morris M, et al. Prevalence of chlamydial and gonococcal infections among young adults in the United States. JAMA. 2004;291:2229–2236.

    Article  CAS  PubMed  Google Scholar 

  2. Land JA, Evers JLH. Chlamydia infection and subfertility. Best Pract Res Clin Obstet Gynecol. 2002;16:901–912.

    Article  Google Scholar 

  3. Barbeyrac de B, Papaxanthos-Roche A, Mathieu C, et al. Chlamydia trachomatis in subfertile couples undergoing an in vitro fertilization program: a prospective study [Journal Article. Research Support, Non-U.S. Gov’t]. Eur J Obstet Gynecol Reprod Biol. 2006;129:46–53.

    Article  Google Scholar 

  4. Kinnunen A, Surcel H-M, Halttunen M, et al. Chlamydia trachomatis heat shock protein-60 induced interferon-γ and interleukin-10 production in infertile women. Clin. Exp. Immunol. 2003;131:299–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kinnunen A, Molander P, Morrison R, et al. Chlamydial heat shock protein 60-specific T cells in inflamed salpingeal tissue. Fertil Steril. 2002;77:162–166.

    Article  PubMed  Google Scholar 

  6. Cohen CR, Gichui J, Rukaria R, Sinei SS, Gaur LK, Brunham RC. Immunogenetic correlates for Chlamydia trachomatis–associated tubal infertility. Am J Obstet Gynecol. 2003;101:438–444.

    CAS  Google Scholar 

  7. Hvid M, Baczynska A, Deleuran B, et al. Interleukin-1 is the initiator of fallopian tube destruction during Chlamydia trachomatis infection. Cell Microbiol. 2007;9:2795–2803.

    Article  CAS  PubMed  Google Scholar 

  8. Ohman H, Tiitinen A, Halttunen M, et al. IL-10 polymorphism and cell-mediated immune response to Chlamydia trachomatis. Genes Immun. 2006;7:243–249.

    Article  CAS  PubMed  Google Scholar 

  9. Roberta NB, Brunham RC, Shen C, Bass DC, For the PID Evaluation Clinical Health (Peach) Study Investigators. Associations among human leukocyte antigen (HLA) class II DQ variants, bacterial sexually transmitted diseases, endometritis, and fertility among women with clinical pelvic inflammatory disease. Sex Transm Dis. 2004;31:301–304.

    Article  Google Scholar 

  10. Hill JA, Welch WR, Faris HM, Anderson DJ. Induction of class II major histocompatibility complex antigen expression in human granulose cells by interferon gamma: a potential mechanism contributing to autoimmune ovarian failure. Am J Obstet Gynecol. 1990;162:534–540.

    Article  CAS  PubMed  Google Scholar 

  11. Tas M, de Haan-Meulman M, Kabel PJ, Drexhage HA. Defects in monocyte polarization and dendritic cell clustering in patients with Graves’ disease. A putative role for a non-specific immunoregulatory factor related to retroviral P15E. Clin Endocrinol (Oxf). 1991;34:441–448.

    Article  CAS  Google Scholar 

  12. Kyama CM, Debrock S, Mwenda JM, D’Hooghe TM. Potential involvement of the immune system in the development of endometriosis. Reprod Biol Endocrinol (online). 2003; 1: 123.

    Article  Google Scholar 

  13. Bukulmez O, Hardy DB, Carr BR, Word RA, Mendelson CR. Inflammatory status influences aromatase and steroid receptor expression in endometriosis. Endocrinology. 2008;149:1190–1204.

    Article  CAS  PubMed  Google Scholar 

  14. Lawrence L Espey, JoAnne S Richards. Ovulation. In: Knobil and Neill JD, eds. Physiology of Reproduction. Elsevier;2006: 425–474.

    Google Scholar 

  15. Thomas E Curry Jr, Kevin G Osteen. The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endoc Rev. 2003;24: 428–465.

