Semin Musculoskelet Radiol 2016; 20(01): 065-073
DOI: 10.1055/s-0036-1579675
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Imaging of Individual Anatomical Risk Factors for Patellar Instability

Tobias J. Dietrich
1   Department of Radiology, Orthopedic University Hospital Balgrist, Faculty of Medicine, University of Zurich, Zurich, Switzerland
,
Sandro F. Fucentese
2   Department of Orthopedic Surgery, Orthopedic University Hospital Balgrist, Faculty of Medicine, University of Zurich, Zurich, Switzerland
,
Christian W. A. Pfirrmann
1   Department of Radiology, Orthopedic University Hospital Balgrist, Faculty of Medicine, University of Zurich, Zurich, Switzerland
› Author Affiliations
Further Information

Publication History

Publication Date:
14 April 2016 (online)

Abstract

This review article presents several pitfalls and limitations of image interpretation of anatomical risk factors for patellar instability. The most important imaging examinations for the work-up of patients with patellar instability are the true lateral radiograph and transverse computed tomography (CT) or MR images of the knee. Primary anatomical risk factors are an insufficient medial patellofemoral ligament (MPFL), patella alta, trochlear dysplasia, increased distance from the tibial tuberosity to the trochlear groove (TTTG), and torsional limb parameters.

Limitations of the Caton-Deschamps index are related to the clear identification of the patellar and tibial articular margin. Classification of trochlear dysplasia according to the Dejour system on radiographs and MR images revealed a weak reliability. The comparability of TTTG values obtained on CT and MR images at various flexion angles and different varus alignments of the knee is limited. Thus MRI performed with a dedicated knee coil may underestimate the TTTG distance compared with CT images. Increased lateral patellar tilt is a consequence of primary anatomical risk factors rather than an independent anatomical risk factor for patellar instability. The pretest likelihood of a torn MPFL on MR images is very high after an acute episode of lateral patellar dislocation.

Surgical restoration of the patellofemoral joint stability addresses the complex multifactorial biomechanics by a custom-made management such as MPFL reconstruction, sulcus-deepening trochleoplasty, as well as medialization and distalization of the tibial tubercle.

Quantification of anatomical risk factors for patellar instability in each person is important for highly individual treatment.

