Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism

Abstract

The identification of the candidate genes for autism through linkage and association studies has proven to be a difficult enterprise. An alternative approach is the analysis of cytogenetic abnormalities associated with autism. We present a review of all studies to date that relate patients with cytogenetic abnormalities to the autism phenotype. A literature survey of the Medline and Pubmed databases was performed, using multiple keyword searches. Additional searches through cited references and abstracts from the major genetic conferences from 2000 onwards completed the search. The quality of the phenotype (i.e. of the autism spectrum diagnosis) was rated for each included case. Available specific probe and marker information was used to define optimally the boundaries of the cytogenetic abnormalities. In case of recurrent deletions or duplications on chromosome 15 and 22, the positions of the low copy repeats that are thought to mediate these rearrangements were used to define the most likely boundaries of the implicated ‘Cytogenetic Regions Of Interest’ (CROIs). If no molecular data were available, the sequence position of the relevant chromosome bands was used to obtain the approximate molecular boundaries of the CROI. The findings of the current review indicate: (1) several regions of overlap between CROIs and known loci of significant linkage and/or association findings, and (2) additional regions of overlap among multiple CROIs at the same locus. Whereas the first finding confirms previous linkage/association findings, the latter may represent novel, not previously identified regions containing genes that contribute to autism. This analysis not only has confirmed the presence of several known autism risk regions but has also revealed additional previously unidentified loci, including 2q37, 5p15, 11q25, 16q22.3, 17p11.2, 18q21.1, 18q23, 22q11.2, 22q13.3 and Xp22.2–p22.3.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR, 4th edn. American Psychiatric Association: Washington DC, 2000.

  2. Chakrabarti S, Fombonne E . Pervasive developmental disorders in preschool children. JAMA 2001; 285: 3093–3099.

    Article  CAS  PubMed  Google Scholar 

  3. Fombonne E . Epidemiological trends in rates of autism. Mol Psychiatry 2002; 7 (Suppl 2): S4–S6.

    Article  PubMed  Google Scholar 

  4. Fombonne E . The prevalence of autism. JAMA 2003; 289: 87–89.

    Article  PubMed  Google Scholar 

  5. Yeargin-Allsopp M, Rice C, Karapurkar T, Doernberg N, Boyle C, Murphy C . Prevalence of autism in a US metropolitan area. JAMA 2003; 289: 49–55.

    Article  PubMed  Google Scholar 

  6. Folstein SE, Rosen-Sheidley B . Genetics of autism: complex aetiology for a heterogeneous disorder. Nat Rev Genet 2001; 2: 943–955.

    Article  CAS  PubMed  Google Scholar 

  7. Veenstra-VanderWeele J, Cook Jr EH . Molecular genetics of autism spectrum disorder. Mol Psychiatry 2004; 9: 819–832.

    Article  CAS  PubMed  Google Scholar 

  8. Rutter M . Concepts of autism: a review of research. J Child Psychol Psychiatry 1968; 9: 1–25.

    Article  CAS  PubMed  Google Scholar 

  9. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 1995; 25: 63–77.

    Article  CAS  PubMed  Google Scholar 

  10. Le Couteur A, Bailey A, Goode S, Pickles A, Robertson S, Gottesman I et al. A broader phenotype of autism: the clinical spectrum in twins. J Child Psychol Psychiatry 1996; 37: 785–801.

    Article  CAS  PubMed  Google Scholar 

  11. Pickles A, Bolton P, Macdonald H, Bailey A, Le Couteur A, Sim CH et al. Latent-class analysis of recurrence risks for complex phenotypes with selection and measurement error: a twin and family history study of autism. Am J Hum Genet 1995; 57: 717–726.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chess S, Korn SJ, Fernandez PB . Psychiatric Disorders in Children with Congenital Rubella. Brunner/Mazel: New York, NY, 1971.

    Google Scholar 

  13. Gillberg C, Coleman M . The Biology of the Autistic Syndromes, 3rd edn. Mac Keith Press, Distributed by Cambridge University Press: London, UK, 2000.

    Google Scholar 

  14. Wakefield AJ, Murch SH, Anthony A, Linnell J, Casson DM, Malik M et al. Ileal–lymphoid–nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet 1998; 351: 637–641.

