skip to main content
research-article

The benefits of using a walking interface to navigate virtual environments

Published:23 April 2009Publication History
Skip Abstract Section

Abstract

Navigation is the most common interactive task performed in three-dimensional virtual environments (VEs), but it is also a task that users often find difficult. We investigated how body-based information about the translational and rotational components of movement helped participants to perform a navigational search task (finding targets hidden inside boxes in a room-sized space). When participants physically walked around the VE while viewing it on a head-mounted display (HMD), they then performed 90% of trials perfectly, comparable to participants who had performed an equivalent task in the real world during a previous study. By contrast, participants performed less than 50% of trials perfectly if they used a tethered HMD (move by physically turning but pressing a button to translate) or a desktop display (no body-based information). This is the most complex navigational task in which a real-world level of performance has been achieved in a VE. Behavioral data indicates that both translational and rotational body-based information are required to accurately update one's position during navigation, and participants who walked tended to avoid obstacles, even though collision detection was not implemented and feedback not provided. A walking interface would bring immediate benefits to a number of VE applications.

References

  1. Alfano, P. L. and Michel, G. F. 1990. Restricting the field of view: Perceptual and performance effects. Perceptual Motor Skills 70, 35--45.Google ScholarGoogle ScholarCross RefCross Ref
  2. Bakker, N. H., Werkhoven, P. J., and Passenier, P. O. 1999. The effects of proprioceptive and visual feedback on geographical orientation in virtual environments. Presence: Teleoperat. Virt. Environ. 8, 36--53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bowman, D. A., Kruijff, E., Laviola, J. J., and Poupyrev, I. 2004. 3D User Interfaces: Theory and Practice. Addison-Wesley, Reading, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Brooks, F. P., Airey, J., Alspaugh, J., Bell, A., Brown, R., Hill, C., Nimscheck, U., Rheingans, P., Rohlf, J., Smith, D., Turner, D., Varshney, A., Wang, Y., Weber, H., and Yuan, X. 1992. Six generations of building walkthrough: Final technical report to the National Science Foundation. Tech. rep.TR92-026, Department of Computer Science, University of North Carolina, Chapel Hill. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Brotons-Mas, J. R., O'mara, S., and Sanchez-Vives, M. V. 2006. Neural processing of spatial information: What we know about place cells and what they can tell us about presence. Presence: Teleoperat. Virt. Environ. 15, 485--499. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chance, S. S., Gaunet, F., Beall, A. C., and Loomis, J. M. 1998. Locomotion mode affects the updating of objects encountered during travel: The contribution of vestibular and proprioceptive inputs to path integration. Presence: Teleoperat. Virt. Environ. 7, 168--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cobb, S. V. G., Nichols, S., Ramsey, A., and Wilson, J. R. 1999. Virtual reality-induced symptoms and effects (VRISE). Presence: Teleoperat. Virt. Environ. 8, 169--186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Czerwinski, M., Tan, D. S., and Robertson, G. G. 2002. Women take a wider view. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, New York, 195--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Darken, R. P., Cockayne, W. R., and Carmein, D. 1997. The omni-directional treadmill: A locomotion device for virtual worlds. In Proceedings of the 10th Annual ACM Symposium on User interface Software and Technology. ACM, New York, 213--221. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. De Luca, A., Mattone, R., and Robuffo Giordano, P. 2007. Acceleration-level control of the CyberCarpet. In Proceedings of the IEEE International Conference on Robotics and Automation. IEEE Press, Los Alamitos, CA, 2330--2335.Google ScholarGoogle ScholarCross RefCross Ref
  11. Foo, P., Warren, W. H., Duchon, A., and Tarr, M. J. 2005. Do humans integrate routes into a cognitive map? Map versus landmark-based navigation of novel shortcuts. J. Exper. Psych. Learn. Memory Cognition 31, 195--215.Google ScholarGoogle ScholarCross RefCross Ref
  12. Grant, S. C. and Magee, L. E. 1998. Contributions of proprioception to navigation in virtual environments. Human Factors 40, 489--497.Google ScholarGoogle ScholarCross RefCross Ref