 
  • References

  • 1 Koh JL, Stewart C. Patellar instability. Clin Sports Med 2014; 33 (3) 461-476
  • 2 Senavongse W, Amis AA. The effects of articular, retinacular, or muscular deficiencies on patellofemoral joint stability: a biomechanical study in vitro. J Bone Joint Surg Br 2005; 87 (4) 577-582
  • 3 Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 1994; 2 (1) 19-26
  • 4 Sherman SL, Plackis AC, Nuelle CW. Patellofemoral anatomy and biomechanics. Clin Sports Med 2014; 33 (3) 389-401
  • 5 Diederichs G, Issever AS, Scheffler S. MR imaging of patellar instability: injury patterns and assessment of risk factors. Radiographics 2010; 30 (4) 961-981
  • 6 Dejour DH. The patellofemoral joint and its historical roots: the Lyon School of Knee Surgery. Knee Surg Sports Traumatol Arthrosc 2013; 21 (7) 1482-1494
  • 7 M Tscholl P, P Koch P, F Fucentese S. Treatment options for patellofemoral instability in sports traumatology. Orthop Rev (Pavia) 2013; 5 (3) e23
  • 8 Dejour D, Le Coultre B. Osteotomies in patello-femoral instabilities. Sports Med Arthrosc Rev 2007; 15 (1) 39-46
  • 9 Dejour D, Saggin P. The sulcus deepening trochleoplasty--the Lyon's procedure. Int Orthop 2010; 34 (2) 311-316
  • 10 Steensen RN, Bentley JC, Trinh TQ, Backes JR, Wiltfong RE. The prevalence and combined prevalences of anatomic factors associated with recurrent patellar dislocation: a magnetic resonance imaging study. Am J Sports Med 2015; 43 (4) 921-927
  • 11 Diederichs G, Köhlitz T, Kornaropoulos E, Heller MO, Vollnberg B, Scheffler S. Magnetic resonance imaging analysis of rotational alignment in patients with patellar dislocations. Am J Sports Med 2013; 41 (1) 51-57
  • 12 Gheno R, Nectoux E, Herbaux B , et al. Three-dimensional measurements of the lower extremity in children and adolescents using a low-dose biplanar X-ray device. Eur Radiol 2012; 22 (4) 765-771
  • 13 Caton JH, Dejour D. Tibial tubercle osteotomy in patello-femoral instability and in patellar height abnormality. Int Orthop 2010; 34 (2) 305-309
  • 14 Fucentese SF, Zingg PO, Schmitt J, Pfirrmann CW, Meyer DC, Koch PP. Classification of trochlear dysplasia as predictor of clinical outcome after trochleoplasty. Knee Surg Sports Traumatol Arthrosc 2011; 19 (10) 1655-1661
  • 15 Amis AA, Senavongse W, Bull AM. Patellofemoral kinematics during knee flexion-extension: an in vitro study. J Orthop Res 2006; 24 (12) 2201-2211
  • 16 Grelsamer RP, Meadows S. The modified Insall-Salvati ratio for assessment of patellar height. Clin Orthop Relat Res 1992; (282) 170-176
  • 17 Caton J, Deschamps G, Chambat P, Lerat JL, Dejour H. Patella infera. Apropos of 128 cases [in French]. Rev Chir Orthop Repar Appar Mot 1982; 68 (5) 317-325
  • 18 Blackburne JS, Peel TE. A new method of measuring patellar height. J Bone Joint Surg Br 1977; 59 (2) 241-242
  • 19 Insall J, Salvati E. Patella position in the normal knee joint. Radiology 1971; 101 (1) 101-104
  • 20 Nizić D, Pervan M, Kovačević B. A new reference line in diagnosing a high-riding patella on routine digital lateral radiographs of the knee. Skeletal Radiol 2014; 43 (8) 1129-1137
  • 21 Phillips CL, Silver DA, Schranz PJ, Mandalia V. The measurement of patellar height: a review of the methods of imaging. J Bone Joint Surg Br 2010; 92 (8) 1045-1053
  • 22 Aparicio G, Abril JC, Albiñana J, Rodríguez-Salvanés F. Patellar height ratios in children: an interobserver study of three methods. J Pediatr Orthop B 1999; 8 (1) 29-32
  • 23 Thévenin-Lemoine C, Ferrand M, Courvoisier A, Damsin JP, Ducou le Pointe H, Vialle R. Is the Caton-Deschamps index a valuable ratio to investigate patellar height in children?. J Bone Joint Surg Am 2011; 93 (8) e35