    Article  CAS  PubMed  Google Scholar 

  15. Fombonne E . The epidemiology of autism: a review. Psychol Med 1999; 29: 769–786.

    Article  CAS  PubMed  Google Scholar 

  16. Madsen KM, Hviid A, Vestergaard M, Schendel D, Wohlfahrt J, Thorsen P et al. A population-based study of measles, mumps, and rubella vaccination and autism. N Engl J Med 2002; 347: 1477–1482.

    Article  PubMed  Google Scholar 

  17. Taylor B, Miller E, Lingam R, Andrews N, Simmons A, Stowe J . Measles, mumps, and rubella vaccination and bowel problems or developmental regression in children with autism: population study. BMJ 2002; 324: 393–396.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bernard S, Enayati A, Roger H, Binstock T, Redwood L . The role of mercury in the pathogenesis of autism. Mol Psychiatry 2002; 7 (Suppl 2): S42–S43.

    Article  CAS  PubMed  Google Scholar 

  19. Stromland K, Nordin V, Miller M, Akerstrom B, Gillberg C . Autism in thalidomide embryopathy: a population study. Dev Med Child Neurol 1994; 36: 351–356.

    Article  CAS  PubMed  Google Scholar 

  20. Williams G, King J, Cunningham M, Stephan M, Kerr B, Hersh JH . Fetal valproate syndrome and autism: additional evidence of an association. Dev Med Child Neurol 2001; 43: 202–206.

    Article  CAS  PubMed  Google Scholar 

  21. Juul-Dam N, Townsend J, Courchesne E . Prenatal, perinatal, and neonatal factors in autism, pervasive developmental disorder-not otherwise specified, and the general population. Pediatrics 2001; 107: E63.

    Article  CAS  PubMed  Google Scholar 

  22. Deb S, Prasad KB, Seth H, Eagles JM . A comparison of obstetric and neonatal complications between children with autistic disorder and their siblings. J Intellect Disabil Res 1997; 41 (Part 1): 81–86.

    PubMed  Google Scholar 

  23. Zwaigenbaum L, Szatmari P, Jones MB, Bryson SE, MacLean JE, Mahoney WJ et al. Pregnancy and birth complications in autism and liability to the broader autism phenotype. J Am Acad Child Adolesc Psychiatry 2002; 41: 572–579.

    Article  PubMed  Google Scholar 

  24. Lander E, Kruglyak L . Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11: 241–247.

    Article  CAS  PubMed  Google Scholar 

  25. International Molecular Genetic Study of Autism Consortium (IMGSAC). A genomewide screen for autism: strong evidence for linkage to chromosomes 2q, 7q, and 16p. Am J Hum Genet 2001; 69: 570–581.

  26. Auranen M, Vanhala R, Varilo T, Ayers K, Kempas E, Ylisaukko-Oja T et al. A genomewide screen for autism-spectrum disorders: evidence for a major susceptibility locus on chromosome 3q25–27. Am J Hum Genet 2002; 71: 777–790.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tordjman S, Gutknecht L, Carlier M, Spitz E, Antoine C, Slama F et al. Role of the serotonin transporter gene in the behavioral expression of autism. Mol Psychiatry 2001; 6: 434–439.

    Article  CAS  PubMed  Google Scholar 

  28. Conroy J, Meally E, Kearney G, Fitzgerald M, Gill M, Gallagher L . Serotonin transporter gene and autism: a haplotype analysis in an Irish autistic population. Mol Psychiatry 2004; 9: 587–593.

    Article  CAS  PubMed  Google Scholar 

  29. Cook Jr EH, Courchesne R, Lord C, Cox NJ, Yan S, Lincoln A et al. Evidence of linkage between the serotonin transporter and autistic disorder. Mol Psychiatry 1997; 2: 247–250.

    Article  PubMed  Google Scholar 

  30. Klauck SM, Poustka F, Benner A, Lesch KP, Poustka A . Serotonin transporter (5-HTT) gene variants associated with autism? Hum Mol Genet 1997; 6: 2233–2238.

