Skip to main content

Advertisement

Log in

Stretching, Mechanotransduction, and Proinflammatory Cytokines in the Fetal Membranes

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

In the third trimester of normal pregnancy, the human fetal membranes become increasingly distended and use mechanotransduction and its downstream signaling to remodel and function. Their overdistension either by multifetal pregnancy or by polyhydramnios often leads to preterm birth, but the mechanism is unclear. Stretching of the fetal membranes in vitro upregulates several cytokines and enzymes that can drive collagen degradation, leading to membrane rupture. The sensitivity of this response appears to be specific for different cell types and is likely to result from differential activation of some key transcription factors and cofactors. Few cytokines in the fetal membranes respond to stretch: the most robust of these is pre—B-cell colony-enhancing factor (PBEF). This is constitutively expressed and protects the amnion cells from apoptosis caused by chronic static distension. However, it can also be stimulated by inflammation, infection, and hypoxia and upregulates a number of proinflammatory cytokines, chemokines, and enzymes important in the initiation of parturition. Therefore, it is proposed here that PBEF functions in normal pregnancy to protect the amnion cells as they become increasingly stretched, but if stimulated, it can initiate key events leading to parturition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schmidt W. The amniotic fluid compartment: the fetal habitat. Adv Anat Embryol Cell Biol. 1992;127:1–100.

    Article  CAS  PubMed  Google Scholar 

  2. Pressman EK, Cavanaugh JL, Woods JR Physical properties of the chorioamnion throughout gestation. Am J Obstet Gynecol. 2002:187;672–675.

    Article  PubMed  Google Scholar 

  3. Oyen M, Calvin SE, Cook RF Uniaxial and biaxial mechanical behaviour of human amnion. Mater Res Soc Symp Proc. 2005;844:161–166.

    Google Scholar 

  4. Parry-Jones E, Priya S. A study of the elasticity and tension of fetal membranes and the relation of the area of the gestational sac to the area of the uterine cavity. BJOG. 1976: 83;205–212.

    Article  CAS  Google Scholar 

  5. Millar LK, Stollberg J, DeBuque L, Bryant-Greenwood GD Fetal membrane distension: determination of the intrauterine surface area and distension of the fetal membranes preterm and at term. Am J Obstet Gynecol. 2000:182;128–134.

    Article  CAS  PubMed  Google Scholar 

  6. Keith LG, Oleszczuk JJ Triplet births in the United States: an epidemic of high-risk pregnancies. J Reprod Med. 2002:47; 259–265.

    PubMed  Google Scholar 

  7. El-Toukhy T, Khalaf Y, Braude P. IVF results: optimize not maximize. Am J Obstet Gynecol. 2006:194;322–331.

    Article  PubMed  Google Scholar 

  8. Leguizamon G, Smith J, Younis H, Nelson M, Sadovsky Y. Enhancement of amniotic cyclooxygenase type 2 activity in women with preterm delivery associated with twins or polyhydramnios. Am J Obstet Gynecol. 2001:184;117–122.

    Article  CAS  PubMed  Google Scholar 

  9. Manabe Y, Yoshimura S, Mori T, Aso T. Plasma levels of 13,14-dihydro-15-keto prostaglandin F2alpha, estrogens, and progesterone during stretch-induced labor at term. Prostaglandins. 1985:30;141–152.

    Article  CAS  PubMed  Google Scholar 

  10. Toppozada MK, Sallam NA, Gaafar AA, El-Kashlan KM Role of repeatedly stretching in the mechanism of timely rupture of the membranes. Am J Obstet Gynecol. 1970;108: 243–249.

    Article  CAS  PubMed  Google Scholar 

  11. Oyen ML, Calvin SE, Landers DV Premature rupture of the fetal membranes: is the amnion the major determinant?Am J Obstet Gynecol. 2006;195:510–515.

    Article  PubMed  Google Scholar 

  12. Arikat S, Novince RW, Mercer BM, et al. Separation of amnion from choriodecidua is an integral event to the rupture of normal term fetal membranes and constitutes a significant component of the work required. Am J Obstet Gynecol. 2006:194;211–217.

    Article  PubMed  Google Scholar 

  13. Malak TM, Bell SC Structural characteristic of term human fetal membranes: a novel zone of extreme morphological alteration within the rupture site. Br J Obstet Gynecol. 1994: 101;375–386.