  • 24 Miller TT, Staron RB, Feldman F. Patellar height on sagittal MR imaging of the knee. AJR Am J Roentgenol 1996; 167 (2) 339-341
  • 25 Lee PP, Chalian M, Carrino JA, Eng J, Chhabra A. Multimodality correlations of patellar height measurement on X-ray, CT, and MRI. Skeletal Radiol 2012; 41 (10) 1309-1314
  • 26 Malghem J, Maldague B. Depth insufficiency of the proximal trochlear groove on lateral radiographs of the knee: relation to patellar dislocation. Radiology 1989; 170 (2) 507-510
  • 27 Pfirrmann CW, Zanetti M, Romero J, Hodler J. Femoral trochlear dysplasia: MR findings. Radiology 2000; 216 (3) 858-864
  • 28 Koëter S, Bongers EM, de Rooij J, van Kampen A. Minimal rotation aberrations cause radiographic misdiagnosis of trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc 2006; 14 (8) 713-717
  • 29 Lippacher S, Dejour D, Elsharkawi M , et al. Observer agreement on the Dejour trochlear dysplasia classification: a comparison of true lateral radiographs and axial magnetic resonance images. Am J Sports Med 2012; 40 (4) 837-843
  • 30 Nelitz M, Lippacher S, Reichel H, Dornacher D. Evaluation of trochlear dysplasia using MRI: correlation between the classification system of Dejour and objective parameters of trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc 2014; 22 (1) 120-127
  • 31 Goutallier D, Bernageau J, Lecudonnec B. The measurement of the tibial tuberosity. Patella groove distanced technique and results (author's transl) [in French]. Rev Chir Orthop Repar Appar Mot 1978; 64 (5) 423-428
  • 32 Schoettle PB, Zanetti M, Seifert B, Pfirrmann CW, Fucentese SF, Romero J. The tibial tuberosity-trochlear groove distance; a comparative study between CT and MRI scanning. Knee 2006; 13 (1) 26-31
  • 33 Koëter S, Diks MJ, Anderson PG, Wymenga AB. A modified tibial tubercle osteotomy for patellar maltracking: results at two years. J Bone Joint Surg Br 2007; 89 (2) 180-185
  • 34 Balcarek P, Jung K, Ammon J , et al. Anatomy of lateral patellar instability: trochlear dysplasia and tibial tubercle-trochlear groove distance is more pronounced in women who dislocate the patella. Am J Sports Med 2010; 38 (11) 2320-2327
  • 35 Dickens AJ, Morrell NT, Doering A, Tandberg D, Treme G. Tibial tubercle-trochlear groove distance: defining normal in a pediatric population. J Bone Joint Surg Am 2014; 96 (4) 318-324
  • 36 Wagenaar FC, Koëter S, Anderson PG, Wymenga AB. Conventional radiography cannot replace CT scanning in detecting tibial tubercle lateralisation. Knee 2007; 14 (1) 51-54
  • 37 Dietrich TJ, Betz M, Pfirrmann CW, Koch PP, Fucentese SF. End-stage extension of the knee and its influence on tibial tuberosity-trochlear groove distance (TTTG) in asymptomatic volunteers. Knee Surg Sports Traumatol Arthrosc 2014; 22 (1) 214-218
  • 38 Skelley N, Friedman M, McGinnis M, Smith C, Hillen T, Matava M. Inter- and intraobserver reliability in the MRI measurement of the tibial tubercle-trochlear groove distance and trochlea dysplasia. Am J Sports Med 2015; 43 (4) 873-878
  • 39 Ho CP, James EW, Surowiec RK , et al. Systematic technique-dependent differences in CT versus MRI measurement of the tibial tubercle-trochlear groove distance. Am J Sports Med 2015; 43 (3) 675-682
  • 40 Becher C, Fleischer B, Rase M , et al. Effects of upright weight bearing and the knee flexion angle on patellofemoral indices using magnetic resonance imaging in patients with patellofemoral instability. Knee Surg Sports Traumatol Arthrosc 2015; ; October 19 (Epub ahead of print)
  • 41 Aarvold A, Pope A, Sakthivel VK, Ayer RV. MRI performed on dedicated knee coils is inaccurate for the measurement of tibial tubercle trochlear groove distance. Skeletal Radiol 2014; 43 (3) 345-349