  13. Gray, W. D. and Fu, W. 2001. Ignoring perfect knowledge in-the-world for imperfect knowledge in-the-head: Implications of rational analysis for interface design. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, New York, 112--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hollerbach, J. M., Checcacci, D., Noma, H., Yanagida, Y., and Tetsutani, N. 2003. Simulating side slopes on locomotion interfaces using torso forces. In Proceedings of the 11th Symposium on Haptic Interfaces for Virtual Environments and Teleoperation. IEEE Press, 91--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Iwata, H., Yano, H., Fukushima, H., and Noma, H. 2005. CirculaFloor: A locomotion interface using circulation of movable tiles. In Proceedings of the IEEE Virtual Reality Conference. IEEE Press, 223--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Klatzky, R. L., Loomis, J. M., Beall, A. C., Chance, S. S., and Golledge, R. G. 1998. Spatial updating of self-position and orientation during real, imagined, and virtual locomotion. Psych. Science 9, 293--298.Google ScholarGoogle ScholarCross RefCross Ref
  17. Lathrop, W. B. and Kaiser, M. K. 2002. Perceived orientation in physical and virtual enfunction of idiothetic information available. Presence: Teleoperat. Virt. Environ. 11, 19--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lessels, S. and Ruddle, R. A. 2005. Movement around real and virtual cluttered environments. Presence: Teleoperat. Virt. Environ. 14, 580--596. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lessels, S. and Ruddle, R. A. 2004. Changes in navigational behaviour produced by a wide field of view and a high fidelity visual scene. In Proceedings of the Workshop on Virtual Environments. S. Coquillart et al. Eds., Eurographics Association, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Levenshtein, V. I. 1966. Binary codes capable of correcting deletions, insertions and reversal. Soviet Physics Doklady 10, 707--710.Google ScholarGoogle Scholar
  21. Loomis, J. M., Klatzky, R. L., Golledge, R. G., and Philbeck, J. W. 1999. Human navigation by path integration. In Wayfinding: Cognitive Mapping and Other Spatial Processes, R. G. Golledge Ed., John Hopkins Press, Baltimore, MD, 125--151.Google ScholarGoogle Scholar
  22. Pausch, R., Proffitt, D., and Williams, G. 1997. Quantifying immersion in virtual reality. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, 13--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Pelah, A. and Koenderink, J. J. 2007. Editorial: Walking in real and virtual environments. ACM Trans. Appl. Percep. 4, 1--4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Péruch, P., Borel, L., Magnan, J., and Lacour, M. 2005. Direction and distance deficits in path integration after unilateral vestibular loss depend on task complexity. Cognitive Brain Research 25, 862--872.Google ScholarGoogle ScholarCross RefCross Ref
  25. Presson, C. C. and Montello, D. R. 1994. Updating after rotational and translational body movements: Coordinate structure of perspective space. Perception 23, 1447--1455.Google ScholarGoogle ScholarCross RefCross Ref
  26. Razzaque, S., Swapp, D., Slater, M., Whitton, M. C., and Steed, A. 2002. Redirected walking in place. In Proceedings of the Workshop on Virtual Environments. W. Stürzlinger and S. Müller Eds., Eurographics Association, 123--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Riecke, B. E. and Bülthoff, H. H. 2004. Spatial updating in real and virtual environments: Contribution and interaction of visual and vestibular cues. In Proceedings of the 1st Symposium on Applied Perception in Graphics and Visualization. ACM, New York, 9--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Ruddle, R. A. and Péruch, P. 2004. Effects of proprioceptive feedback and environmental characteristics on spatial learning in virtual environments. Int. J. Hum. Comput. Stud. 60, 299--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Riecke, B. E., Van Veen, H. A. H. C., and Bülthoff, H. H. 2002. Visual homing is possible without landmarks: A path integration study in virtual reality. Presence: Teleoperat. Virt. Environ. 11, 443--473. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Rieser, J. J. 1989. Access to knowledge of spatial structure at novel points of observation. J. Exper. Psych. Learn. Memory Cognition 15, 1157--1165.Google ScholarGoogle ScholarCross RefCross Ref
  31. Ruddle, R. A. and Lessels, S. 2006. For efficient navigational search humans require full physical movement but not a rich visual scene. Psych. Science 17, 460--465.Google ScholarGoogle ScholarCross RefCross Ref