    Article  CAS  Google Scholar 

  16. Profet M. Menstruation as a defense against pathogens transported by sperm. Q Rev Biol. 1993;68:335–386.

    Article  CAS  PubMed  Google Scholar 

  17. Strassmann BI. The evolution of endometrial cycles and menstruation. Q Rev Biol. 1996;71:181–220.

    Article  CAS  PubMed  Google Scholar 

  18. Finn CA. Menstruation: a nonadaptive consequence of uterine evolution. Q Rev Biol. 1998;73:163–173.

    Article  CAS  PubMed  Google Scholar 

  19. Noyes R, Hertig A, Rock J. Dating the endometrial biopsy. Fertil Steril. 1950;1:3–25.

    Article  Google Scholar 

  20. Salamonsen LA, Zhang J, Brasted M. Leukocyte networks and human endometrial remodelling. J Reprod Immunol. 2002;57: 95–108.

    Article  CAS  PubMed  Google Scholar 

  21. Mueller MD, Vigne J-L, Vaisse C, Taylor RN. Glycodelin: a pane in the implantation window. Semin Reprod Med. 2000;18: 289–298.

    Article  CAS  PubMed  Google Scholar 

  22. McIntire RH, Ganacias KG, Hunt JS. Programming of human monocytes by the uteroplacental environment. Reprod Sci. 2008;15:437–447.

    Article  CAS  PubMed  Google Scholar 

  23. Hornung D, Ryan IP, Chao VA, Vigne J-L, Schriock ED, Taylor RN. Immunolocalization and regulation of the chemokine RANTES in human endometrial and endometriosis tissues and cells. J Clin Endocrinol Metab. 1997;82:1621–1628.

    CAS  PubMed  Google Scholar 

  24. Hornung D, Bentzien F, Kiesel L, Wallwiener D, Taylor RN. Chemokine bioactivity in normal endometrial and endometriotic stromal cells and peritoneal fluid. Mol Hum Reprod. 2001;7:163–168.

    Article  CAS  PubMed  Google Scholar 

  25. Hornung D, Klingel K, Dohrn K, Kandolf R, Wallwiener D, Taylor RN. Regulated on activation, normal T-cell-expressed and -secreted mRNA expression in normal endometrium and endometriotic implants: Assessment of autocrine/paracrine regulation by in situ hybridization. Am J Pathol. 2001;158:1949–1954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lebovic DI, Chao VA, Martini J-F, Taylor RN. Interleukin-1β induction of RANTES (regulated upon activation normal T cell expressed and secreted) chemokine gene expression in endometriotic stromal cells depends on an NF-κB site in the proximal promoter. J Clin Endocrinol Metab. 2001;86:4759–4764.

    CAS  PubMed  Google Scholar 

  27. Seppälä M, Taylor RN, Koistinen H, Koistinen R, Milgrom E. Glycodelin: a major lipocalin protein of the reproductive axis with diverse actions in cell recognition and differentiation. Endocr Rev. 2002;23:401–430.

    Article  PubMed  CAS  Google Scholar 

  28. Taylor RN, Savouret J-F, Vaisse C, et al. Promegestone (R5020) and mifepristone (RU486) both function as progestational agonists of human glycodelin gene expression in isolated human epithelial cells. J Clin Endocrinol Metab. 1998;83:4006–4012.

    CAS  PubMed  Google Scholar 

  29. Jaffe RC, Ferguson-Gottschall SD, Gao W, Beam C, Fazleabas AT. Histone deacetylase inhibition and progesterone act synergistically to stimulate baboon glycodelin gene expression. J Mol Endocrinol. 2007;38:401–407.

    Article  CAS  PubMed  Google Scholar 

  30. Taylor RN, Vigne J-L, Zhang P, Hoang P, Lebovic DI, Mueller MD. Effect of progestins and relaxin on glycodelin gene expression in human endometrial cells. Am J Obstet Gynecol. 2000;182:841–849.

    Article  CAS  PubMed  Google Scholar 

  31. Tseng L, Zhu HH, Mazella J, Koistinen H, Seppala M. Relaxin stimulates glycodelin mRNA and protein concentrations in human endometrial glandular epithelial cells. Mol Hum Reprod. 1999;5:372–375.

    Article  CAS  PubMed  Google Scholar 

  32. Fazleabas AT, Donnelly KM, Srinivasan S, Fortman JD, Miller JB. Modulation of the baboon (Papio anubis) uterine endometrium by chorionic gonadotrophin during the period of uterine receptivity. Proc Natl Acad Sci USA. 1999;96: 25432548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Okamoto N, Uchida A, Takakura K, et al. Suppression by human placental protein 14 of natural killer cell activity. Am J Reprod Immunol. 1991;26:137–142.

    Article  CAS  PubMed  Google Scholar 

  34. Rachmilewitz J, Riely GJ, Tykocinski ML. Placental protein 14 functions as a direct T-cell inhibitor. Cell Immunol. 1999;191:26–33.

    Article  CAS  PubMed  Google Scholar 

  35. Vigne J-L, Hornung D, Mueller MD, Taylor RN. Purification and characterization of an immunomodulatory endometrial protein: Glycodelin. J Biol Chem. 2001;276:17101–17105.

    Article  CAS  PubMed  Google Scholar 

  36. Tee MK, Vigne J-L, Yu J, Taylor RN. Native and recombinant glycodelin activate a proapoptotic gene cascade in human monocytic cells. J Leukoc Biol. 2008;83:843–852.

    Article  CAS  PubMed  Google Scholar 

  37. Billington WD. The immunological problem of pregnancy: 50 years with the hope of progress. A tribute to Peter Medawar. J. Reprod. Immunol. 2003;60:1–11.

    Article  PubMed  Google Scholar 

  38. Nyachieo A, Chai DC, Deprest J, Mwenda JM, D’Hooghe TM. The baboon as a research model for the study of endometrial biology, uterine receptivity and embryo implantation. Gynecol Obstet Invest. 2007;64:149–155.

    Article  PubMed  Google Scholar 

  39. Strandell A, Lindhard A, Waldenström U, Thorburn J. Hydrosalpinx and IVF outcome: cumulative results after salpingectomy in a randomized controlled trial. Hum Reprod. 2001;16:2403–2410.

    Article  CAS  PubMed  Google Scholar 

  40. Johnson NP, Mak W, Sowter MC. Surgical treatment for tubal disease in women due to undergo in vitro fertilisation. Cochrane Database Syst Rev. 2004;3:CD002125.

    Google Scholar 

  41. Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Am J Obstet Gynecol. 1975;122:262–263.

    Article  CAS  PubMed  Google Scholar 

  42. Coutifaris C, Myers ER, Guzick DS, et al; NICHD National Cooperative Reproductive Medicine Network. Histological dating of timed endometrial biopsy tissue is not related to fertility status. Fertil Steril. 2004;825:1264–1272.

    Article  Google Scholar 

  43. Talbi S, Hamilton AE, Vo KC, et al. Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women. Endocrinology. 2006;147:1097–1121.

    Article  CAS  PubMed  Google Scholar 

  44. Macklon NS, van der Gaast MH, Hamilton A, Fauser BC, Giudice LC. The impact of ovarian stimulation with recombinant FSH in combination with GnRH antagonist on the endometrial transcriptome in the window of implantation. Reprod Sci. 2008;15:357–365.

    Article  CAS  PubMed  Google Scholar 

  45. Vitiello D, Kodaman PH, Taylor HS. HOX genes in implantation. Semin Reprod Med. 2007;25:431–436.

    Article  CAS  PubMed  Google Scholar 

  46. Daftary GS, Taylor HS. Endocrine regulation of HOX genes. Endocr Rev. 2006;27:331–355.

    Article  CAS  PubMed  Google Scholar 

  47. Eun Kwon H, Taylor HS. The role of HOX genes in human implantation. Ann N Y Acad Sci. 2004;1034:1–18.

    Article  PubMed  CAS  Google Scholar 

  48. Taylor HS. The role of HOX genes in human implantation. Hum Reprod Update. 2000;6:75–79.

    Article  CAS  PubMed  Google Scholar 

  49. Satokata I, Benson G, Maas R. Sexually dimorphic sterility phenotypes in Hoxa10-deficient mice. Nature. 1995;374: 460–463.

    Article  CAS  PubMed  Google Scholar 

  50. Hsieh-Li HM, Witte DP, Weinstein M, et al. Hoxa 11 structure, extensive antisense transcription, and function in male and female fertility. Development. 1995;121:1373–1385.

    CAS  PubMed  Google Scholar 

  51. McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell. 1992;68:283–302.

    Article  CAS  PubMed  Google Scholar 

  52. Taylor HS, Igarashi P, Olive DL, Arici A. Sex steroids mediate HOXA11 expression in the human peri-implantation endometrium. J Clin Endocrinol Metab. 1999;84:1129–1135.

    CAS  PubMed  Google Scholar 

  53. Taylor HS, Arici A, Olive D, Igarashi P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J Clin Invest. 1998;101:1379–1384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sarno JL, Kliman HJ, Taylor HS. HOXA10, Pbx2, and Meis1 protein expression in the human endometrium: formation of multimeric complexes on HOXA10 target genes. J Clin Endocrinol Metab. 2005;90:522–528.

    Article  CAS  PubMed  Google Scholar 

  55. Du H, Daftary GS, Lalwani SI, Taylor HS. Direct regulation of HOXA10 by 1,25-(OH)2D3 in human myelomonocytic cells and human endometrial stromal cells. Mol Endocrinol. 2005;19:2222–2233.

    Article  CAS  PubMed  Google Scholar 

  56. Cermik D, Selam B, Taylor HS. Regulation of HOXA-10 expression by testosterone in vitro and in the endometrium of patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88:238–243.

    Article  CAS  PubMed  Google Scholar 

  57. Sarno JL, Schatz F, Lockwood CJ, Huang ST, Taylor HS. Thrombin and interleukin-1beta regulate HOXA10 expression in human term decidual cells: implications for preterm labor. J Clin Endocrinol Metab. 2006;91:2366–2372.

    Article  CAS  PubMed  Google Scholar 

  58. Daftary GS, Kayisli U, Seli E, Bukulmez O, Arici A, Taylor HS. Salpingectomy increases peri-implantation endometrial HOXA10 expression in women with hydrosalpinx. Fertil Steril. 2007;87:367372.

    Article  CAS  PubMed  Google Scholar 

  59. Taylor HS, Bagot C, Kardana A, Olive D, Arici A. HOX gene expression is altered in the endometrium of women with endometriosis. Hum Reprod. 1999;14:1328–1331.

    Article  CAS  PubMed  Google Scholar 

  60. Cermik D, Selam B, Taylor HS. Regulation of HOXA-10 expression by testosterone in vitro and in the endometrium of patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88:238–243.

    Article  CAS  PubMed  Google Scholar 

  61. Bruner-Tran KL, Webster-Clair D, Osteen KG. Experimental endometriosis: the nude mouse as a xenographic host. Ann N Y Acad Sci. 2002;955:328–339.

    Article  PubMed  Google Scholar 

  62. Fazleabas AT, Brudney A, Gurates B, Chai D, Bulun S. A modified baboon model for endometriosis. Ann N Y Acad Sci. 2002;955:308–317.

    Article  PubMed  Google Scholar 

  63. Lee B, Du H, Taylor HS. Experimental murine endometriosis induces dna methylation and altered gene expression in eutopic endometrium. Biol Reprod. 2008. [Epub ahead of print.]

  64. Kim JJ, Taylor HS, Lu Z, et al. Altered expression of HOXA10 in endometriosis: potential role in decidualization. Mol Hum Reprod. 2007;13:323–332.

    Article  CAS  PubMed  Google Scholar 

  65. Wu Y, Halverson G, Basir Z, Strawn E, Yan P, Guo SW. Aberrant methylation at HOXA10 may be responsible for its aberrant expression in the endometrium of patients with endometriosis. Am J Obstet Gynecol. 2005;193:371–380.

    Article  CAS  PubMed  Google Scholar 

  66. Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA. 2004;292:81–85.

    Article  CAS  PubMed  Google Scholar 

  67. Du H, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells. 2007;25:2082–2086.

    Article  CAS  PubMed  Google Scholar 

  68. Du H, Taylor HS. Stem cells and female reproduction. Reprod Sci. 2008;16:126–139.

    Google Scholar 

  69. Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. N Engl J Med. 2001;345:1400–1408.

    Article  CAS  PubMed  Google Scholar 

  70. Robertson SA, Redman CW, McCracken SA, et al. Immune modulators of implantation and placental development—a workshop report. Placenta. 2003;24(suppl A):S16–20.

    Article  PubMed  Google Scholar 

  71. Sargent IL, Borzychowski AM, Redman CW. NK cells and human pregnancy—an inflammatory view. Trends Immunol. 2006;27:399–404.

    Article  CAS  PubMed  Google Scholar 

  72. Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today. 1993;14:353–356.

    Article  CAS  PubMed  Google Scholar 

  73. Chaouat G, Ledee-Bataille N, Dubanchet S, Zourbas S, Sandra O, Martal J. TH1/TH2 paradigm in pregnancy: paradigm lost? Cytokines in pregnancy/early abortion: reexamining the TH1/TH2 paradigm. Int Arch Allergy Immunol. 2004;134:93–119.

    Article  PubMed  Google Scholar 

  74. Moffett-King A. Natural killer cells and pregnancy. Nat Rev Immunol. 2002;2:656–663.

    Article  CAS  PubMed  Google Scholar 

  75. Hanna J, Goldman-Wohl D, Hamani Y, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med. 2006;12:1065–1074.

    Article  CAS  PubMed  Google Scholar 

  76. Le Bouteiller P. Tabiasco J. Killers become builders during pregnancy. Nat Med. 2006;12:991–992.

    Article  PubMed  CAS  Google Scholar 

  77. Santoni A, Zingoni A, Cerboni C, Gismondi A. Natural killer (NK) cells from killers to regulators: distinct features between peripheral blood and decidual NK cells. Am J Reprod Immunol. 2007;58:280–288.

    Article  CAS  PubMed  Google Scholar 

  78. Bowen JM, Chamley L, Mitchell MD, Keelan JA. Cytokines of the placenta and extra-placental membranes: biosynthesis, secretion and roles in establishment of pregnancy in women. Placenta. 2002;23:239–256.

    Article  CAS  PubMed  Google Scholar 

  79. Schiessl B. Inflammatory response in preeclampsia. Mol Aspects Med. 2007;28:210–219.

    Article  CAS  PubMed  Google Scholar 

  80. Hauguel-de Mouzon S, Guerre-Millo M. The placenta cytokine network and inflammatory signals. Placenta. 2006;27:794–798.

    Article  CAS  PubMed  Google Scholar 

  81. Huang SJ, Chen CP, Schatz F, Rahman M, Abrahams VM, Lockwood CJ. Pre-eclampsia is associated with dendritic cell recruitment into the uterine decidua. J Pathol. 2008;214:328–336.

    Article  CAS  PubMed  Google Scholar 

  82. Shimada M, Hernandez-Gonzalez I, Gonzalez-Robanya I, Richards JS. Induced expression of pattern recognition receptors in cumulus oocyte complexes: novel evidence for innate immune-like functions during ovulation. Mol Endocrinol. 2006;20:3228–3239.

    Article  CAS  PubMed  Google Scholar 

  83. Shozu M, Minami N, Yokoyama H, et al. ADAMTS-1 is involved in normal follicular development, ovulatory process and organization of the medullary vascular network in the ovary. J Mol Endocrinol. 2005;35:343–355.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh S. Taylor MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, G., Goldsmith, L.T., Taylor, R.N. et al. Inflammation in Reproductive Disorders. Reprod. Sci. 16, 216–229 (2009). https://doi.org/10.1177/1933719108330087

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719108330087

Key words

Navigation