  • 42 Camp CL, Stuart MJ, Krych AJ , et al. CT and MRI measurements of tibial tubercle-trochlear groove distances are not equivalent in patients with patellar instability. Am J Sports Med 2013; 41 (8) 1835-1840
  • 43 Tscholl PM, Antoniadis A, Dietrich TJ, Koch PP, Fucentese SF. The tibial-tubercle trochlear groove distance in patients with trochlear dysplasia: the influence of the proximally flat trochlea. Knee Surg Sports Traumatol Arthrosc 2014; ; October 19 (Epub ahead of print)
  • 44 Dornacher D, Reichel H, Lippacher S. Measurement of tibial tuberosity-trochlear groove distance: evaluation of inter- and intraobserver correlation dependent on the severity of trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc 2014; 22 (10) 2382-2387
  • 45 Wilcox JJ, Snow BJ, Aoki SK, Hung M, Burks RT. Does landmark selection affect the reliability of tibial tubercle-trochlear groove measurements using MRI?. Clin Orthop Relat Res 2012; 470 (8) 2253-2260
  • 46 Laurin CA, Lévesque HP, Dussault R, Labelle H, Peides JP. The abnormal lateral patellofemoral angle: a diagnostic roentgenographic sign of recurrent patellar subluxation. J Bone Joint Surg Am 1978; 60 (1) 55-60
  • 47 Nove-Josserand L, Dejour D. Quadriceps dysplasia and patellar tilt in objective patellar instability [in French]. Rev Chir Orthop Repar Appar Mot 1995; 81 (6) 497-504
  • 48 Schueda MA, Astur DC, Bier RS, Bier DS, Astur N, Cohen M. Use of computed tomography to determine the risk of patellar dislocation in 921 patients with patellar instability. Open Access J Sports Med 2015; 6: 55-62
  • 49 Tanaka MJ, Elias JJ, Williams AA, Carrino JA, Cosgarea AJ. Correlation between changes in tibial tuberosity-trochlear groove distance and patellar position during active knee extension on dynamic kinematic computed tomographic imaging. Arthroscopy 2015; 31 (9) 1748-1755
  • 50 Stephen JM, Dodds AL, Lumpaopong P, Kader D, Williams A, Amis AA. The ability of medial patellofemoral ligament reconstruction to correct patellar kinematics and contact mechanics in the presence of a lateralized tibial tubercle. Am J Sports Med 2015; 43 (9) 2198-2207
  • 51 Pal S, Besier TF, Beaupre GS, Fredericson M, Delp SL, Gold GE. Patellar maltracking is prevalent among patellofemoral pain subjects with patella alta: an upright, weightbearing MRI study. J Orthop Res 2013; 31 (3) 448-457
  • 52 Ward SR, Terk MR, Powers CM. Patella alta: association with patellofemoral alignment and changes in contact area during weight-bearing. J Bone Joint Surg Am 2007; 89 (8) 1749-1755
  • 53 Powers CM. Patellar kinematics, part II: the influence of the depth of the trochlear groove in subjects with and without patellofemoral pain. Phys Ther 2000; 80 (10) 965-978
  • 54 Van Haver A, De Roo K, De Beule M , et al. The effect of trochlear dysplasia on patellofemoral biomechanics: a cadaveric study with simulated trochlear deformities. Am J Sports Med 2015; 43 (6) 1354-1361
  • 55 Schöttle PB, Fucentese SF, Romero J. Clinical and radiological outcome of medial patellofemoral ligament reconstruction with a semitendinosus autograft for patella instability. Knee Surg Sports Traumatol Arthrosc 2005; 13 (7) 516-521
  • 56 Wagner D, Pfalzer F, Hingelbaum S, Huth J, Mauch F, Bauer G. The influence of risk factors on clinical outcomes following anatomical medial patellofemoral ligament (MPFL) reconstruction using the gracilis tendon. Knee Surg Sports Traumatol Arthrosc 2013; 21 (2) 318-324