    Article  CAS  Google Scholar 

  14. El Khwad M, Pandey V, Stetzer B, et al. Fetal membranes from term vaginal deliveries have a zone of weakness exhibiting characteristics of apoptosis and remodelling. J Soc Gynecol Investig. 2006;13:191–195.

    Article  PubMed  Google Scholar 

  15. Kumar D, Fung W, Moore RM, et al. Proinflammatory cytokines found in amniotic fluid induce collagen remodelling, apoptotis, and biophysical weakening of cultured human fetal membranes. Biol Reprod. 2006;74:29–34.

    Article  PubMed  CAS  Google Scholar 

  16. Langevin HM, Bouffard NA, Badger GJ, Iatridis JC, Howe AK Dynamic fibroblast cytoskeletal response to subcutaneous tissue stretch ex vivo and in vivo. Am J Physiol Cell Physiol. 2005;288:C747–C756.

    Article  CAS  PubMed  Google Scholar 

  17. Ruoslahti E. Stretching is good for a cell. Science. 1997;276: 1345–1346.

    Article  CAS  PubMed  Google Scholar 

  18. Divers MJ, Bulmer JN, Miller D, Lilford RJ Beta 1 integrins in third trimester human placentae: no differential expression in pathological pregnancy. Placenta. 1995;16:245–260.

    Article  CAS  PubMed  Google Scholar 

  19. El Maradny E, Kanayama N, Halim A, Maehara K, Terao T. Stretching of fetal membranes increases the concentration of interleukin-8 and collagenase activity. Am J Obstet Gynecol. 1996;174:843–849.

    Article  CAS  PubMed  Google Scholar 

  20. Mohan AR, Soorranna SR, Lindstrom TM, Johnson MR, Bennett PR The effect of mechanical stretch on cyclooxygenase type 2 expression and AP-1 and NF-κB activity in human amnion cells. Endocrinology. 2007;148:1850–1857.

    Article  CAS  PubMed  Google Scholar 

  21. Nemeth E, Tashima LS, Yu Z, Bryant-Greenwood GD Fetal membrane distension: I. Differentially expressed genes regulated by acute distension in amniotic epithelial cells. Am J Obstet Gynecol. 2000;182:50–59.

    Article  CAS  PubMed  Google Scholar 

  22. Nemeth E, Millar LK, Bryant-Greenwood GD Fetal membrane distension: II. Differentially expressed genes regulated by acute distension in vitro. Am J Obstet Gynecol. 2000;182:60–67.

    Article  CAS  PubMed  Google Scholar 

  23. Sooranna SR, Engineer N, Loudon JAZ, Terzidon V, Bennett PR, Johnson MR The mitogen-activated protein kinase dependent expression of prostaglandin H synthase-2 and interleukin-8 messenger ribonucleic acid by myometrial cells: the differential effect of stretch and IL-1β. J Clin Endocrinol Metab. 2005;90:3517–3527.

    Article  CAS  PubMed  Google Scholar 

  24. Harada M, Osuga Y, Hirota Y, et al. Mechanical stretch stimulates interleukin-8 production in endometrial stromal cells: possible implications in endometrium-related events. J Clin Endocrinol Metab. 2005;90:1144–1148.

    Article  CAS  PubMed  Google Scholar 

  25. Takemura M, Itoh H, Sagawa N, et al. Cyclic mechanical stretch augments both interleukin-8 and monocyte chemotactic protein-3 production in the cultured human uterine cervical fibroblast cells. Mol Hum Reprod. 2004;10:573–580.

    Article  CAS  PubMed  Google Scholar 

  26. Kanefsky J, Lenbury M, Hai CM Cholingeric receptor and cyclic stretch-mediated inflammatory gene expression in intact ASM. Am J Respir Cell Mol Biol. 2006;34:417–425.

    Article  CAS  PubMed  Google Scholar 

  27. Li LF, Ouyang B, Choukroun G, et al. Stretch-induced IL-8 depends on c-Jun NH2-terminal and nuclear factor-κBinducing kinases. Am J Physiol Lung Cell Mol Physiol. 2003;385:L464–L475.

    Article  Google Scholar 

  28. Kumar A, Knox AJ, Boriek AM CCAAT/enhancer-binding and activator protein-1 transcription factors regulate the expression of interleukin-8 through the mitogen-activated protein kinase pathways in response to mechanical stretch of human airway smooth muscle cells. J Biol Chem. 2003;278:18868–18876.