    Article  CAS  PubMed  Google Scholar 

  31. Yirmiya N, Pilowsky T, Nemanov L, Arbelle S, Feinsilver T, Fried I et al. Evidence for an association with the serotonin transporter promoter region polymorphism and autism. Am J Med Genet 2001; 105: 381–386.

    Article  CAS  PubMed  Google Scholar 

  32. Kim SJ, Cox N, Courchesne R, Lord C, Corsello C, Akshoomoff N et al. Transmission disequilibrium mapping at the serotonin transporter gene (SLC6A4) region in autistic disorder. Mol Psychiatry 2002; 7: 278–288.

    Article  CAS  PubMed  Google Scholar 

  33. Buxbaum JD, Silverman JM, Smith CJ, Greenberg DA, Kilifarski M, Reichert J et al. Association between a GABRB3 polymorphism and autism. Mol Psychiatry 2002; 7: 311–316.

    Article  CAS  PubMed  Google Scholar 

  34. Cook Jr EH, Courchesne RY, Cox NJ, Lord C, Gonen D, Guter SJ et al. Linkage-disequilibrium mapping of autistic disorder, with 15q11–13 markers. Am J Hum Genet 1998; 62: 1077–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martin ER, Menold MM, Wolpert CM, Bass MP, Donnelly SL, Ravan SA et al. Analysis of linkage disequilibrium in gamma-aminobutyric acid receptor subunit genes in autistic disorder. Am J Med Genet 2000; 96: 43–48.

    Article  PubMed  Google Scholar 

  36. Menold MM, Shao Y, Wolpert CM, Donnelly SL, Raiford KL, Martin ER et al. Association analysis of chromosome 15 GABAA receptor subunit genes in autistic disorder. J Neurogenet 2001; 15: 245–259.

    Article  CAS  PubMed  Google Scholar 

  37. Serajee FJ, Nabi R, Zhong H, Mahbubul Huq AH . Association of INPP1, PIK3CG, and TSC2 gene variants with autistic disorder: implications for phosphatidylinositol signalling in autism. J Med Genet 2003; 40: e119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Persico AM, D’Agruma L, Maiorano N, Totaro A, Militerni R, Bravaccio C et al. Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol Psychiatry 2001; 6: 150–159.

    Article  CAS  PubMed  Google Scholar 

  39. Skaar DA, Shao Y, Haines JL, Stenger JE, Jaworski J, Martin ER et al. Analysis of the RELN gene as a genetic risk factor for autism. Mol Psychiatry 2005; 10: 563–571.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang H, Liu X, Zhang C, Mundo E, Macciardi F, Grayson DR et al. Reelin gene alleles and susceptibility to autism spectrum disorders. Mol Psychiatry 2002; 7: 1012–1017.

    Article  CAS  PubMed  Google Scholar 

  41. Bonora E, Lamb JA, Barnby G, Sykes N, Moberly T, Beyer KS et al. Mutation screening and association analysis of six candidate genes for autism on chromosome 7q. Eur J Hum Genet 2005; 13: 198–207.

    Article  CAS  PubMed  Google Scholar 

  42. Hutcheson HB, Olson LM, Bradford Y, Folstein SE, Santangelo SL, Sutcliffe JS et al. Examination of NRCAM, LRRN3, KIAA0716, and LAMB1 as autism candidate genes. BMC Med Genet 2004; 5: 12.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wassink TH, Piven J, Vieland VJ, Huang J, Swiderski RE, Pietila J et al. Evidence supporting WNT2 as an autism susceptibility gene. Am J Med Genet 2001; 105: 406–413.

    Article  CAS  PubMed  Google Scholar 

  44. Gong X, Jia M, Ruan Y, Shuang M, Liu J, Wu S et al. Association between the FOXP2 gene and autistic disorder in Chinese population. Am J Med Genet B 2004; 127: 113–116.

    Article  Google Scholar 

  45. Boguski MS, Jones AR . Neurogenomics: at the intersection of neurobiology and genome sciences. Nat Neurosci 2004; 7: 429–433.