  • 57 Zaffagnini S, Colle F, Lopomo N , et al. The influence of medial patellofemoral ligament on patellofemoral joint kinematics and patellar stability. Knee Surg Sports Traumatol Arthrosc 2013; 21 (9) 2164-2171
  • 58 Grelsamer RP, Weinstein CH, Gould J, Dubey A. Patellar tilt: the physical examination correlates with MR imaging. Knee 2008; 15 (1) 3-8
  • 59 Smith TO, Davies L, Toms AP, Hing CB, Donell ST. The reliability and validity of radiological assessment for patellar instability. A systematic review and meta-analysis. Skeletal Radiol 2011; 40 (4) 399-414
  • 60 Tuxøe JI, Teir M, Winge S, Nielsen PL. The medial patellofemoral ligament: a dissection study. Knee Surg Sports Traumatol Arthrosc 2002; 10 (3) 138-140
  • 61 Amis AA, Firer P, Mountney J, Senavongse W, Thomas NP. Anatomy and biomechanics of the medial patellofemoral ligament. Knee 2003; 10 (3) 215-220
  • 62 Elias DA, White LM, Fithian DC. Acute lateral patellar dislocation at MR imaging: injury patterns of medial patellar soft-tissue restraints and osteochondral injuries of the inferomedial patella. Radiology 2002; 225 (3) 736-743
  • 63 Guerrero P, Li X, Patel K, Brown M, Busconi B. Medial patellofemoral ligament injury patterns and associated pathology in lateral patella dislocation: an MRI study. Sports Med Arthrosc Rehabil Ther Technol 2009; 1 (1) 17
  • 64 Balcarek P, Ammon J, Frosch S , et al. Magnetic resonance imaging characteristics of the medial patellofemoral ligament lesion in acute lateral patellar dislocations considering trochlear dysplasia, patella alta, and tibial tuberosity-trochlear groove distance. Arthroscopy 2010; 26 (7) 926-935
  • 65 Seeley M, Bowman KF, Walsh C, Sabb BJ, Vanderhave KL. Magnetic resonance imaging of acute patellar dislocation in children: patterns of injury and risk factors for recurrence. J Pediatr Orthop 2012; 32 (2) 145-155
  • 66 Balcarek P, Walde TA, Frosch S , et al. Patellar dislocations in children, adolescents and adults: a comparative MRI study of medial patellofemoral ligament injury patterns and trochlear groove anatomy. Eur J Radiol 2011; 79 (3) 415-420
  • 67 Sillanpää PJ, Peltola E, Mattila VM, Kiuru M, Visuri T, Pihlajamäki H. Femoral avulsion of the medial patellofemoral ligament after primary traumatic patellar dislocation predicts subsequent instability in men: a mean 7-year nonoperative follow-up study. Am J Sports Med 2009; 37 (8) 1513-1521
  • 68 Sanders TG, Morrison WB, Singleton BA, Miller MD, Cornum KG. Medial patellofemoral ligament injury following acute transient dislocation of the patella: MR findings with surgical correlation in 14 patients. J Comput Assist Tomogr 2001; 25 (6) 957-962
  • 69 Fithian DC, Paxton EW, Stone ML , et al. Epidemiology and natural history of acute patellar dislocation. Am J Sports Med 2004; 32 (5) 1114-1121
  • 70 Stefancin JJ, Parker RD. First-time traumatic patellar dislocation: a systematic review. Clin Orthop Relat Res 2007; 455 (455) 93-101
  • 71 Smith TO, Donell S, Song F, Hing CB. Surgical versus non-surgical interventions for treating patellar dislocation. Cochrane Database Syst Rev 2015; 2 (2) CD008106
  • 72 Saper MG, Shneider DA. Diagnosis and treatment of lateral patellar compression syndrome. Arthrosc Tech 2014; 3 (5) e633-e638
  • 73 Colvin AC, West RV. Patellar instability. J Bone Joint Surg Am 2008; 90 (12) 2751-2762
  • 74 Sutter R, Dietrich TJ, Zingg PO, Pfirrmann CW. Femoral antetorsion: comparing asymptomatic volunteers and patients with femoroacetabular impingement. Radiology 2012; 263 (2) 475-483
  • 75 Sutter R, Dietrich TJ, Zingg PO, Pfirrmann CW. Assessment of femoral antetorsion with MRI: comparison of oblique measurements to standard transverse measurements. AJR Am J Roentgenol 2015; 205 (1) 130-135