    Article  CAS  PubMed  Google Scholar 

  29. Yammamoto H., Termaoto H, Uetani K, Igawa K, Shimizu E. Cyclic stretch upregulates interleukin-8 and transforming growth factor-β1 production through a protein kinase C-dependent pathway in alveolar epithelial cells. Respirology. 2002;7:103–109.

    Article  Google Scholar 

  30. Sasamoto A, Nagino M, Kobayashi S, Naruse K, Nimura Y, Sokabe M. Mechanotransduction by integrin is essential for IL-6 secretion from endothelial cells in response to uniaxial continuous stretch. AmJPhysiolCell Physiol. 2004;288:C1012–C1022.

    Article  CAS  Google Scholar 

  31. Copland IB, Post M. Stretch-activated signaling pathways responsible for early response gene expression in fetal lung epithelial cells. J Cell Physiol. 2007;210:133–143.

    Article  CAS  PubMed  Google Scholar 

  32. Adam RM, Eaton SH, Estrada C, et al. Mechanical stretch is a highly selective regulator of gene expression in human bladder smooth muscle cells. Physiol Genomics. 2004;20:36–44.

    Article  CAS  PubMed  Google Scholar 

  33. Pan J, Fukuda K, Saito M, et al. Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res. 1999;84:1127–1136.

    Article  CAS  PubMed  Google Scholar 

  34. Sooranna SR, Bennet PR, Johnson MR Effect of mechanical stretch on the expression of interleukin-1beta in human uterine myocytes. Placenta. 2005;26:A44.

    Google Scholar 

  35. Saka R, Ueno T, Nakamura T, Ueno H, Sata M. Mechanical stretch induces TGF-β synthesis in hepatic stellate cells. Eur J Clin Invest. 2004;34:129–136.

    Article  Google Scholar 

  36. Chaqour B, Howard PS, Richards CF, Macarak EJ Mechanical stretch induces platelet-activating factor receptor gene expression through the NF-κB transcription factor. J Mol Cell Cardiol. 1999;31:1345–1355.

    Article  CAS  PubMed  Google Scholar 

  37. Sooranna SR, Lee Y, Kim LU, Mohan AR, Bennett PR, Johnson MR Mechanical stretch activates type 2 cyclooxygenase via activator protein-1 transcription factor in human myometrial cells. Mol Hum Reprod. 2004;10:109–113.

    Article  CAS  PubMed  Google Scholar 

  38. Copland IB, Reynaud D, Pace-Asciak C, Post M. Mechanotransduction of stretch-induced prostaniod release by fetal lung epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2006;291:L487–L495.

    Article  CAS  PubMed  Google Scholar 

  39. Dudley DJ, Trautman MS, Mitchell MD Inflammatory mediators regulate interleukin-8 production by cultured gestational tissues: evidence for a cytokine network at the chorio-decidual interface. J Clin Endocrinol Metab. 1993;76:404–410.

    CAS  PubMed  Google Scholar 

  40. Samal B, Sun Y, Stearns G, Xie C, Suggs S, McNiece I. Cloning and characterization of the cDNA encoding a novel human pre—B-cell colony-enhancing factor. Mol Cell Biol. 1994; 14:1431–1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005;307:426–430.

    Article  CAS  PubMed  Google Scholar 

  42. Ognjanovic S, Bryant-Greenwood GD Pre-B-cell colony-enhancing factor, a novel cytokine of human fetal membranes. Am J Obstet Gynecol. 2002;187:1051–1058.

    Article  CAS  PubMed  Google Scholar 

  43. Marvin KW, Keelan JA, Eykholt RL, Sato TA, Mitchell MD Use of cDNA arrays to generate differential expression profiles for inflammatory genes in human gestational membranes delivered at term and preterm. Mol Hum Reprod. 2002; 8:399–408.

    Article  CAS  PubMed  Google Scholar 

  44. Ognjanovic S, Bao S, Yamamoto SY, Garibay-Tupas J, Samal B, Bryant-Greenwood GD Genomic organization of the gene coding for human pre-B-cell colony enhancing factor and expression in human fetal membranes.JMol Endocrinol. 2001;26:107–117.

    Article  CAS  Google Scholar 

  45. Kendal CE, Bryant-Greenwood GD Pre-B-cell colony-enhancing factor (PBEF/Visfatin) gene expression is modulated by NF-κB and AP-1 in human amniotic epithelial cells. Placenta. 2007;28:305–314.