    Article  CAS  PubMed  Google Scholar 

  46. Risch N, Merikangas K . The future of genetic studies of complex human diseases. Science 1996; 273: 1516–1517.

    Article  CAS  PubMed  Google Scholar 

  47. Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS et al. Genetic analysis of genome-wide variation in human gene expression. Nature 2004; 430: 743–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reddy KS . Cytogenetic abnormalities and fragile-X syndrome in autism spectrum disorder. BMC Med Genet 2005; 6: 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Castermans D, Wilquet V, Steyaert J, Van d V, Fryns JP, Devriendt K . Chromosomal anomalies in individuals with autism: a strategy towards the identification of genes involved in autism. Autism 2004; 8: 141–161.

    Article  PubMed  Google Scholar 

  50. Gillberg C . Chromosomal disorders and autism. J Autism Dev Disord 1998; 28: 415–425.

    Article  CAS  PubMed  Google Scholar 

  51. Lauritsen M, Mors O, Mortensen PB, Ewald H . Infantile autism and associated autosomal chromosome abnormalities: a register-based study and a literature survey. J Child Psychol Psychiatry 1999; 40: 335–345.

    Article  CAS  PubMed  Google Scholar 

  52. Veenstra-VanderWeele J, Christian SL, Cook Jr EH . Autism as a paradigmatic complex genetic disorder. Annu Rev Genomics Hum Genet 2004; 5: 379–405.

    Article  CAS  PubMed  Google Scholar 

  53. Lord C, Rutter M, Le Couteur A . Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 1994; 24: 659–685.

    Article  CAS  PubMed  Google Scholar 

  54. Schopler E, Reichler RJ, DeVellis RF, Daly K . Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS). J Autism Dev Disord 1980; 10: 91–103.

    Article  CAS  PubMed  Google Scholar 

  55. Lord C, Risi S, Lambrecht L, Cook Jr EH, Leventhal BL, DiLavore PC et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 2000; 30: 205–223.

    Article  CAS  PubMed  Google Scholar 

  56. Christian SL, Fantes JA, Mewborn SK, Huang B, Ledbetter DH . Large genomic duplicons map to sites of instability in the Prader–Willi/Angelman syndrome chromosome region (15q11–q13). Hum Mol Genet 1999; 8: 1025–1037.

    Article  CAS  PubMed  Google Scholar 

  57. Ji Y, Eichler EE, Schwartz S, Nicholls RD . Structure of chromosomal duplicons and their role in mediating human genomic disorders. Genome Res 2000; 10: 597–610.

    Article  CAS  PubMed  Google Scholar 

  58. Pujana MA, Nadal M, Guitart M, Armengol L, Gratacos M, Estivill X . Human chromosome 15q11–q14 regions of rearrangements contain clusters of LCR15 duplicons. Eur J Hum Genet 2002; 10: 26–35.

    Article  CAS  PubMed  Google Scholar 

  59. Shaikh TH, Kurahashi H, Saitta SC, O’Hare AM, Hu P, Roe BA et al. Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum Mol Genet 2000; 9: 489–501.

    Article  CAS  PubMed  Google Scholar 

  60. Emanuel BS, Shaikh TH . Segmental duplications: an ‘expanding’ role in genomic instability and disease. Nat Rev Genet 2001; 2: 791–800.

    Article  CAS  PubMed  Google Scholar 

  61. Nurmi EL, Amin T, Olson LM, Jacobs MM, McCauley JL, Lam AY et al. Dense linkage disequilibrium mapping in the 15q11–q13 maternal expression domain yields evidence for association in autism. Mol Psychiatry 2003; 8: 624–634, 570.

    Article  CAS  PubMed  Google Scholar 

  62. Nurmi EL, Bradford Y, Chen Y, Hall J, Arnone B, Gardiner MB et al. Linkage disequilibrium at the Angelman syndrome gene UBE3A in autism families. Genomics 2001; 77: 105–113.

    Article  CAS  PubMed  Google Scholar 

  63. Goizet C, Excoffier E, Taine L, Taupiac E, El Moneim AA, Arveiler B et al. Case with autistic syndrome and chromosome 22q13.3 deletion detected by FISH. Am J Med Genet 2000; 96: 839–844.

    Article  CAS  PubMed  Google Scholar 

  64. Shprintzen RJ . Velo-cardio-facial syndrome: a distinctive behavioral phenotype. Ment Retard Dev Disabil Res Rev 2000; 6: 142–147.

