CELL BIOLOGY AND METABOLISM
Elevation of Intracellular Glucosylceramide Levels Results in an Increase in Endoplasmic Reticulum Density and in Functional Calcium Stores in Cultured Neurons*

https://doi.org/10.1074/jbc.274.31.21673Get rights and content
Under a Creative Commons license
open access

Gaucher disease is a glycosphingolipid storage disease caused by defects in the activity of the lysosomal hydrolase, glucocerebrosidase (GlcCerase), resulting in accumulation of glucocerebroside (glucosylceramide, GlcCer) in lysosomes. The acute neuronopathic type of the disease is characterized by severe loss of neurons in the central nervous system, suggesting that a neurotoxic agent might be responsible for cellular disruption and neuronal death. We now demonstrate that upon incubation with a chemical inhibitor of GlcCerase, conduritol-B-epoxide (CBE), cultured hippocampal neurons accumulate GlcCer. Surprisingly, increased levels of tubular endoplasmic reticulum elements, an increase in [Ca2+]i response to glutamate, and a large increase in [Ca2+]i release from the endoplasmic reticulum in response to caffeine were detected in these cells. There was a direct relationship between these effects and GlcCer accumulation since co-incubation with CBE and an inhibitor of glycosphingolipid synthesis, fumonisin B1, completely antagonized the effects of CBE. Similar effects on endoplasmic reticulum morphology and [Ca2+]istores were observed upon incubation with a short-acyl chain, nonhydrolyzable analogue of GlcCer, C8-glucosylthioceramide. Finally, neurons with elevated GlcCer levels were much more sensitive to the neurotoxic effects of high concentrations of glutamate than control cells; moreover, this enhanced toxicity was blocked by pre-incubation with ryanodine, suggesting that [Ca2+]i release from ryanodine-sensitive intracellular stores can induce neuronal cell death, at least in neurons with elevated GlcCer levels. These results may provide a molecular mechanism to explain neuronal dysfunction and cell death in neuronopathic forms of Gaucher disease.

Cited by (0)

*

This work was supported by the Mizutani Foundation for Glycoscience and the Minna James Heineman Foundation (to A. H. F.) and by the Deutsche Forschungsgemeinschaft (to G. S.).The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

§

Both authors contributed equally to the work.