    Article  CAS  PubMed  Google Scholar 

  46. Kendal CE, Trefz D, Ward K, Bryant-Greenwood GD Expression of pre-B-cell colony-enhancing factor (PBEF) in primary human amniotic epithelial cells: response to long-term static stretch. J Soc Gynecol Investig. 2006;13(2 suppl):245A.

    Google Scholar 

  47. Kendal CE, Trefz D, Ward K, Bryant-Greenwood GD Pre-B-cell colony-enhancing factor (PBEF) and IL-8 expression in primary human amniotic epithelial cells: responses to cyclic stretch/release and an inflammatory challenge. J Soc Gynecol Investig. 2006;13(2 suppl):136A.

    Article  CAS  Google Scholar 

  48. Muller WEG, Perovic S, Wilkesman J, Kruse M, Muller IM, Batel R. Increased gene expression of a cytokine-related molecule and profiling after activation of Suberites domuncula cells with xenogeneic sponge molecule(s). DNA Cell Biol. 1999;18:885–893.

    Article  CAS  PubMed  Google Scholar 

  49. Ye SQ, Simon BA, Maloney JP, et al. Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. Am J Respir Crit Care Med. 2005;171:361–370.

    Article  PubMed  Google Scholar 

  50. Ognjanovic S, Ku TL, Bryant-Greenwood GD Pre-B-cell colony-enhancing factor is a secreted cytokine-like protein from the human amniotic epithelium. Am J Obstet Gynecol. 2005;193:273–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jia SH, Li Y, Parodo J, et al. Pre-B-cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest. 2004;113:1318–1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kumagai K, Otsuki Y, Ito Y, Shibata MA, Abe H, Ueki M. Apoptosis in the normal human amnion at term, independent of Bcl-2 regulation and onset of labour. Mol Hum Reprod. 2001;7:681–689.

    Article  CAS  PubMed  Google Scholar 

  53. Rongvaux A, Shea RJ, Mulks MH, et al. Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur J Immunol. 2002;32:3225–3234.

    Article  CAS  PubMed  Google Scholar 

  54. Ognjanovic S, Tashima LS, Bryant-Greenwood GD The effects of pre-B-cell colony-enhancing factor on the human fetal membranes by microarray analysis. Am J Obstet Gynecol. 2003;189:1187–1195.

    Article  CAS  PubMed  Google Scholar 

  55. Moschen AR, Kaser A, Enrich B, et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J Immunol. 2007;178:1748–1758.

    Article  CAS  PubMed  Google Scholar 

  56. Zhu H, Cong JP, Mamtora G, Gingeras T, Shenk T. Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc Natl Acad Sci U S A. 1998;95:14470–14475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cohen P, Bouaboula M, Bellis M, et al. Monitoring cellular responses to Listeria monocytogenes with oligonucleotide arrays. J Biol Chem. 2000:275;11181–11190.

    Article  CAS  PubMed  Google Scholar 

  58. Nowell MA, Richards PJ, Fielding CA, et al. Regulation of pre-B-cell colony-enhancing factor by STAT-3-dependent inteleukin-6 Trans-signalling. Arthritis Rheum. 2006;54:2084–2095.

    Article  CAS  PubMed  Google Scholar 

  59. Curat CA, Wegner V, Sengenes C, et al. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia. 2005;49:744–747.

    Article  CAS  Google Scholar 

  60. Bae SK, Kim SR, Kim JG, et al. Hypoxic induction of human visfatin gene is directly mediated by hypoxia-inducible factor-1. FEBS Lett. 2006;580:4105–4113.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire E. Kendal-Wright PhD.

Additional information

Supported by grants from the Hawaii Community Foundation (20041651 and 20061057) and the Research Centers in Minority Institutions Program of the National Institutes of Health (RRIA1-03061 and RR-11091). I thank Dr Gillian Bryant-Greenwood for her support and suggestions during the course of this work and acknowledge the expert technical assistance of Daniela Hubbard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kendal-Wright, C.E. Stretching, Mechanotransduction, and Proinflammatory Cytokines in the Fetal Membranes. Reprod. Sci. 14 (Suppl 8), 35–41 (2007). https://doi.org/10.1177/1933719107310763

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719107310763

Keywords

Navigation