    Article  CAS  PubMed  Google Scholar 

  65. Cohen E, Chow EW, Weksberg R, Bassett AS . Phenotype of adults with the 22q11 deletion syndrome: A review. Am J Med Genet 1999; 86: 359–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McDonald-McGinn DM, Kirschner R, Goldmuntz E, Sullivan K, Eicher P, Gerdes M et al. The Philadelphia story: the 22q11.2 deletion: report on 250 patients. Genet Counsel 1999; 10: 11–24.

    CAS  PubMed  Google Scholar 

  67. Ryan AK, Goodship JA, Wilson DI, Philip N, Levy A, Seidel H et al. Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet 1997; 34: 798–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Murphy KC, Jones LA, Owen MJ . High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch Gen Psychiatry 1999; 56: 940–945.

    Article  CAS  PubMed  Google Scholar 

  69. Pulver AE, Nestadt G, Goldberg R, Shprintzen RJ, Lamacz M, Wolyniec PS et al. Psychotic illness in patients diagnosed with velo-cardio-facial syndrome and their relatives. J Nerv Ment Dis 1994; 182: 476–478.

    Article  CAS  PubMed  Google Scholar 

  70. Niklasson L, Rasmussen P, Oskarsdottir S, Gillberg C . Neuropsychiatric disorders in the 22q11 deletion syndrome. Genet Med 2001; 3: 79–84.

    Article  CAS  PubMed  Google Scholar 

  71. Scherer SW, Cheung J, MacDonald JR, Osborne LR, Nakabayashi K, Herbrick JA et al. Human chromosome 7: DNA sequence and biology. Science 2003; 300: 767–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. International Molecular Genetic Study of Autism Consortium (IMGSAC). Further characterization of the autism susceptibility locus AUTS1 on chromosome 7q. Hum Mol Genet 2001; 10: 973–982.

  73. Bonora E, Beyer KS, Lamb JA, Parr JR, Klauck SM, Benner A et al. Analysis of reelin as a candidate gene for autism. Mol Psychiatry 2003; 8: 885–892.

    Article  CAS  PubMed  Google Scholar 

  74. Serajee FJ, Zhong H, Nabi R, Huq AH . The metabotropic glutamate receptor 8 gene at 7q31: partial duplication and possible association with autism. J Med Genet 2003; 40: e42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vourc’h P, Martin I, Bonnet-Brilhault F, Marouillat S, Barthelemy C, Pierre MJ et al. Mutation screening and association study of the UBE2H gene on chromosome 7q32 in autistic disorder. Psychiatr Genet 2003; 13: 221–225.

    Article  PubMed  Google Scholar 

  76. Buxbaum JD, Silverman J, Keddache M, Smith CJ, Hollander E, Ramoz N et al. Linkage analysis for autism in a subset families with obsessive–compulsive behaviors: evidence for an autism susceptibility gene on chromosome 1 and further support for susceptibility genes on chromosome 6 and 19. Mol Psychiatry 2004; 9: 144–150.

    Article  CAS  PubMed  Google Scholar 

  77. Kleinjan DJ, van Heyningen V . Position effect in human genetic disease. Hum Mol Genet 1998; 7: 1611–1618.

    Article  CAS  PubMed  Google Scholar 

  78. Pfeifer D, Kist R, Dewar K, Devon K, Lander ES, Birren B et al. Campomelic dysplasia translocation breakpoints are scattered over 1 Mb proximal to SOX9: evidence for an extended control region. Am J Hum Genet 1999; 65: 111–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Velagaleti GV, Bien-Willner GA, Northup JK, Lockhart LH, Hawkins JC, Jalal SM et al. Position effects due to chromosome breakpoints that map approximately 900 kb upstream and approximately 1.3 Mb downstream of SOX9 in two patients with campomelic dysplasia. Am J Hum Genet 2005; 76: 652–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 1998; 20: 207–211.

    Article  CAS  PubMed  Google Scholar 

  81. Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A, Dohner H et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 1997; 20: 399–407.

    Article  CAS  PubMed  Google Scholar 

  82. Vissers LE, de Vries BB, Osoegawa K, Janssen IM, Feuth T, Choy CO et al. Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. Am J Hum Genet 2003; 73: 1261–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lucito R, Healy J, Alexander J, Reiner A, Esposito D, Chi M et al. Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res 2003; 13: 2291–2305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rauch A, Ruschendorf F, Huang J, Trautmann U, Becker C, Thiel C et al. Molecular karyotyping using an SNP array for genomewide genotyping. J Med Genet 2004; 41: 916–922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Patil S, Westin E, Frantz R, Ashley E, Piven J, Sheffield J et al. Molecular cytogenetic and CGH-array studies in patients with autistic disorder. Abstract Book of The American Society of Human Genetics 54th Annual Meeting 2004; program number 917; p. 181.

  86. Gribble SM, Prigmore E, Burford DC, Porter KM, Ng BL, Douglas EJ et al. The complex nature of constitutional de novo apparently balanced translocations in patients presenting with abnormal phenotypes. J Med Genet 2005; 42: 8–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y et al. Detection of large-scale variation in the human genome. Nat Genet 2004; 36: 949–951.

    Article  CAS  PubMed  Google Scholar 

  88. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P et al. Large-scale copy number polymorphism in the human genome. Science 2004; 305: 525–528.

    Article  CAS  PubMed  Google Scholar 

  89. Yu CE, Dawson G, Munson J, D’Souza I, Osterling J, Estes A et al. Presence of large deletions in kindreds with autism. Am J Hum Genet 2002; 71: 100–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hattori E, Liu C, Zhu H, Gershon ES . Genetic tests of biologic systems in affective disorders. Mol Psychiatry 2005; 10: 719–740.

    Article  CAS  PubMed  Google Scholar 

  91. Maestrini E, Lai C, Marlow A, Matthews N, Wallace S, Bailey A et al. Serotonin transporter (5-HTT) and gamma-aminobutyric acid receptor subunit beta3 (GABRB3) gene polymorphisms are not associated with autism in the IMGSA families. The International Molecular Genetic Study of Autism Consortium. Am J Med Genet 1999; 88: 492–496.

    Article  CAS  PubMed  Google Scholar 

  92. Persico AM, Militerni R, Bravaccio C, Schneider C, Melmed R, Conciatori M et al. Lack of association between serotonin transporter gene promoter variants and autistic disorder in two ethnically distinct samples. Am J Med Genet 2000; 96: 123–127.

    Article  CAS  PubMed  Google Scholar 

  93. Devlin B, Bennett P, Dawson G, Figlewicz DA, Grigorenko EL, McMahon W et al. Alleles of a reelin CGG repeat do not convey liability to autism in a sample from the CPEA network. Am J Med Genet B 2004; 126: 46–50.

    Article  Google Scholar 

  94. Krebs MO, Betancur C, Leroy S, Bourdel MC, Gillberg C, Leboyer M . Absence of association between a polymorphic GGC repeat in the 5′ untranslated region of the reelin gene and autism. Mol Psychiatry 2002; 7: 801–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Salmon B, Hallmayer J, Rogers T, Kalaydjieva L, Petersen PB, Nicholas P et al. Absence of linkage and linkage disequilibrium to chromosome 15q11–q13 markers in 139 multiplex families with autism. Am J Med Genet 1999; 88: 551–556.

    Article  CAS  PubMed  Google Scholar 

  96. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 2004; 431: 931–945.

  97. de Bildt A, Sytema S, Kraijer D, Minderaa R . Prevalence of pervasive developmental disorders in children and adolescents with mental retardation. J Child Psychol Psychiatry 2005; 46: 275–286.

    Article  PubMed  Google Scholar 

  98. Nordin V, Gillberg C . Autism spectrum disorders in children with physical or mental disability or both. II: Screening aspects. Dev Med Child Neurol 1996; 38: 314–324.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Max Muenke for his professional advice and constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A S Vorstman.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorstman, J., Staal, W., van Daalen, E. et al. Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Mol Psychiatry 11, 18–28 (2006). https://doi.org/10.1038/sj.mp.4001757

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001757

Keywords

This article is cited by

Search

Quick links