  32. Ruddle, R. A. 2005. The effect of trails on first-time and subsequent navigation in a virtual environment. In Proceedings of the IEEE Virtual Reality Conference. IEEE Press, 115--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Ruddle, R. A. and Jones, D. M. 2001. Movement in cluttered virtual environments. Presence: Teleoperat. Virt. Environ. 10, 511--524. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Ruddle, R. A. 2001. Navigation: Am I really lost or virtually there? In Engineering Psychology and Cognitive Ergonomics vol. 6, D. Harris Ed., Ashgate, Burlington, VT, 135--142.Google ScholarGoogle Scholar
  35. Ruddle, R. A., Payne, S. J., and Jones, D. M. 1999. Navigating large-scale virtual environments: What differences occur between helmet-mounted and desk-top displays? Presence: Teleoperat. Virt. Environ. 8, 157--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Ruddle, R. A., Payne, S. J., and Jones, D. M. 1997. Navigating buildings in “desk-top” virtual environments: Experimental investigations using extended navigational experience. J. Exper. Psycho. Appl. 3, 143--159.Google ScholarGoogle ScholarCross RefCross Ref
  37. Slater, M., Usoh, M., and Steed, A. 1995. Taking steps: The influence of a walking technique on presence in virtual reality. ACM Trans. Comput. Hum. Interact. 2, 201--219. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Steck, S. D. and Mallot, H. A. 2000. The role of global and local landmarks in virtual environment navigation. Presence: Teleoperat. Virt. Environ. 9, 69--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Templeman, J. N., Denbrook, P. S., and Sibert, L. E. 1999. Virtual locomotion: Walking in place through virtual environments. Presence: Teleoperat. Virt. Environ. 8, 598--617. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Usoh, M., Arthur, K., Whitton, M. C., Bastos, R., Steed, A., Slater, M., And Brooks, F. P. 1999. Walking -> walking-in-place -> flying, in virtual environments. In Proceedings of the 26th Annual Conference on Computer Graphics and interactive Techniques. ACM, New York, 359--364. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Vijayakar, A. and Hollerbach, J. 2002. Effect of turning strategy on maneuvering ability using the Treadport locomotion interface. Presence: Teleoperat. Virt. Environ. 11, 247--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Waller, D. 2000. Individual differences in spatial learning from computer-simulated environments. J. Exper. Psych. Appl. 6, 307--321.Google ScholarGoogle ScholarCross RefCross Ref
  43. Waller, D, Hunt, E., and Knapp, D. 1998. The transfer of spatial knowledge in virtual environment training. Presence: Teleoperat. Virt. Environ., 7, 129--143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Waller, D., Loomis, J. M., and Haun, D. B. M. 2004. Body-based senses enhance knowledge of directions in large-scale environments. Psychonomic Bull. Rev. 11, 157--163.Google ScholarGoogle ScholarCross RefCross Ref
  45. Whitton, M. C., Cohn, J. V., Feasel, J., Zimmons, P., Razzaque, S., Poulton, S. J., Mcleod, B., and Brooks, F. P. 2005. Comparing VE locomotion interfaces. In Proceedings of the IEEE Virtual Reality Conference. IEEE Press, 123--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Winter, D. A. 1990. Biomechanics and Motor Control of Human Movement 2nd Ed. Wiley-Interscience, New York.Google ScholarGoogle Scholar
  47. Witmer, B. G., Bailey, J. H., Knerr, B. W., and Parsons, K. C. 1996. Virtual spaces and real-world places: Transfer of route knowledge. Int. J. Hum. Comput. Stud. 45, 413--428. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Witmer, B. G. and Kline, P. B. 1998. Judging perceived and traversed distance in virtual environments. Presence: Teleoperat. Virt. Environ. 7, 144--167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Witmer, B. G., Sadowski, W. J., and Finkelstein, N. M. 2002. VE-based training strategies for acquiring survey knowledge. Presence: Teleoperat. Virt. Environ. 11, 1--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Zanbaka, C. A., Lok, B. C., Babu, S. V., Ulinski, A. C., and Hodges, L. F. 2005. Comparison of path visualizations and cognitive measures relative to travel techniques in a virtual environment. IEEE Trans. Visual. Comput. Graph. 11, 694--705. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. The benefits of using a walking interface to navigate virtual environments

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Computer-Human Interaction
        ACM Transactions on Computer-Human Interaction  Volume 16, Issue 1
        April 2009
        199 pages
        ISSN:1073-0516
        EISSN:1557-7325
        DOI:10.1145/1502800
        Issue’s Table of Contents

        Copyright © 2009 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 23 April 2009
        • Accepted: 1 June 2008
        • Revised: 1 November 2007
        • Received: 1 January 2007
        Published in tochi Volume 16, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader